Comment on Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14, 4508
Abstract
:1. Introduction
2. Statements in the Seibert–Rees (S–R) Paper and Counter-Arguments
3. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14, 4508. [Google Scholar] [CrossRef]
- Klein, R.J.; Huq, S.; Denton, F.; Downing, T.E.; Richels, R.G.; Robinson, J.B.; Toth, F.L. Inter-relationships between adaptation and mitigation. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 745–777. [Google Scholar]
- Vidal, O.; Goffé, B.; Arndt, N. Metals for a Low-Carbon Society. Nat. Geosci. 2013, 6, 894–896. [Google Scholar] [CrossRef]
- Hund, K.; LaPorta, D.; Fabregas, T.; Laing, T.; Drexhage, J. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition; The World Bank Group, Climate-Smart Mining Initiative: Washington, DC, USA, 2020. [Google Scholar]
- Michaux, S.P. The Mining of Minerals and the Limits to Growth; Geological Survey of Finland: Espoo, Finland, 2021. [Google Scholar]
- Sovacool, B.K.; Hook, A.; Martiskainen, M.; Brock, A.; Turnheim, B. The Decarbonisation Divide: Contextualizing Landscapes of Low-Carbon Exploitation and Toxicity in Africa. Glob. Environ. Chang. 2020, 60, 102028. [Google Scholar] [CrossRef]
- Sovacool, B.K. Who Are the Victims of Low-Carbon Transitions? Towards a Political Ecology of Climate Change Mitigation. Energy Res. Soc. Sci. 2021, 73, 101916. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman, M.; Tiong, S.K.; Sopian, K.; Amin, N. An Overview of Solar Photovoltaic Panels’ End-of-Life Material Recycling. Energy Strategy Rev. 2020, 27, 100431. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Tan, Q.; Peters, A.L.; Yang, C. Global Status of Recycling Waste Solar Panels: A Review. Waste Manag. 2018, 75, 450–458. [Google Scholar] [CrossRef]
- Liu, P.; Barlow, C.Y. Wind Turbine Blade Waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef]
- European Commission, Critical Materials for Strategic Technologies and Sectors in the EU—A Foresight Study. 2020. Available online: https://rmis.jrc.ec.europa.eu/uploads/CRMs_for_Strategic_Technologies_and_Sectors_in_the_EU_2020.pdf (accessed on 4 November 2021).
- U.S. Department of Energy. Department of Energy’s Strategy to Support Domestic Critical Mineral and Material Supply Chains (FY 2021–2031), Critical Minerals and Materials. Available online: https://www.energy.gov/sites/default/files/2021/01/f82/DOE%20Critical%20Minerals%20and%20Materials%20Strategy_0.pdf (accessed on 4 November 2021).
- U.S. Geological Survey. Critical Mineral Commodities in Renewable Energy. Available online: https://www.usgs.gov/media/images/critical-mineral-commodities-renewable-energy (accessed on 4 November 2021).
- Junne, T.; Wulff, N.; Breyer, C.; Naegler, T. Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt. Energy 2020, 211, 118532. [Google Scholar] [CrossRef]
- Greim, P.; Solomon, A.A.; Breyer, C. Assessment of Lithium criticality in the global energy transition and addressing policy gaps in transportation. Nat. Commun. 2020, 11, 4570. [Google Scholar] [CrossRef] [PubMed]
- Grelle, T.; Schmülling, C.; Zimmerschied, P. Magnet-free HV traction drives with contactless power transmission. MTZ Worldw. 2021, 4, 28–33. [Google Scholar] [CrossRef]
- Gourley, S.W.D.; Or, T.; Chen, Z. Breaking free from cobalt reliance in lithium-ion batteries. iScience 2020, 23, 101505. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, J.C.; Wagner, L.; Pietzcker, R.; Friedrich, L. Technological learning for resource efficient terawatt scale photovoltaics. Energy Environ. Sci. 2021, in press. [CrossRef]
- Breyer, C.; Bogdanov, D.; Khalili, S.; Keiner, D. Solar photovoltaics in 100% renewable energy systems. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Moats, M.; Alagha, L.; Awuah-Offei, K. Towards resilient and sustainable supply of critical elements from the copper supply chain: A review. J. Clean. Prod. 2021, 307, 127207. [Google Scholar] [CrossRef]
- Redinger, M.; Lokanc, M.; Eggert, R.G.; Woodhouse, M.; Goodrich, A.C. The Present, Mid-Term, and Long-Term Supply Curves for Tellurium; and Updates in the Results from NREL’s CdTe PV Module Manufacturing Cost Model, NREL/PR-6A20-60430. 2013. Available online: https://www.nrel.gov/docs/fy13osti/60430.pdf (accessed on 4 November 2021).
- CIGS-PV. CIGS Thin Film Photovoltaics for EU’s Prosperity, Energy Transition and Enabling Net Zero Emission Targets. Available online: https://cigs-pv.net/wortpresse/wp-content/uploads/2021/07/Indium_Availability_for_CIGS_thin-film_solar_cells_in_Europe.pdf (accessed on 4 November 2021).
- Paire, M.; Lombez, L.; Donsanti, F.; Jubault, M.; Collin, S.; Pelouard, J.L.; Guillemoles, J.F.; Lincot, D. Cu (In, Ga)Se2 microcells: High efficiency and low material consumption. J. Renew. Sustain. Energy 2013, 5, 11202. [Google Scholar] [CrossRef]
- Fthenakis, V.M.; Wang, W.; Kim, H.C. Life Cycle Inventory Analysis in the Production of Metals used in Photovoltaics. Renew. Sustain. Energy Rev. 2009, 13, 493–517. [Google Scholar] [CrossRef] [Green Version]
- Fthenakis, V.M. Sustainability of photovoltaics: The case for thin-film solar cells. Renew. Sustain. Energy Rev. 2009, 13, 2746–2750. [Google Scholar] [CrossRef] [Green Version]
- Fthenakis, V.M. Sustainability metrics for extending thin-film photovoltaics to terawatt levels. MRS Bull. 2012, 37, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Matsuno, Y.; Hur, T.; Fthenakis, V. Dynamic Modeling of Cadmium Substance Flow with Zinc and Steel in Japan. Resour. Conserv. Recycl. 2012, 61, 83–90. [Google Scholar] [CrossRef]
- Anctil, A.; Fthenakis, V. Critical metals in strategic photovoltaic technologies: Abundance versus recyclability. Prog. Photovolt. Res. Appl. 2013, 21, 1253–1259. [Google Scholar] [CrossRef]
- Fthenakis, V.; Anctil, A. Direct Te mining: Resource availability and impact on cumulative energy demand of CdTe PV life-cycles. IEEE J. Photovolt. 2013, 3, 433–438. [Google Scholar] [CrossRef]
- Fthenakis, V.; Athias, C.; Blumenthal, A.; Kulur, A.; Magliozzo, J.; Ng, D. Sustainability Evaluation of CdTe PV in Large Scale Penetration. Renew. Sustain. Energy Rev. 2020, 123, 10977. [Google Scholar] [CrossRef]
- Victoria, M.; Haegel, N.; Peters, I.M.; Sinton, R.; Jäger-Waldau, A.; Cañizo, C.; Breyer, C.; Stocks, M.; Blakers, A.; Kaizuka, I.; et al. Solar photovoltaics is ready to power a sustainable future. Joule 2021, 5, 1041–1056. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Coughlin, S.J.; Hay, C.A.; Manogaran, I.P.; Shu, Y.; Krauland, A.K. Impacts of Green new deal energy plans on grid stability, costs, jobs, health, and climate in 143 countries. One Earth 2019, 1, 449–463. [Google Scholar] [CrossRef]
- Haegel, N.M.; Atwater, H., Jr.; Barnes, T.; Breyer, C.; Burrell, A.; Chiang, Y.-M.; DeWolf, S.; Dimmler, B.; Feldman, D.; Glunz, S.; et al. Terawatt-scale photovoltaics: Transform global energy. Science 2019, 364, 836–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pursiheimo, E.; Holttinen, H.; Koljonen, T. Intersectoral effects of high renewable energy share in global energy system. Renew. Energy 2019, 136, 1119–1129. [Google Scholar] [CrossRef]
- Verlinden, P.J. Future challenges for photovoltaic manufacturing at the terawatt level. J. Renew. Sustain. Energy 2020, 12, 53505. [Google Scholar] [CrossRef]
- Haas, J.; Moreno-Leiva, S.; Junne, T.; Chen, P.-J.; Pamparana, G.; Nowak, W.; Kracht, W.; Ortiz, J.M. Copper mining: 100% solar electricity by 2030? Appl. Energy 2020, 262, 114506. [Google Scholar] [CrossRef]
- Mills, M.P. The New Energy Economy: An Exercise in Magical Thinking; The Manhattan Institute: New York, NY, USA, 2019; Available online: https://www.peabodyenergy.com/Peabody/media/MediaLibrary/Case%20for%20Coal/Magical-Thinking-Mills-%28March-2019%29.pdf (accessed on 10 November 2021).
- Zehner, O. Green Illusions: The Dirty Secrets of Clean Energy and the Future of Environmentalism; Our sustainable future; University of Nebraska Press: Lincoln, NE, USA, 2012; ISBN 97808-03237759. [Google Scholar]
- Solar Energy Technology Office (SETO). Energy Efficiency and Renewable Energy (EERE) U.S. Department of Energy, SunShot Vision Study. 2012. Available online: https://www.energy.gov/eere/solar/sunshot-vision-study (accessed on 4 November 2021).
- Solar Energy Technology Office (SETO). Energy Efficiency and Renewable Energy (EERE) U.S. Department of Energy, On the Path to Sunshot. 2016. Available online: https://www.energy.gov/eere/solar/path-sunshot (accessed on 4 November 2021).
- Solar Futures Study, Office of Energy Efficiency and Renewable Energy (EERE) U.S. Department of Energy. 2021. Available online: https://www.energy.gov/sites/default/files/2021-09/Solar%20Futures%20Study.pdf (accessed on 4 November 2021).
- Zweibel, K.; Mason, J.; Fthenakis, V. A Solar Grand Plan. Sci. Am. 2008, 298, 64–73. Available online: https://www.scientificamerican.com/article/a-solar-grand-plan/ (accessed on 4 November 2021). [CrossRef]
- Fthenakis, V.; Mason, J.; Zweibel, K. The Technical, Geographical and Economic Feasibility for Solar Energy to Supply the Energy Needs of the United States. Energy Policy 2009, 37, 387–399. [Google Scholar] [CrossRef]
- Larson, E.; Greig, C.; Jenkins, J.; Mayfield, E.; Pascale, A.; Zhang, C.; Drossman, J.; Williams, R.; Pacala, S.; Socolow, R.; et al. Net-Zero America: Potential Pathways, Infrastructure, and Impacts; Interim Report; Princeton University: Princeton, NJ, USA, 2020. [Google Scholar]
- Ives, M.C.; Righetti, L.; Schiele, J.; De Meyer, K.; Hubble-Rose, L.; Teng, F.; Kruitwagen, L.; Tillmann-Morris, L.; Wang, T.; Way, R.; et al. A New Perspective on Decarbonising the Global Energy System. Oxford: Smith School of Enterprise and the Environment; University of Oxford: Oxford, UK, 2021. [Google Scholar]
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; Barbosa, L.D.S.N.S.; et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Aghahosseini, A.; Bogdanov, D.; Breyer, C. A Techno-Economic Study of an Entirely Renewable Energy-Based Power Supply for North America for 2030 Conditions. Energies 2017, 10, 1171. [Google Scholar] [CrossRef] [Green Version]
- Aghahosseini, A.; Bogdanov, D.; Barbosa, L.S.N.S.; Breyer, C. Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030. Renew. Sustain. Energy Rev. 2019, 105, 187–205. [Google Scholar] [CrossRef]
- University of California Berkeley, Goldman School of Public Policy. The 2035 Report: Plummeting Solar, Wind, And Battery Costs Can Accelerate Our Clean Electricity Future. 2020. Available online: http://www.2035report.com/wp-content/uploads/2020/06/2035-Report.pdf?hsCtaTracking=8a85e9ea-4ed3-4ec0-b4c6-906934306ddb%7Cc68c2ac2-1db0-4d1c-82a1-65ef4daaf6c1 (accessed on 26 May 2021).
- Wesoff, E. The US Added 13.3 GW of Solar in 2019, Beating New Wind and Gas Capacity. PV Magazine, 18 March 2020. Available online: https://www.pv-magazine.com/2020/03/18/the-us-added-13-3-gw-of-solar-in-2019-beating-wind-and-gas-in-newcapacity/#:~{}:text=2020,The%20US%20added%2013.3%20GW%20of%20solar%20in%202019,%20beating,capacity%20now%20tops%2076%20GW (accessed on 26 May 2021).
- Clack, C.T.M.; Qvist, S.A.; Apt, J.; Bazilian, M.; Brandt, A.R.; Caldeira, K.; Davis, S.J.; Diakov, V.; Handschy, M.A.; Hines, P.D.H.; et al. Evaluation of a Proposal for Reliable Low-Cost Grid Power with 100%Wind, Water, and Solar. Proc. Natl. Acad. Sci. USA 2017, 114, 6722–6727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Frew, B.A. The United States can keep the grid stable at low cost with 100% clean, renewable energy in all sectors despite inaccurate claims. Proc. Natl. Acad. Sci. USA 2017, 14, E5021–E5023. [Google Scholar] [CrossRef] [Green Version]
- Consolidation of Peer-Review Papers from 18 Independent Groups on 100% RE in Different Parts of the World. Available online: https://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/100PercentPaperAbstracts.pdf (accessed on 30 October 2021).
- Hansen, K.; Breyer, C.; Lund, H. Status and Perspectives on 100% Renewable Energy Systems. Energy 2019, 175, 471–480. [Google Scholar] [CrossRef]
- Diesendorf, M.; Elliston, B. The feasibility of 100% renewable electricity systems: A response to critics. Renew. Sustain. Energy Rev. 2018, 93, 318–330. [Google Scholar] [CrossRef]
- Brown, T.W.; Bischof-Niemz, T.; Blok, K.; Breyer, C.; Lundn, H.; Mathiesen, B.V. Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’. Renew. Sustain. Energy Rev. 2018, 92, 834–847. [Google Scholar] [CrossRef]
- Fthenakis, V.M.; Lynn, P.A. Electricity from Sunlight: Photovoltaics Systems Integration and Sustainability, 2nd ed.; Wiley: Hoboken, NJ, USA, 2018; ISBN 97811-18963807. [Google Scholar]
- Fthenakis, V.; Leccisi, E. Updated sustainability status of crystalline silicon-based photovoltaic systems: Life-cycle energy and environmental impact reduction trends. Prog. Photovolt. Res. Appl. 2021, 1068–1077. [Google Scholar] [CrossRef]
- Raugei, M.; Sgouridis, S.; Murphy, D.; Fthenakis, V.; Frischknecht, R.; Breyer, C.; Bardi, U.; Barnhart, C.; Buckley, A.; Carbajales-Dale, M.; et al. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response. Energy Policy 2017, 102, 377–384. [Google Scholar] [CrossRef]
- Raugei, M.; Carbajales-Dale, M.; Barnhart, C.; Fthenakis, V. On energy intensities, energy returned on investment, and energy payback times of electricity generating power plants- Making clear of quite some confusion. Energy 2015, 82, 1088–1091. [Google Scholar] [CrossRef]
- Carbajales-Dale, M.; Raugei, M.; Fthenakis, V.; Barnhart, C. Energy return on investment (EROI) of solar PV: An attempt at reconciliation. Proc. IEEE 2015, 103, 995–999. [Google Scholar] [CrossRef]
- White, G.; Kramer, J. The Changing Meaning of Energy Return on Investment and the Implications for the Prospects of Post-fossil Civilization. One Earth 2019, 1, 416–422. [Google Scholar] [CrossRef]
- Leccisi, E.; Raugei, M.; Fthenakis, V. The energy and environmental performance of ground-mounted photovoltaic systems—A timely update. Energies 2016, 9, 622. [Google Scholar] [CrossRef] [Green Version]
- Leccisi, E.; Fthenakis, V. Life-cycle energy demand and carbon emissions of scalable single-junction and tandem perovskite PV. Prog. Photovolt. 2021, 29, 1078–1092. [Google Scholar] [CrossRef]
- Raugei, M.; Peluso, A.; Leccisi, E.; Fthenakis, V. Life-cycle carbon emissions and energy return on investment for 80% domestic renewable electricity with battery storage in California (USA). Energies 2020, 13, 3934. [Google Scholar] [CrossRef]
- Raugei, M.; Leccisi, E.; Azzopardi, B.; Jones, C.; Gilber, P.; Zhang, L.; Zhou, Y.; Mander, S.; Mancarella, P. A multi-disciplinary analysis of UK grid mix scenarios with large-scale PV deployment. Energy Policy 2018, 114, 51–62. [Google Scholar] [CrossRef]
- Raugei, M.; Leccisi, E.; Fthenakis, V.; Moragas, R.E.; Simsek, Y. Net energy analysis and life cycle energy assessment of electricity supply in Chile: Present status and future scenarios. Energy 2018, 162, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Leccisi, E.; Raugei, M.; Fthenakis, V. The energy performance of potential scenarios with large-scale PV deployment in Chile—A dynamic analysis. In Proceedings of the 2018 IEEE 7th WCPEC, a Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC, Waikoloa, HI, USA, 10–15 June 2018; pp. 2441–2446. [Google Scholar]
- Raugei, M.; Leccisi, E.; Fthenakis, V. What are the energy and environmental impacts of adding battery storage to photovoltaics? A generalized life cycle assessment. Energy Technol. 2020, 8, 1901146. [Google Scholar] [CrossRef]
- Raugei, M. Net Energy Analysis must not compare apples and oranges. Nat. Energy 2019, 4, 86–88. [Google Scholar] [CrossRef]
- Fthenakis, V.M.; Kim, H.C. Photovoltaics: Life-cycle analyses. Solar Energy 2011, 85, 1609–1628. [Google Scholar] [CrossRef]
- Frischknecht, R.; Stolz, P.; Krebs, L.; de Wild-Scholten, M.; Sinha, P.; Fthenakis, V.; Kim, H.C.; Raugei, M.; Stucki, M. Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems; PVPS Task 12, Report T12-19; International Energy Agency (IEA): Upton, NY, USA, 2020. [Google Scholar]
- Fthenakis, V.; Frischknecht, R.; Raugei, M.; Kim, H.C.; Alsema, M.; Held, M.; de Wild-Scholten, M. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity, 2nd ed.; PVPS Task 12, Report IEA-PVPS T12-03; International Energy Agency: Upton, NY, USA, 2011. [Google Scholar]
- Frischknecht, R.; Itten, R.; Sinha, P.; de Wild-Scholten, M.; Zhang, J.; Fthenakis, V.; Kim, H.C.; Raugei, M.; Stucki, M. Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems; PVPS Task 12, Report T12-04; International Energy Agency: Upton, NY, USA, 2015. [Google Scholar]
- Dale, M.; Benson, S.M. Energy balance of the global photovoltaic (PV) industry-is the PV industry a net electricity producer? Environ. Sci. Technol. 2013, 47, 3482–3489. [Google Scholar] [CrossRef]
- Friedemann, A.J.; Zhiyuan, F.; Tang, K. Low-Carbon Heat Solutions for Heavy Industry: Sources, Options, and Costs Today; Columbia Center on Global Energy Policy: New York, NY, USA, 2019. [Google Scholar]
- Sandalow, D.; Friedmann, J.; Aines, R.; McCormick, C.; McCoy, S.; Stolaroff, J. ICEF Industrial Heat Decarbonization Roadmap; Innovation for Cool Earth Forum: Tokyo, Japan, 2019; Available online: https://www.icef-forum.org/pdf/2019/roadmap/ICEF_Roadmap_201912.pdf (accessed on 26 May 2021).
- Friedemann, A.J. When Trucks Stop Running; SpringerBriefs in Energy; Springer International Publishing: Cham, Switzerland, 2016; ISBN 97833-19263731. [Google Scholar]
- Bailera, M.; Lisbona, P.; Peña, B.; Romeo, L.M. A review on CO2 mitigation in the Iron and Steel industry through Power to X processes. J. CO2 Util. 2021, 46, 101456. [Google Scholar] [CrossRef]
- Kätelhön, A.; Meys, R.; Deutz, S.; Suh, S.; Bardow, A. Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc. Natl. Acad. Sci. USA 2019, 116, 11187–11194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galán-Martin, A.; Tulus, V.; Diaz, I.; Pozo, C.; Pérez-Ramirez, J.; Guillén-Gosálbez, G. Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries. One Earth 2021, 4, 565–583. [Google Scholar] [CrossRef]
- Turiel, A. Hydrogen Fever 2.0 (I). The Oil Crash, 17 November 2020. Available online: https://crashoil.blogspot.com/2020/11/la-fiebre-del-hidrogeno-20-i.html (accessed on 30 June 2021).
- Ginsberg, M.; Atia, A.A.; Venkatraman, M.; Zhang, Z.; Esposito, D.; Fthenakis, V. Integrating solar energy, desalination and electrolysis. Solar RRL, 2021, in press. [CrossRef]
- International Renewable Energy Agency (IRENA). Innovation landscape brief: Renewable Power-to-Hydrogen, 2019, Abu Dhabi. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Power-to-Hydrogen_Innovation_2019.pdf (accessed on 9 September 2021).
- Fasihi, M.; Breyer, C. Baseload electricity and Hydrogen supply based on hybrid PV-Wind power plants. J. Clean. Prod. 2020, 243, 118466. [Google Scholar] [CrossRef]
- Vartiainen, E.; Breyer, C.; Moser, D.; Medina, E.R.; Busto, C.; Masson, G.; Bosch, E.; Jäger-Waldau, A. True Cost of Solar Hydrogen. Solar RRL 2021, in press. [CrossRef]
- Koleva, M.; Guerra, O.J.; Eichman, J.; Hodge, B.-M.; Kurtz, J. Optimal design of solar-driven electrolytic hydrogen production systems within electricity markets. J. Power Sources 2021, 483, 229183. [Google Scholar] [CrossRef]
- FERC Order No. 2222: Fact Sheet. Available online: https://www.ferc.gov/media/ferc-order-no-2222-fact-sheet (accessed on 9 September 2021).
- Eichman, J.; Harrison, K.; Peters, M. Novel Electrolyzer Applications: Providing More than Just Hydrogen. In Novel Electrolyzer Applications: Providing More Than Just Hydrogen; Office of Scientific and Technical Information (OSTI): Washington DC, USA, 2014. [Google Scholar]
- Guerra, O.; Eichman, J.; Kurtz, J.; Hodge, B. Cost Competitiveness of Electrolytic Hydrogen. Joule 2019, 3, 2425–2443. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). World Energy Outlook; International Energy Agency: Paris, France, 2020; Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 9 September 2021).
- Farfan, J.; Fasihi, M.; Breyer, C. Trends in the global cement industry and opportunities for a long-term sustainable CCU potential for Power-to-X. J. Clean. Prod. 2019, 217, 821–835. [Google Scholar] [CrossRef]
- Otto, A.; Robinius, M.; Grube, T.; Schiebahn, S.; Praktiknjo, A.; Stolten, D. Power-to-Steel: Reducing CO2 through the Integration of Renewable Energy and Hydrogen into the German Steel Industry. Energies 2017, 10, 451. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, D.; Gulagi, A.; Fasihi, M.; Breyer, C. Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination. Appl. Energy 2021, 283, 116273. [Google Scholar] [CrossRef]
- Carbajales-Dale, M.; Barnhart, C.; Benson, S.M. Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage. Energy Environ. Sci. 2014, 7, 1538–1544. [Google Scholar] [CrossRef] [Green Version]
- Görig, M.; Breyer, C. Energy learning curves of PV systems. Environ. Prog. Sustain. Energy 2016, 35, 914–923. [Google Scholar] [CrossRef]
- Mulvaney, D. Solar Energy Isn’t Always as Green as You Think. IEEE Spectrum. 2014. Available online: https://spectrum.ieee.org/green-tech/solar/solar-energy-isnt-always-as-green-as-you-think (accessed on 26 May 2021).
- Fthenakis, V.; Moskowitz, P.D.; Lee, J.C. Manufacture of Amorphous Silicon and Gallium Arsenide Thin-Film Solar Cells: An Identification of Potential Health and Safety Hazards. Solar Cells 1984, 13, 43–58. [Google Scholar] [CrossRef]
- Moskowitz, P.D.; Fthenakis, V.; Hamilton, L.D.; Lee, J.C. Public health Issues in Photovoltaic Energy Systems: An Overview of Concerns. Solar Cells 1986, 19, 287–299. [Google Scholar] [CrossRef]
- Fthenakis, V.; Moskowitz, P.D. Characterization and Controls of Phosphine Hazards in Photovoltaic Cell Manufacture. Solar Cells 1987, 22, 303–317. [Google Scholar] [CrossRef]
- Fthenakis, V.M.; Moskowitz, P.D.; Hamilton, L.D. Personal Safety in Thin-Film Photovoltaic Cell Industries. Solar Cells 1987, 19, 269–281. [Google Scholar] [CrossRef]
- Fthenakis, V.; Moskowitz, P.D.; Sproull, R.D. Control of Accidental Releases of Hydrogen Selenide and Hydrogen Sulfide in the Manufacture of Photovoltaic Cells: A Feasibility Study. J. Loss Prev. 1988, 1, 206–212. [Google Scholar] [CrossRef]
- Fthenakis, V.; Moskowitz, P.D. Health and Safety Aspects of Thin-Film Photovoltaic Cell Manufacturing Technologies. Plant/Oper. Prog. 1988, 7, 236–241. [Google Scholar] [CrossRef]
- Fthenakis, V.; Moskowitz, P.D. A Checklist of Suggested Safe Practices for the Storage, Distribution, Use and Disposal of Toxic and Hazardous Gases in Photovoltaic Cell Production. Solar Cells 1991, 31, 513–525. [Google Scholar]
- Fthenakis, V.; Moskowitz, P.D. Thin-Film Photovoltaic Cells: Health and environmental Issues in their Manufacture, Use and Disposal. Prog. Photovolt. Res. Appl. 1995, 3, 295–306. [Google Scholar] [CrossRef]
- Fthenakis, V. Prevention and Control of Accidental Releases of Hazardous Materials in PV Facilities. Prog. Photovolt. Res. Appl. 1998, 6, 91–98. [Google Scholar] [CrossRef]
- Ciccarelli, G.; Fthenakis, V.; Boccio, J. A Simple Method of Analysis for Gas Explosions. J. Loss Prev. 1999, 12, 157–165. [Google Scholar] [CrossRef]
- Fthenakis, V.; Morris, S.C.; Moskowitz, P.D.; Morgan, D. Toxicity of CdTe, CIS and CGS. Prog. Photovolt. Res. Appl. 1999, 7, 489–497. [Google Scholar] [CrossRef]
- Fthenakis, V.; Moskowitz, P.D. Photovoltaics: Environmental, Safety and Health Issues and Perspectives. Prog. Photovolt. Res. Appl. 2000, 8, 27–38. [Google Scholar] [CrossRef]
- Fthenakis, V. Life Cycle Impact Analysis of Cadmium in CdTe Photovoltaic Production. Renew. Sustain. Energy Rev. 2004, 8, 303–334. [Google Scholar] [CrossRef] [Green Version]
- Fthenakis, V. Multilayer Protection Analysis for Photovoltaic Manufacturing Facilities. AIChE Process. Saf. Prog. 2001, 20, 87–94. [Google Scholar] [CrossRef]
- Fthenakis, V.; Bulawka, A.O. Photovoltaics, Environmental Impact of. In Encyclopedia of Energy; Elsevier: Amsterdam, The Netherlands, 2004; Volume 5, pp. 61–69. ISBN 97801-21764807. [Google Scholar]
- Fthenakis, V.; Kim, H.C. Greenhouse gas Emissions from Solar Electric and Nuclear Power: A Life Cycle Study. Energy Policy 2007, 35, 2549–2557. [Google Scholar] [CrossRef]
- Fthenakis, V.; Kim, H.C. CdTe Photovoltaics: Life-cycle environmental profile and comparisons. Thin Solid Films. 2007, 515, 5961–5963. [Google Scholar] [CrossRef] [Green Version]
- Fthenakis, V.M.; Eberspacher, C.; Moskowitz, P.D. Recycling Strategies to Enhance the Viability of CIS Photovoltaics, Progress in Photovoltaics. Res. Appl. 1996, 4, 447–456. [Google Scholar]
- Fthenakis, V. End-of Life Management and Recycling of PV Modules. Energy Policy 2000, 28, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.K.; Fthenakis, V.M. Economic Feasibility of Photovoltaic Module Recycling: Survey and Model. J. Ind. Ecol. 2010, 14, 947–964. [Google Scholar] [CrossRef]
- Choi, J.K.; Fthenakis, V.M. Design and Optimization of Photovoltaics Recycling Infrastructure. Environ. Sci. Technol. 2010, 44, 8678–8683. [Google Scholar] [CrossRef] [PubMed]
- Fthenakis, V. Considering the total cost of electricity from sunlight and the alternatives. Proc. IEEE 2015, 103, 283–286. [Google Scholar] [CrossRef]
- Corcelli, F.; Ripa, M.; Leccisi, E.; Cigolotti, V.; Fiandra, V.; Graditi, G.; Sannino, L.; Tammaro, M.; Ulgiati, S. Sustainable urban electricity supply chain–Indicators of material recovery and energy savings from crystalline silicon photovoltaic panels end-of-life. Ecol. Indic. 2018, 94, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Barnwal, A.; Dhawan, N. Recycling of discarded mobile printed circuit boards for extraction of gold and copper. Sustain. Mater. Technol. 2020, 25, e00164. [Google Scholar] [CrossRef]
- Bartie, N.J.; Abadías Llamas, A.; Heibeck, M.; Fröhling, M.; Volkova, O.; Reuter, M.A. The simulation-based analysis of the resource efficiency of the circular economy—The enabling role of metallurgical infrastructure. Miner. Process. Extr. Metall. 2020, 129, 229–249. [Google Scholar] [CrossRef]
- Bookhagen, B.; Bastian, D.; Buchholz, P.; Faulstich, M.; Opper, C.; Irrgeher, J.; Prohaska, T.; Koeberl, C. Metallic resources in smartphones. Resour. Policy 2020, 68, 101750. [Google Scholar] [CrossRef]
- Bourgeois, D.; Lacanau, V.; Mastretta, R.; Contino-Pepin, C.; Meyer, D. A simple process for the recovery of palladium from wastes of printed circuit boards. Hydrometallurgy 2020, 191, 105241. [Google Scholar] [CrossRef]
- Carrara, S.; Alves Dias, P.; Plazzotta, B.; Pavel, C. Raw Materials Demand for Wind and Solar PV Technologies in the Transition Towards a Decarbonised Energy System; EUR 30095 EN; Publication Office of the European Union: Luxembourg, 2020; ISBN 97892-76162254. Available online: https://core.ac.uk/download/pdf/322747915.pdf (accessed on 8 November 2021).
- Sciubba, E. Extended exergy accounting applied to energy recovery from waste: The concept of total recycling. Energy 2003, 28, 1315–1334. [Google Scholar] [CrossRef]
- Fthenakis, V.; Kim, H.C.; Alsema, E. Emissions from photovoltaic life cycles. Environ. Sci. Technol. 2008, 42, 2168–2174. [Google Scholar] [CrossRef] [Green Version]
- European Commission (EC). Directive 2012/19/EU of the European Parliamentand of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- European Commission (EC). Mandate to the European Standardisation Organizations for Standardisation in the Field of Waste Electrical and Electronic Equipment; Directive 2012/19/EU (WEEE); European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Sinha, P.; Raju, S.; Drozdiak, K.; Wade, A. Life cycle management and recycling of PV systems. PV-Tech Power 2017, 13, 47–50. [Google Scholar]
- Burrows, K.; Fthenakis, V. Glass Needs in a Growing PV Industry. Sol. Mater. Sol. Cells 2015, 132, 455–459. [Google Scholar] [CrossRef]
- De Castro, C.; Capellán-Pérez, I. Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies. Energies 2020, 13, 3036. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; de Castro, C.; Miguel González, L.J. Dynamic Energy Return on Energy Investment (EROI) and Material Requirements in Scenarios of Global Transition to Renewable Energies. Energy Strategy Rev. 2019, 26, 100399. [Google Scholar] [CrossRef]
- Ferroni, F.; Guekos, A.; Hopkirk, R.J. Further Considerations to: Energy Return on Energy Invested (ERoEI) for Photovoltaic Solar Systems in Regions of Moderate Insolation. Energy Policy 2017, 107, 498–505. [Google Scholar] [CrossRef]
- Prieto, P.A.; Hall, C.A.S. Spain’s Photovoltaic Revolution: The Energy Return on Investment; SpringerBriefs in Energy; Energy Analysis; Springer: New York, NY, USA, 2013; ISBN 97814-41994363. [Google Scholar]
- IRENA. Electricity Storage and Renewables: Costs and Markets to 2030; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2017; Available online: https://www.irena.org/publications/2017/oct/electricity-storage-and-renewables-costs-and-markets (accessed on 10 September 2021).
- Nikolakakis, T.; Fthenakis, V. The Optimum Mix of Electricity from Wind- and Solar-Sources in Conventional Power Systems: Evaluating the Case for New York State. Energy Policy 2011, 39, 6972–6980. [Google Scholar] [CrossRef]
- Perez, M.; Perez, R.; Rábago, K.R.; Putnam, M. Overbuilding & curtailment: The cost-effective enablers of firm PV generation. Solar Energy 2019, 180, 412–422. [Google Scholar]
- Perez, R.; Perez, M. A fundamental look at supply side energy reserves for the planet. IEA SHC 2009, 50, 2. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.498.8623&rep=rep1&type=pdf (accessed on 8 November 2021).
- Gevogian, V.; Burra, R.; Morjaria, M. Hybrid Utility-Scale PV-Wind Storage Plants for Dispatchability and Reliability Services. In Proceedings of the 3rd International Hybrid Power Systems Workshop; Tenerife, Spain, 8–9 May 2018. Available online: https://www.nrel.gov/docs/fy18osti/71551.pdf (accessed on 1 November 2021).
- Raugei, M.; Peluso, A.; Leccisi, E.; Fthenakis, V. Life-Cycle Carbon Emissions and Energy Implications of High Penetration of Photovoltaics and Electric Vehicles in California. Energies 2021, 14, 5165. [Google Scholar] [CrossRef]
- Volkswagen. 2021. Available online: https://www.volkswagenag.com/en/news/2021/03/traton-group-boosts-investment-in-electric-mobility.html (accessed on 9 September 2021).
- Auto Motor und Sport. 2021. Available online: https://www.auto-motor-und-sport.de/tech-zukunft/alternative-antriebe/interview-mit-traton-chef-stratege-andreas-kammel/ (accessed on 9 September 2021).
- Renault Trucks. 2021. Available online: https://www.renault-trucks.com/en/transport-solutions/electromobility (accessed on 9 September 2021).
- Daimler Trucks. 2021. Available online: https://media.daimler.com/marsMediaSite/en/instance/ko/Daimler-Truck-AG-and-CATL-expand-global-partnership-joint-development-of-sophisticated-truck-focused-batteries-and-supply-agreed-beyond-2030.xhtml?oid=50009915 (accessed on 9 September 2021).
- BYD Trucks. 2021. Available online: https://insideevs.com/news/532462/byd-next-generation-electric-trucks/ (accessed on 9 September 2021).
- Samsung SDI, Energy Storage System Battery Business—Batteries by Samsung SDI, Yongin, Korea. 2018. Available online: https://www.samsungsdi.com/upload/ess_brochure/201902_Samsung%20SDI%20ESS_EN.pdf (accessed on 1 November 2021).
- Peters, I.M.; Breyer, C.; Jaffer, S.; Kurtz, S.; Reindl, T.; Sinton, R.; Vetter, M. The Role of Batteries in Meeting the PV Terawatt Challenge. Joule 2021, 5, 1353–1370. [Google Scholar] [CrossRef]
- Rajaeifar, M.A.; Raugei, M.; Steubing, B.; Hartwell, A.; Anderson, P.; Heidrich, O. Life Cycle Assessment of lithium-ion battery recycling using pyrometallurgical technologies. J. Ind. Ecol. 2021, 25, 1560–1571. [Google Scholar] [CrossRef]
- Dai, Q.; Winjobi, O. Updates for Battery Recycling and Materials in GREET® 2019. Energy Systems Division. Argonne National Laboratory. Available online: https://greet.es.anl.gov/publication-battery_recycling_materials_2019 (accessed on 28 April 2021).
- Arambarri, J.; Hayden, J.; Elkurdy, M.; Meyers, B.; Hamatteh, Z.S.A.; Abbassi, B.; Omar, W. Lithium ion car batteries: Present analysis and future predictions. Environ. Eng. Res. 2019, 24, 699–710. [Google Scholar] [CrossRef]
- Lenzen, M.; Jesper, M. Energy and CO2 life-cycle analyses of wind turbines—Review and applications. Renew. Energy 2002, 26, 339–362. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Cleveland, C.J.; Endres, P.K. Meta-analysis of net energy return for wind power systems. Renew. Energy 2010, 35, 218–225. [Google Scholar] [CrossRef]
- Dale, M. A comparative analysis of energy costs of photovoltaic, solar thermal, and wind electricity generation technologies. Appl. Sci. 2013, 3, 325–337. [Google Scholar]
- Dolan, S.L.; Heath, G.A. Life cycle greenhouse gas emissions of utility-scale wind power: Systematic review and harmonization. J. Ind. Ecol. 2012, 16, S136–S154. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory (NREL). Life Cycle Assessment Harmonization. 2021. Available online: https://www.nrel.gov/analysis/life-cycle-assessment.html (accessed on 9 September 2021).
- Service, F. Cost Plunges for Capturing Carbon Dioxide from the Air. Science. 2018. Available online: https://www.sciencemag.org/news/2018/06/cost-plunges-capturing-carbon-dioxide-air (accessed on 1 November 2021).
- Fasihi, M.; Efimova, O.; Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 2019, 224, 957–980. [Google Scholar] [CrossRef]
- Breyer, C.; Fasihi, M.; Aghahosseini, A. Carbon Dioxide Direct Air Capture for effective Climate Change Mitigation based on Renewable Electricity: A new Type of Energy System Sector Coupling. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 43–65. [Google Scholar] [CrossRef] [Green Version]
- Breyer, C.; Fasihi, M.; Bajamundi, C.; Creutzig, F. Direct Air Capture of CO2—A key technology for ambitious climate change mitigation. Joule 2019, 3, 2053–2057. [Google Scholar] [CrossRef]
- Creutzig, F.; Breyer, C.; Hilaire, J.; Minx, J.; Peters, G.; Socolow, R. The mutual dependence of negative emission technologies and energy systems. Energy Environ. Sci. 2019, 12, 1805–1817. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Kharecha, P.; von Schmuckmann, K.; Beerling, D.J.; Cao, J.; Marcott, S.; Masson-Delmotte, V.; Prather, M.J.; Rohling, E.J.; et al. Young people’s burden: Requirement of negative CO2 emissions. Earth Syst. Dyn. 2017, 8, 577–616. [Google Scholar] [CrossRef] [Green Version]
- Brändle, G.; Schönfisch, M.; Schulte, S. Estimating long-erm global supply costs for low-carbon Hydrogen. Appl. Energy 2021, 302, 117481. [Google Scholar] [CrossRef]
- Sterner, M. Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems. 2009. Available online: http://publica.fraunhofer.de/documents/N-139644.html (accessed on 20 September 2021).
- Blanco, H.; Nijs, W.; Ruf, J.; Faaij, A. Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization. Appl. Energy 2018, 232, 323–340. [Google Scholar] [CrossRef]
- Drünert, S.; Neuling, U.; Zitscher, T.; Kaltschmitt, M. Power-to-Liquid fuels for aviation—Processes, resources and supply potential under German conditions. Appl. Energy 2020, 277, 115578. [Google Scholar] [CrossRef]
- Fasihi, M.; Bogdanov, D.; Breyer, C. Techno-Economic Assessment of Power-to-Liquids (PtL) Fuels Production and Global Trading Based on Hybrid PV-Wind Power Plants. Energy Proc. 2016, 99, 243–268. [Google Scholar] [CrossRef] [Green Version]
- Fasihi, M.; Weiss, R.; Savolainen, J.; Breyer, C. Global potential of green ammonia based on hybrid PV-wind power plants. Appl. Energy 2021, 294, 116170. [Google Scholar] [CrossRef]
- Osman, O.; Sgouridis, S.; Sleptchenko, A. Scaling the production of renewable ammonia—A techno-economic optimization applied in regions with high insolation. J. Clean. Prod. 2020, 271, 121627. [Google Scholar] [CrossRef]
- Lonis, R.; Tola, V.; Cau, G. Assessment of integrated energy systems for the production and use of renewable methanol by water electrolysis and CO2 Hydrogenation. Fuel 2021, 285, 119160. [Google Scholar] [CrossRef]
- Fasihi, M.; Breyer, C. Synthetic Methanol and Dimethyl Ether Production based on Hybrid PV-Wind Power Plants. In Proceedings of the 11th International Renewable Energy Storage Conference (IRES 2017), Düsseldorf, Germany, 14–16 March 2017; LUT Research Portal Converis—LUT University: Lappeenranta, Finland, 2017. Available online: https://research.lut.fi/converis/portal/Publication/10574933?auxfun%C2%BC&lang%C2%BCen_GB (accessed on 1 November 2021).
- Horvath, S.; Fasihi, M.; Breyer, C. Techno-Economic Analysis of a Decarbonized Shipping Sector: Technology Suggestions for a Fleet in 2030 and 2040. Energy Convers. Manag. 2018, 164, 230–241. [Google Scholar] [CrossRef]
- Khalili, S.; Rantanen, E.; Bogdanov, D.; Breyer, C. Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World. Energies 2019, 12, 3870. [Google Scholar] [CrossRef] [Green Version]
- Ram, M.; Osorio-Aravena, J.C.; Aghahosseini, A.; Bogdanov, D.; Breyer, C. Job creation during a climate compliant global energy transition across the power, heat, transport and desalination sectors by 2050. Energy 2022, 238, 121690. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fthenakis, V.; Raugei, M.; Breyer, C.; Bhattacharya, S.; Carbajales-Dale, M.; Ginsberg, M.; Jäger-Waldau, A.; Leccisi, E.; Lincot, D.; Murphy, D.; et al. Comment on Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14, 4508. Energies 2022, 15, 971. https://doi.org/10.3390/en15030971
Fthenakis V, Raugei M, Breyer C, Bhattacharya S, Carbajales-Dale M, Ginsberg M, Jäger-Waldau A, Leccisi E, Lincot D, Murphy D, et al. Comment on Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14, 4508. Energies. 2022; 15(3):971. https://doi.org/10.3390/en15030971
Chicago/Turabian StyleFthenakis, Vasilis, Marco Raugei, Christian Breyer, Suby Bhattacharya, Michael Carbajales-Dale, Michael Ginsberg, Arnulf Jäger-Waldau, Enrica Leccisi, Daniel Lincot, David Murphy, and et al. 2022. "Comment on Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14, 4508" Energies 15, no. 3: 971. https://doi.org/10.3390/en15030971