Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition
Abstract
:1. Introduction
2. Climate Change in the Context of Overshoot
3. Problems with So-Called Renewables
3.1. The Electrification Question
3.1.1. Big Picture Sanity Check
3.1.2. Heat for Manufacturing
3.1.3. Problems with Solar Panels
3.1.4. Problems with Batteries and Other Storage
3.1.5. Problems with Wind Power
3.1.6. Eco-Impacts of Hydropower
3.1.7. Problems with Nuclear
3.1.8. Metal Extraction and Its Social Injustices
3.1.9. Problems with Technological Carbon Sequestration
3.1.10. Hidden Fossil Fuel Subsidy
3.1.11. Performance Gains in Energy Extraction
3.1.12. The Liquid Fuels Question
3.1.13. Biofuels vs. Food Production
3.1.14. The Pipedream of Other Synthetic Fuels
3.1.15. Electrification of Transportation
4. Summary and What Might Actually Salvage Civilization
4.1. Energy Realism
4.2. Population Reduction
4.3. Radical Societal Contraction and Transformation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Mathiesen, B.V. Matching Demand with Supply at Low Cost in 139 Countries among 20 World Regions with 100% Intermittent Wind, Water, and Sunlight (WWS) for All Purposes. Renew. Energy 2018, 123, 236–248. [Google Scholar] [CrossRef]
- Williams, J.H.; Jones, R.A.; Haley, B.; Kwok, G.; Hargreaves, J.; Farbes, J.; Torn, M.S. Carbon-Neutral Pathways for the United States. AGU Adv. 2021. [Google Scholar] [CrossRef]
- Larson, E.; Greig, C.; Jenkins, J.; Mayfield, E.; Pascale, A.; Zhang, C.; Drossman, J.; Williams, R.; Pacala, S.; Socolow, R.; et al. Net-Zero America: Potential Pathways, Infrastructure, and Impacts, Interim Report; Princeton University: Princeton, NJ, USA, 2020. [Google Scholar]
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; De Souza Noel Simas Barbosa, L.; et al. Low-Cost Renewable Electricity as the Key Driver of the Global Energy Transition towards Sustainability. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Carlock, G.; Mangan, E. A Green New Deal: A Progressive Vision for Environmental Sustainability and Economic Stability. Available online: https://www.dataforprogress.org/green-new-deal-report (accessed on 21 May 2021).
- House Select Committee on the Climate Crisis. Available online: https://climatecrisis.house.gov (accessed on 21 May 2021).
- Recognizing the Duty of the Federal Government to Create a Green New Deal, H.R. 109, 116th Congress. 2019. Available online: https://www.congress.gov/bill/116th-congress/house-resolution/109/text (accessed on 30 May 2021).
- Roser, M.; Ritchie, H.; Ortiz-Ospina, E. World Population Growth. Our World in Data. 2013. Available online: https://ourworldindata.org/world-population-growth#how-has-world-population-growth-changed-over-time (accessed on 30 May 2021).
- Smil, V. Harvesting the Biosphere: The Human Impact. Popul. Dev. Rev. 2011, 37, 613–636. [Google Scholar] [CrossRef] [PubMed]
- Smil, V. Harvesting the Biosphere: What We Have Taken from Nature; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Bar-On, Y.M.; Phillips, R.; Milo, R. The Biomass Distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McRae, L.; Deinet, S.; Freeman, R. The Diversity-Weighted Living Planet Index: Controlling for Taxonomic Bias in a Global Biodiversity Indicator. PLoS ONE 2017, 12, e0169156. [Google Scholar] [CrossRef]
- Hughes, D.; Global Sustainability Research, Calgary, AB, Canada. Personal communication, 2019.
- BP. BP Statistical Review of World Energy, 67th ed.; BP: London, UK, 2018. [Google Scholar]
- Dukes, J.S. Burning Buried Sunshine: Human Consumption of Ancient Solar Energy. Clim. Chang. 2003, 61, 31–44. [Google Scholar] [CrossRef]
- Global Footprint Network. Available online: https://data.footprintnetwork.org/?_ga=2.9934709.1352344526.1610740013-650899000.1610740013#/compareCountries?type=earth&cn=5001&yr=2017 (accessed on 21 May 2021).
- Vidal, O.; Goffé, B.; Arndt, N. Metals for a Low-Carbon Society. Nat. Geosci. 2013, 6, 894–896. [Google Scholar] [CrossRef]
- Hund, K.; LaPorta, D.; Fabregas, T.; Laing, T.; Drexhage, J. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition; The World Bank Group, Climate-Smart Mining Initiative: Washington, DC, USA, 2020. [Google Scholar]
- Michaux, S.P. The Mining of Minerals and the Limits to Growth; Geological Survey of Finland: Espoo, Finland, 2021. [Google Scholar]
- Sovacool, B.K.; Hook, A.; Martiskainen, M.; Brock, A.; Turnheim, B. The Decarbonisation Divide: Contextualizing Landscapes of Low-Carbon Exploitation and Toxicity in Africa. Glob. Environ. Chang. 2020, 60, 102028. [Google Scholar] [CrossRef]
- Sovacool, B.K. Who Are the Victims of Low-Carbon Transitions? Towards a Political Ecology of Climate Change Mitigation. Energy Res. Soc. Sci. 2021, 73, 101916. [Google Scholar] [CrossRef]
- Friedmann, J.; Zhiyuan, F.; Tang, K. Low-Carbon Heat Solutions for Heavy Industry: Sources, Options, and Costs Today; Columbia Center on Global Energy Policy: New York, NY, USA, 2019. [Google Scholar]
- Lovegrove, K.; Alexander, D.; Bader, R.; Edwards, S.; Lord, M.; Mojiri, A.; Rutovitz, J.; Saddler, H.; Stanley, C.; Urkalan, K.; et al. Renewable Energy Options for Industrial Process Heat; ITP Thermal/Australian Renewable Energy Agency (ARENA): Turner, Australia, 2019.
- McMillan, C.; Boardman, R.; McKellar, M.; Sabharwall, P.; Ruth, M.; Bragg-Sitton, S. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions; Joint Institute for Strategic Energy Analysis: Golden, CO, USA, 2016. [Google Scholar]
- Sandalow, D.; Friedmann, J.; Aines, R.; McCormick, C.; McCoy, S.; Stolaroff, J. ICEF Industrial Heat Decarbonization Roadmap; Innovation for Cool Earth Forum: Tokyo, Japan, 2019; Available online: https://www.icef-forum.org/pdf/2019/roadmap/ICEF_Roadmap_201912.pdf (accessed on 26 May 2021).
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman, M.; Tiong, S.K.; Sopian, K.; Amin, N. An Overview of Solar Photovoltaic Panels’ End-of-Life Material Recycling. Energy Strategy Rev. 2020, 27, 100431. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Tan, Q.; Peters, A.L.; Yang, C. Global Status of Recycling Waste Solar Panels: A Review. Waste Manag. 2018, 75, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Barlow, C.Y. Wind Turbine Blade Waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Friedemann, A.J. When Trucks Stop Running; SpringerBriefs in Energy; Springer International Publishing: Cham, Switzerland, 2016; ISBN 9783319263731. [Google Scholar]
- Moore, J.; Rees, W.E. Getting to One-Planet Living. In State of the World 2013: Is Sustainability Still Possible? Island Press/Center for Resource Economics: Washington, DC, USA, 2013; pp. 39–50. ISBN 9781610914581. [Google Scholar]
- International Energy Agency. World Total Final Consumption (TFC) by Source. Available online: https://www.iea.org/reports/key-world-energy-statistics-2020/final-consumption (accessed on 26 May 2021).
- Mills, M. The “New Energy Economy”: An Exercise in Magical Thinking; The Manhattan Institute: New York, NY, USA, 2019. [Google Scholar]
- Zehner, O. Green Illusions: The Dirty Secrets of Clean Energy and the Future of Environmentalism; Our sustainable future; University of Nebraska Press: Lincoln, NE, USA, 2012; ISBN 9780803237759. [Google Scholar]
- University of California Berkeley, Goldman School of Public Policy. The 2035 Report: Plummeting Solar, Wind, And Battery Costs Can Accelerate Our Clean Electricity Future. 2020. Available online: http://www.2035report.com/wp-content/uploads/2020/06/2035-Report.pdf?hsCtaTracking=8a85e9ea-4ed3-4ec0-b4c6-906934306ddb%7Cc68c2ac2-1db0-4d1c-82a1-65ef4daaf6c1 (accessed on 26 May 2021).
- Wesoff, E. The US Added 13.3 GW of Solar in 2019, Beating New Wind and Gas Capacity. PV Magazine. 18 March 2020. Available online: https://www.pv-magazine.com/2020/03/18/the-us-added-13-3-gw-of-solar-in-2019-beating-wind-and-gas-in-new-capacity/#:~:text=2020,The%20US%20added%2013.3%20GW%20of%20solar%20in%202019,%20beating,capacity%20now%20tops%2076%20GW (accessed on 26 May 2021).
- Clack, C.T.M.; Qvist, S.A.; Apt, J.; Bazilian, M.; Brandt, A.R.; Caldeira, K.; Davis, S.J.; Diakov, V.; Handschy, M.A.; Hines, P.D.H.; et al. Evaluation of a Proposal for Reliable Low-Cost Grid Power with 100% Wind, Water, and Solar. Proc. Natl. Acad. Sci. USA 2017, 114, 6722–6727. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. Renewable Industrial Process Heat. Available online: https://www.epa.gov/rhc/renewable-industrial-process-heat (accessed on 21 May 2021).
- U.S. Energy Information Administration. Use of Energy Explained: Energy Use in Industry. Available online: https://www.eia.gov/energyexplained/use-of-energy/industry.php (accessed on 21 May 2021).
- International Energy Agency. Report Extract: An Introduction to Biogas and Biomethane. Available online: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane (accessed on 26 May 2021).
- Adnan, A.I.; Ong, M.Y.; Nomanbhay, S.; Chew, K.W.; Show, P.L. Technologies for Biogas Upgrading to Biomethane: A Review. Bioengineering 2019, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Lozanovski, A.; Lindner, J.P.; Bos, U. Environmental Evaluation and Comparison of Selected Industrial Scale Biomethane Production Facilities across Europe. Int. J. Life Cycle Assess 2014, 19, 1823–1832. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas Upgrading and Utilization: Current Status and Perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [Green Version]
- Koonaphapdeelert, S.; Aggarangsi, P.; Moran, J. Biomethane: Production and Applications; Green Energy and Technology; Springer: Singapore, 2020; ISBN 9789811383069. [Google Scholar]
- Ahlström, J.M.; Zetterholm, J.; Pettersson, K.; Harvey, S.; Wetterlund, E. Economic Potential for Substitution of Fossil Fuels with Liquefied Biomethane in Swedish Iron and Steel Industry—Synergy and Competition with Other Sectors. Energy Convers. Manag. 2020, 209, 112641. [Google Scholar] [CrossRef]
- Turiel, A. Hydrogen Fever 2.0 (I). The Oil Crash. 17 November 2020. Available online: https://crashoil.blogspot.com/2020/11/la-fiebre-del-hidrogeno-20-i.html (accessed on 31 June 2021).
- Nature Needs Half. Available online: https://natureneedshalf.org (accessed on 16 June 2021).
- Mulvaney, D. Solar Energy Isn’t Always as Green As You Think. IEEE Spectrum. 13 November 2014. Available online: https://spectrum.ieee.org/green-tech/solar/solar-energy-isnt-always-as-green-as-you-think (accessed on 26 May 2021).
- De Wild-Scholten, M.J.; Alsema, E.A. Environmental life cycle inventory of crystalline silicon photovoltaic module production. In Proceedings of the Materials Research Society Fall 2005 Meeting, Boston, MA, USA, 28 November–2 December 2005. [Google Scholar]
- Sisodia, A.K.; Mathur, R.K. Impact of Bird Dropping Deposition on Solar Photovoltaic Module Performance: A Systematic Study in Western Rajasthan. Environ. Sci. Pollut. Res. 2019, 26, 31119–31132. [Google Scholar] [CrossRef]
- Adinoyi, M.J.; Said, S.A.M. Effect of Dust Accumulation on the Power Outputs of Solar Photovoltaic Modules. Renew. Energy 2013, 60, 633–636. [Google Scholar] [CrossRef]
- International Renewable Energy Agency, Photovoltaic Power Systems Programme. End-of-Life Management: Solar Photovoltaic Panels. 2016. Available online: https://www.irena.org/publications/2016/Jun/End-of-life-management-Solar-Photovoltaic-Panels (accessed on 26 May 2021).
- De Castro, C.; Capellán-Pérez, I. Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies. Energies 2020, 13, 3036. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; de Castro, C.; Miguel González, L.J. Dynamic Energy Return on Energy Investment (EROI) and Material Requirements in Scenarios of Global Transition to Renewable Energies. Energy Strategy Rev. 2019, 26, 100399. [Google Scholar] [CrossRef]
- Ferroni, F.; Guekos, A.; Hopkirk, R.J. Further Considerations to: Energy Return on Energy Invested (ERoEI) for Photovoltaic Solar Systems in Regions of Moderate Insolation. Energy Policy 2017, 107, 498–505. [Google Scholar] [CrossRef]
- Prieto, P.A.; Hall, C.A.S. Spain’s Photovoltaic Revolution: The Energy Return on Investment; SpringerBriefs in Energy; Energy Analysis; Springer: New York, NY, USA, 2013; ISBN 9781441994363. [Google Scholar]
- University of Michigan, Center for Sustainable Systems. U.S. Energy Storage Factsheet. Pub. No. CSS15-17. University of Michigan, 2020. Available online: http://css.umich.edu/factsheets/us-grid-energy-storage-factsheet (accessed on 26 May 2021).
- Elmegaard, B.; Brix, W. Efficiency of Compressed Air Energy Storage. In Proceedings of the 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Novi Sad, Serbia, 4–7 July 2011. [Google Scholar]
- U.S. Energy Information Administration. Most Utility-Scale Batteries in the United States Are Made of Lithium-Ion. 2019. Available online: https://www.eia.gov/todayinenergy/detail.php?id=41813 (accessed on 21 May 2021).
- Global Energy Statistical Yearbook 2020. Electricity Domestic Consumption. Available online: https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html (accessed on 21 May 2021).
- Smil, V. Electric Container Ships Are Stuck on the Horizon: Batteries still can’t Scale Up to Power the World’s Biggest Vessels. IEEE Spectrum. 27 February 2019. Available online: https://spectrum.ieee.org/transportation/marine/electric-container-ships-are-stuck-on-the-horizon (accessed on 26 May 2021).
- Deng, J.; Bae, C.; Denlinger, A.; Miller, T. Electric Vehicles Batteries: Requirements and Challenges. Joule 2020, 4, 511–515. [Google Scholar] [CrossRef]
- Battery University. Batteries against Fossil Fuel. Available online: https://batteryuniversity.com/learn/archive/batteries_against_fossil_fuel (accessed on 21 May 2021).
- Qiao, Q.; Zhao, F.; Liu, Z.; Jiang, S.; Hao, H. Cradle-to-Gate Greenhouse Gas Emissions of Battery Electric and Internal Combustion Engine Vehicles in China. Appl. Energy 2017, 204, 1399–1411. [Google Scholar] [CrossRef]
- Liebherr. LR 1200.1 Unplugged. Available online: https://www.liebherr.com/en/usa/products/mobile-and-crawler-cranes/crawler-cranes/lr-crawler-cranes/details/lr1200unplugged.html (accessed on 21 May 2021).
- Sripad, S.; Viswanathan, V. Performance Metrics Required of Next-Generation Batteries to Make a Practical Electric Semi Truck. ACS Energy Lett. 2017, 2, 1669–1673. [Google Scholar] [CrossRef] [Green Version]
- Etherington, D. Elon Musk Says Tesla Semi Is Ready for Production, but Limited by Battery Cell Output. TechCrunch. 27 January 2021. Available online: https://techcrunch.com/2021/01/27/elon-musk-says-tesla-semi-is-ready-for-production-but-limited-by-battery-cell-output/ (accessed on 26 May 2021).
- Pavel, C.C.; Lacal-Arántegui, R.; Marmier, A.; Schüler, D.; Tzimas, E.; Buchert, M.; Jenseit, W.; Blagoeva, D. Substitution Strategies for Reducing the Use of Rare Earths in Wind Turbines. Resour. Policy 2017, 52, 349–357. [Google Scholar] [CrossRef]
- Law, Y. Radioactive Waste Standoff Could Slash High Tech’s Supply of Rare Earth Elements. Science. 1 April 2019. Available online: https://www.sciencemag.org/news/2019/04/radioactive-waste-standoff-could-slash-high-tech-s-supply-rare-earth-elements (accessed on 26 May 2021).
- Fisher, T.; Fitzsimmons, A. Big Wind’s Dirty Little Secret: Toxic Lakes and Radioactive Waste. Institute for Energy Research, 23 October 2013. Available online: https://www.instituteforenergyresearch.org/renewable/wind/big-winds-dirty-little-secret-rare-earth-minerals/ (accessed on 26 May 2021).
- Wind-Turbine-Models.com. Turbines. Available online: https://en.wind-turbine-models.com/turbines (accessed on 21 May 2021).
- Hanle, L.J.; Jayaraman, K.R.; Smith, J.S. CO2 Emissions Profile of the U.S. Cement Industry. Available online: https://www3.epa.gov/ttnchie1/conference/ei13/ghg/hanle.pdf (accessed on 26 May 2021).
- Schmutz, S.; Moog, O. Dams: Ecological Impacts and Management. In Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future; Schmutz, S., Sendzimir, J., Eds.; Aquatic Ecology Series; Springer International Publishing: Cham, Switzerland, 2018; pp. 111–127. ISBN 9783319732503. [Google Scholar]
- Moriarty, P.; Honnery, D. Can Renewable Energy Power the Future? Energy Policy 2016, 93, 3–7. [Google Scholar] [CrossRef]
- Warner, K.; Pejchar, L. A River Might Run Through It Again: Criteria for Consideration of Dam Removal and Interim Lessons from California. Environ. Manag. 2001, 28, 561–575. [Google Scholar] [CrossRef]
- Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, J.M. A Systematic Review of Application of Multi-Criteria Decision Analysis for Aging-Dam Management. J. Clean. Prod. 2017, 147, 217–230. [Google Scholar] [CrossRef] [Green Version]
- Alexander, S.; Floyd, J. Carbon Civilisation and the Energy Descent Future: Life Beyond this Brief Anomaly; The Simplicity Institute/The Rescope Project: Melbourne, Australia, 2018; ISBN 9780994282804. [Google Scholar]
- GenIV International Forum. When Will GenIV Reactors Be Built? Available online: https://www.gen-4.org/gif/jcms/c_41890/faq-2 (accessed on 21 May 2021).
- Krall, L.; Macfarlane, A. Burning Waste or Playing with Fire? Waste Management Considerations for Non-Traditional Reactors. Bull. At. Sci. 2018, 74, 326–334. [Google Scholar] [CrossRef]
- Cho, A. Smaller, Safer, Cheaper: One Company Aims to Reinvent the Nuclear Reactor and Save a Warming Planet. Science. 21 February 2019. Available online: https://www.sciencemag.org/news/2019/02/smaller-safer-cheaper-one-company-aims-reinvent-nuclear-reactor-and-save-warming-planet (accessed on 26 May 2021).
- Chatzis, I. Small Modular Reactors: A Challenge for Spent Fuel Management? International Atomic Energy Agency, 8 August 2019. Available online: https://www.iaea.org/newscenter/news/small-modular-reactors-a-challenge-for-spent-fuel-management (accessed on 26 May 2021).
- Jassby, D. Fusion Reactors: Not What They’re Cracked Up to Be. Bulletin of the Atomic Scientists, 19 April 2017. Available online: https://thebulletin.org/2017/04/fusion-reactors-not-what-theyre-cracked-up-to-be/ (accessed on 26 May 2021).
- International Energy Agency. The Role of Critical Minerals in Clean Energy Transitions. 2021. Available online: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (accessed on 26 May 2021).
- Sekera, J.; Lichtenberger, A. Assessing Carbon Capture: Public Policy, Science, and Societal Need. Biophys. Econ. Sust. 2020, 5, 14. [Google Scholar] [CrossRef]
- Service, F. Cost Plunges for Capturing Carbon Dioxide from the Air. Science. 7 June 2018. Available online: https://www.sciencemag.org/news/2018/06/cost-plunges-capturing-carbon-dioxide-air (accessed on 26 May 2021).
- Carbon Engineering. Available online: https://carbonengineering.com/ (accessed on 7 May 2021).
- United Nations Environment Programme. Emissions Gap Report 2020. 2020. Available online: https://www.unep.org/emissions-gap-report-2020 (accessed on 15 June 2021).
- Vossier, A.; Gualdi, F.; Dollet, A.; Ares, R.; Aimez, V. Approaching the Shockley-Queisser Limit: General Assessment of the Main Limiting Mechanisms in Photovoltaic Cells. J. Appl. Phys. 2015, 117, 015102. [Google Scholar] [CrossRef]
- Ehrler, B.; Alarcón-Lladó, E.; Tabernig, S.W.; Veeken, T.; Garnett, E.C.; Polman, A. Photovoltaics Reaching for the Shockley–Queisser Limit. ACS Energy Lett. 2020, 5, 3029–3033. [Google Scholar] [CrossRef]
- Jiang, H.; Li, Y.; Cheng, Z. Performances of Ideal Wind Turbine. Renew. Energy 2015, 83, 658–662. [Google Scholar] [CrossRef]
- De Lellis, M.; Reginatto, R.; Saraiva, R.; Trofino, A. The Betz Limit Applied to Airborne Wind Energy. Renew. Energy 2018, 127, 32–40. [Google Scholar] [CrossRef]
- Bradshaw, C.J.A.; Brook, B.W. Human Population Reduction Is Not a Quick Fix for Environmental Problems. Proc. Natl. Acad. Sci. USA 2014, 111, 16610–16615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patzek, T.W. Thermodynamics of the Corn-Ethanol Biofuel Cycle. Crit. Rev. Plant Sci. 2004, 23, 519–567. [Google Scholar] [CrossRef]
- Gallagher, P.; Yee, W.; Baumes, H. 2015 Energy Balance for the Corn-Ethanol Industry; Economics Technical Reports and White Papers; Iowa State University: Ames, IA, USA, 2016. [Google Scholar]
- Friedemann, A. Why Is Passenger Rail So Damned Inefficient? Energy Skeptic. 10 October 2016. Available online: http://energyskeptic.com/2016/why-is-passenger-rail-so-damned-inefficient/ (accessed on 27 May 2021).
- Friedemann, A. Will California’s High-Speed Rail Go Off the Tracks? Energy Skeptic. 9 May 2019. Available online: http://energyskeptic.com/2019/challenges-facing-californias-high-speed-rail-house-hearing-2014/ (accessed on 27 May 2021).
- Rees, W.E. Megacities at risk: The climate–energy conundrum. In Handbook of Megacities and Megacity-Regions; Labbé, D., Sorenson, A., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2020; pp. 292–308. ISBN 9781788972703. [Google Scholar]
- Lawrence Livermore National Laboratory. Estimated U.S. Energy Consumption in 2020: 92.9 Quads. Available online: https://flowcharts.llnl.gov/content/assets/images/energy/us/Energy_US_2020.png (accessed on 27 May 2021).
- Hagens, N.; White, D.J. GDP, Jobs, and Fossil Largesse. Resilience. 30 November 2017. Available online: https://www.resilience.org/stories/2017-11-30/gdp-jobs-and-fossil-largesse/ (accessed on 27 May 2021).
- Friedemann, A. Energy Slaves: Every American Has Somewhere between 200 and 8000 Energy Slaves. Energy Skeptic. 5 April 2020. Available online: https://energyskeptic.com/2020/energy-slaves/#:~:text=Energy%20Slaves%3A%20every%20American%20has%20somewhere%20between%20200%20and%208%2C000%20energy%20slaves,-Posted%20on%20April (accessed on 27 May 2021).
- Kilby, E.R. The Demographics of the U.S. Equine Population. In The State of the Animals; Salem, D.J., Rowan, A.N., Eds.; Humane Society Press: Washington, DC, USA, 2007; pp. 175–205. ISBN 9780974840093. [Google Scholar]
- Daily, G.C.; Ehrlich, A.H.; Ehrlich, P.R. Optimum Human Population Size. Popul. Environ. 1994, 15, 469–475. [Google Scholar] [CrossRef]
- Pimentel, D.; Harman, R.; Pacenza, M.; Pecarsky, J.; Pimentel, M. Natural Resources and an Optimum Human Population. Popul. Environ. 1994, 15, 347–369. [Google Scholar] [CrossRef]
- Swan, S.H.; Colino, S. Count Down: How Our Modern World Is Threatening Sperm Counts, Altering Male and Female Reproductive Development, and Imperiling the Future of the Human Race; Scribner: New York, NY, USA, 2020; ISBN 9781982113667. [Google Scholar]
- Rees, W.E. The fractal biology of plague and the future of civilization. J. Popul. Sustain. 2020, 5, 15–30. [Google Scholar]
- Parsons, J. Population Control and Politics. Popul. Environ. 1991, 12, 355–377. [Google Scholar] [CrossRef]
- Diamond, J.M. Collapse: How Societies Choose to Fail or Succeed; Penguin Books: New York, NY, USA, 2011; ISBN 9780143117001. [Google Scholar]
- Hickey, C.; Rieder, T.N.; Earl, J. Population Engineering and the Fight against Climate Change. Soc. Theory Pract. 2016, 42, 845–870. [Google Scholar] [CrossRef] [Green Version]
- Robinson, W.C.; Ross, J.A. The Global Family Planning Revolution: Three Decades of Population Policies and Programs; The World Bank: Washington, DC, USA, 2007; ISBN 9780821369517. [Google Scholar]
- Wynes, S.; Nicholas, K.A. The Climate Mitigation Gap: Education and Government Recommendations Miss the Most Effective Individual Actions. Environ. Res. Lett. 2017, 12, 74024. [Google Scholar] [CrossRef] [Green Version]
- Cave, D.; Bubola, E.; Sang-Hun, C. Long Slide Looms for World Population, with Sweeping Ramifications. New York Times. 22 May 2021. Available online: https://www.nytimes.com/2021/05/22/world/global-population-shrinking.html (accessed on 27 May 2021).
- Spratt, D.; Dunlop, I.; Taylor, L. Climate Reality Check 2020; Breakthrough National Center for Climate Restoration: Melbourne, Australia, 2020. [Google Scholar]
- Polanyi, K. The Great Transformation: The Political and Economic Origins of Our Time, 2nd ed.; Beacon Press: Boston, MA, USA, 2001; ISBN 9780807056431. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14, 4508. https://doi.org/10.3390/en14154508
Seibert MK, Rees WE. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies. 2021; 14(15):4508. https://doi.org/10.3390/en14154508
Chicago/Turabian StyleSeibert, Megan K., and William E. Rees. 2021. "Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition" Energies 14, no. 15: 4508. https://doi.org/10.3390/en14154508
APA StyleSeibert, M. K., & Rees, W. E. (2021). Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies, 14(15), 4508. https://doi.org/10.3390/en14154508