Energy Transition Planning with High Penetration of Variable Renewable Energy in Developing Countries: The Case of the Bolivian Interconnected Power System †
Abstract
:1. Introduction
- Analyzing of dispatch strategies under different levels of VRES penetration for the Bolivian power system planned by 2025.
- Proposing an energy model as guidance and as an example of implementation of unit-commitment and economical dispatch formulations applying to power systems of developing countries.
- Providing a detailed open-source model for the Bolivian power system, which can be replicated, re-used and/or adapted for other researchers in future works.
2. Methodology
2.1. Model Description
Objective Function
2.2. Solving the Unit-Commitment and Dispatch Problem
2.2.1. Optimization Horizon
2.2.2. Hydro Scheduling
2.2.3. Model Formulations, Constraints and Boundaries
- Energy balance: According to this restriction presented in Equation (2), the sum of all the power produced from all different sources in a node (including storage units generation, imported power from other nodes, and the curtailed power from VRES sources), is equal to the load in that node, plus the power consumed for energy storage, minus the load interrupted and the load shed, for each period and each zone, in the day-ahead market [29].
- Power output constraints: If the unit is committed, the minimum power production is defined by the unit’s steady generation level:If the unit is committed, the power output is restricted by the available capacity:
- Ramping constraints: Each unit has a maximum ramp-up and ramp-down capability. This is translated into limits for ramping up:
- Reserve constraintsUpward secondary reserve (2U) is the reserve covered by spinning units and is limited by:Downward secondary reserve (2D) is similar to the 2U, which is the downward reserve capability of pumping storage units that can only be covered by spinning units and is limited by:The capability of reserve with quick start (non-spining) is given by:The secondary upward and downward reserve demand should be supplied by all the plants authorized in the reserve market:The tertiary reserve can also be provided by non-spinning units with the following constraint:
- Minimum up/down times: the excessive operation of the generators is limited because of their physical capabilities, there must be a time between starting up and shutting down a generator, and reciprocally vice versa. This constraint for start up is expressed by:A similar expression for the minimum down time:
- Load Shedding: The load shedding is normally regulated and limited by the contracted shedding on that node
- Non-dispatchable units (e.g., wind turbines, runoff-river, etc.): For renewable technologies, the maximum time-dependent generation level is set to directly influence the available factor of the power unit. The outage factor is also taken into account as unavailable power.
- Multi-nodes with capacity constraints on the lines (congestion) and limited Net Transfer Capacities (NTC) are as follows:
2.2.4. Mixed Integer Linear Program Solution Process
2.3. Input Data
2.3.1. Power Plant Database
2.3.2. Time-Series Data
- Times series related to the energy demand in each node of energy consumption: central, north, oriental and south zone. The baseline time series are obtained from the national system operator (e.g., CNDC [45]). However, this demand cannot be considered constant in time. A percentage factor of demand growth is therefore assumed for future scenarios.
- Availability Factor: VRES technologies include HROR (run-of-the-river hydro), WTON (onshore wind) and PHOT (photovoltaic solar). Their generation is defined as a proportion of the nominal power capacity, referred to as “availability factor”, and is provided as an hourly time series [29].
- Storage levels are individual time series corresponding to historical volumes accumulated in each reservoir of the SIN. They are imposed as a lower boundary when each optimization horizon ends. Their mathematical expression is as a fraction of maximum storeable energy [29]. Weekly storage-level averages can be found in [47], from which we generated hourly time series.
2.3.3. Grid Data
2.4. Model Implementation
3. The Bolivian Case Study
3.1. Power System Topology
- Hydroelectric run-of-river power units (HROR WAT),
- Hydroelectric power units with dams (HDAM WAT).
- Open-cycle natural power units (GTUR GAS),
- Combined cycle power units (COMC GAS).
- Diesel engines (GTUR OIL).
- Biodiesel power units (GTUR BIO).
- Wind-onshore turbines (WTON WIN).
- Finally, there are two PV solar power plants (PHOT SUN).
3.2. Energy Demand for 2025
3.3. Power Plants Fleet for 2025
3.4. VRES Generation Capacity for 2025
3.4.1. Hydro Resources
3.4.2. Solar Resources
3.4.3. Wind Resources
3.5. Grid Data for 2025
3.6. What-If Scenarios
- Low-penetration scenarios 1 and 2, with 402 MW and 670 MW of VRES installed capacities, respectively.
- Moderate-penetration scenarios 3 to 5, with 938 MW, 1072 MW and 1206 MW of VRES installed capacities, respectively.
- High-penetration scenarios 6 to 8, with 1340 MW, 2342 MW and 5142 MW of VRES installed capacities, respectively.
- Finally, Very-High-penetration scenarios 9 and 10: with 7642 MW, 10,142 MW and 804 MW of VRES installed capacity.
4. Results and Discussion
4.1. Accounting for the Flexibility of Hydro Reservoirs
4.2. Simulation Results without Hydro Reservoirs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VRES | Variable Renewable Energy Sources |
SIN | National Interconnected System |
PEEBOL2025 | Electrical Plan of the Plurinational State of Bolivia–2025 |
CNDC | National Energy Dispatch Committee |
ENDE | Bolivian National Electricity Company |
DSM | Demand side management |
HDAM | Hydroelectric with dam reservoirs |
HROR | Hydroelectric run of river |
PHOT | Solar Photovoltaic |
WTON | Onshore wind turbine |
COMC | Combined cycle |
GTUR | Gas turbine |
STUR | Steam turbine |
WAT | Hydro energy |
SUN | Solar energy |
WIN | Wind energy |
BIO | Bagasse, Biodiesel, Biomass |
GAS | Gas, as fuel |
OIL | Oil, as fuel |
CE | Central zone |
NO | North zone |
OR | Oriental zone |
SU | South zone |
UD | Unit Commitment |
ED | Economic Dispatch |
LP | Linear Programing |
MILP | Mixed Interger Linear Programing |
MINLP | Mixed Interger Non Linear Programming |
UNEP | United Nations Environment Programme |
COP | Climate Change Conference of the Parties |
IRENA | International Renewable Energy Agency |
NDC | Nationally Determined Contributions |
HYTHCO | Hydro-Thermal Coordination |
MO | Maintenance Optimization |
GEP | Generation Expansion Planning |
PCO | Production Cost Optimization |
SIMSEE | Simulation of Electrical Power Systems Software |
DEEM | Multinodal Stochastic Economic Dispatch Software |
SDG | Sustainable Development Goals |
MERRA-2 | Modern-Era Retrospective analysis for Research and Applications, Version 2 |
PV | Photo-Voltaic |
References
- United Nations. Paris Agreement; United Nations: Bonn, Germany, 2015. [Google Scholar]
- International Energy Agency. The Power of Transformation. Wind, Sun and the Economics of Flexible Power Systems; International Energy Agency (IEA): Paris, France, 2014. [Google Scholar]
- Bistline, J.; Blanford, G. The role of the power sector in net-zero energy systems. Energy Clim. Chang. 2021, 2, 100045. [Google Scholar] [CrossRef]
- United Nations. COP26 the Glasgow Climate Pact; United Nations: Bonn, Germany, 2021. [Google Scholar]
- International Renewable Energy Agency (IRENA). TIRENA Innovation and Technology Centre; A Roadmap to 2050; IRENA: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- United Nations. Nationally Determined Contributions under the Paris Agreement; United Nations: Bonn, Germany, 2021. [Google Scholar]
- International Renewable Energy Agency (IRENA). TIRENA Innovation and Technology Centre; REmap 2030 a Renewable Energy Roadmap; IRENA: Abu Dhabi, United Arab Emirates, 2014. [Google Scholar]
- International Energy Agency. IEA to Produce World’S First Comprehensive Roadmap to Net-Zero Emissions by 2050; International Energy Agency (IEA): Paris, France, 2021. [Google Scholar]
- Neetzow, P. The effects of power system flexibility on the efficient transition to renewable generation. Appl. Energy 2021, 283, 116278. [Google Scholar] [CrossRef]
- Denholm, P.; Arent, D.J.; Baldwin, S.F.; Bilello, D.E.; Brinkman, G.L.; Cochran, J.M.; Cole, W.J.; Frew, B.; Gevorgian, V.; Heeter, J.; et al. The challenges of achieving a 100% renewable electricity system in the United States. Joule 2021, 5, 1331–1352. [Google Scholar] [CrossRef]
- Makolo, P.; Zamora, R.; Lie, T.T. The role of inertia for grid flexibility under high penetration of variable renewables—A review of challenges and solutions. Renew. Sustain. Energy Rev. 2021, 147, 111223. [Google Scholar] [CrossRef]
- Koltsaklis, N.E.; Dagoumas, A.S. State-of-the-art generation expansion planning: A review. Appl. Energy 2018, 230, 563–589. [Google Scholar] [CrossRef]
- Poncelet, K.; Delarue, E.; Six, D.; Duerinck, J.; D’haeseleer, W. Impact of the level of temporal and operational detail in energy-system planning models. Appl. Energy 2016, 162, 631–643. [Google Scholar] [CrossRef] [Green Version]
- Klotz, E.; Newman, A.M. Practical guidelines for solving difficult mixed integer linear programs. Surv. Oper. Res. Manag. Sci. 2012, 18, 18–32. [Google Scholar] [CrossRef]
- Batlle, C. Análisis del Impacto del Incremento de la Generación de Energía Renovable no Convencional en los Sistemas Eléctricos Latinoamericanos Herramientas y Metodologías de Evaluación del Futuro de la Operación, Planificación y Expansión; Banco Interamericano de Desarrollo: Washington, DC, USA, 2014. [Google Scholar]
- Palacio, P.S.; Chaer, R. Plataforma de Simulacion de Sistemas de Energia Electrica; Instituto de Ingenieria Electrica (IIE): Montevideo, Uruguay, 2007. [Google Scholar]
- Pena, J. Exploring Low-Carbon Development Pathways for Bolivia; Energy Systems KTH-dES: Stockholm, Sweden, 2020. [Google Scholar]
- Nations, U. The Sustainable Development Goals Report. 2021. Available online: https://unstats.un.org/sdgs/report/2021/ (accessed on 15 January 2022).
- Toledo, Y. Inauguration of the First Phase of the Photovoltaic Solar Plant in Oruro; EnergyPress: Barrio Chacarilla Santa Cruz, Bolivia, 2019. [Google Scholar]
- Toledo, Y. The Third Wind Farm Is Inaugurated in Santa Cruz; EnergyPress: Chacarilla Santa Cruz, Bolivia, 2021. [Google Scholar]
- Estado Plurinacional de Bolivia, M.d.l.p. DECRETO SUPREMO N° 447, Procedimientos de RetribucióN, Registro, InscripcióN de Empresas Instaladoras y RecoleccióN de InformacióN de Generadores Distribuidos; Gaceta Oficial del Estado Plurinacional de Bolivia: La Paz, Bolivia, 2021. [Google Scholar]
- Mamani, R.; Hackenberg, N.; Hendrick, P. Efficiency of High Altitude On-shore Wind Turbines: Air Density and Turbulence Effects—Qollpana Wind Farm (Bolivia). Energy Clim. Chang. 2018, 2, 487. [Google Scholar] [CrossRef] [Green Version]
- Mamani, R.; Hendrick, P. Weather research & forecasting model and MERRA-2 data for wind energy evaluation at different altitudes in Bolivia. Wind Eng. 2021, 46, 177–188. [Google Scholar]
- Lopez, G.; Aghahosseini, A.; Bogdanov, D.; Mensah, T.N.; Ghorbani, N.; Caldera, U.; Rivero, A.P.; Kissel, J.; Breyer, C. Pathway to a fully sustainable energy system for Bolivia across power, heat, and transport sectors by 2050. J. Clean. Prod. 2021, 293, 126195. [Google Scholar] [CrossRef]
- Candia, R.A.; Subieta, S.L.; Ramos, J.A.; Miquélez, V.S.; Balderrama, J.G.; Florero, H.J.; Quoilin, S. Techno-economic assessment of high variable renewable energy penetration in the Bolivian interconnected electric system. In International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Ecos; Universidad Publica de Navarra: Pamplona, Spain, 2018. [Google Scholar]
- Han, X.; Chen, X.; McElroy, M.B.; Liao, S.; Nielsen, C.P.; Wen, J. Modeling formulation and validation for accelerated simulation and flexibility assessment on large scale power systems under higher renewable penetrations. Appl. Energy 2019, 237, 145–154. [Google Scholar] [CrossRef]
- Hua, B.; Baldick, R.; Wang, J. Representing operational flexibility in generation expansion planning through convex relaxation of unit commitment. IEEE Trans. Power Syst. 2017, 33, 2272–2281. [Google Scholar] [CrossRef]
- Lund, P.D.; Lindgren, J.; Mikkola, J.; Salpakari, J. Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 2015, 45, 785–807. [Google Scholar] [CrossRef] [Green Version]
- Quoilin, S.; Hidalgo Gonzalez, I.; Zucker, A. Modelling Future EU Power Systems under High Shares of Renewables. The Dispa-SET 2.1 Open-Source Model; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Bussieck, M.R.; Meeraus, A. General Algebraic Modeling System, GAMS. In Modeling Languages in Mathematical Optimization; Springer: Boston, MA, USA, 2018; pp. 137–157. [Google Scholar]
- Pina, A.; Silva, C.; Ferrão, P. Modeling hourly electricity dynamics for policy making in long-term scenarios. Energy Policy 2011, 39, 4692–4702. [Google Scholar] [CrossRef]
- Mitchell, J.E. Branch-and-Cut Algorithms for Combinatorial Optimization Problems. Math. Sci. 1999, 1, 65–77. [Google Scholar]
- Wolsey, L. Integer Programming; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Desrosiers, J.; Lübbecke, M.E. Branch-Price-and-Cut Algorithms. In Wiley Encyclopedia of Operations Research and Management Science (EORMS); John Wiley &Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- de Electricidad, V.; Alternativas, E. Plan Eléctrico del Estado Plurinacional de Bolivia–2025; Ministerio de Hidrocarburos y Energía: La Paz, Bolivia, 2014. [Google Scholar]
- Schröder, A.; Kunz, F.; Meiss, J.; Mendelevitch, R.; Von Hirschhausen, C. Current and Prospective Costs of Electricity Generation until 2050; Deutsches Institut für Wirtschaftsforschung (DIW): Berlin, Germany, 2013. [Google Scholar]
- Loisel, R.; Shropshire, D.; Thiel, C.; Mercier, A. Document the Travail Working Paper Flexibility assessment in nuclear energy dominated systems with increased wind energy shares. Hal Open Sci. 2014, DESNL14583, 1–71. [Google Scholar]
- Comité Nacional de Despacho de Carga (CNDC). Despacho de Carga Realizado. 2020. Available online: https://www.cndc.bo/media/archivos/boletindiario/dcdr_301220.htm (accessed on 9 October 2021).
- Energy Information Administration. Capital Cost Estimates for Utility Scale Electricity Generating Plants; U.S. Department of Energy: Washington, DC, USA, 2016. [Google Scholar]
- Van den Bergh, K.; Delarue, E. Cycling of conventional power plants: Technical limits and actual costs, TME Working Paper-Energy and Environment. Energy Convers. Manag. 2015, 97, 70–77. [Google Scholar] [CrossRef]
- Alberici, S.; Boeve, S.; van Breevoort, P.; Deng, Y.; Forster, S.; Gardiner, A.; Gastel, V.v.; Grave, K.; Groenenberg, H.; de Jager, D.; et al. Subsidies and Costs of EU Energy; Final Report; European Commission, Directorate-General for Energy: Brussel, Belgium, 2014. [Google Scholar]
- Comité Nacional de Despacho de Carga. Memoria Anual CNDC; Comité Nacional de Despacho de Carga (CNDC): Cochabamba, Bolivia, 2019. [Google Scholar]
- Agencia Nacional de Hidrocarburos. Información Actualizada Sobre Precios e Historiales de Tarifas de Hidrocarburos. 2020. Available online: https://www.anh.gob.bo/w2019/contenido.php?s=13 (accessed on 9 October 2021).
- Comité Nacional de Despacho de Carga (CNDC). Ley de Electricidad. 2020. Available online: https://www.cndc.bo/normativa/ley_electricidad.php (accessed on 17 October 2021).
- Comité Nacional de Despacho de Carga (CNDC). Demanda de Energía y Potencia. 2020. Available online: https://www.cndc.bo/media/archivos/boletindiario/bal_301220.htm (accessed on 6 October 2021).
- Comité Nacional de Despacho de Carga (CNDC). Datos Hidrológicos. 2020. Available online: https://www.cndc.bo/media/archivos/boletindiario/dathid_291220.htm (accessed on 30 October 2021).
- Comité Nacional de Despacho de Carga (CNDC). Evolución de los Embalses. 2020. Available online: https://www.cndc.bo/media/archivos/estadistica_anual/volumen_181220.htm (accessed on 16 October 2021).
- Empresa Nacional de Electricidad CORANI, ENDE CORANI. Memoria Anual ENDE CORANI; Empresa Nacional de Electricidad CORANI; ENDE CORANI: Cochabamba, Bolivia, 2019. [Google Scholar]
- Comité Nacional de Despacho de Carga (CNDC). Estadística Anual, Generación Bruta año 2014. 2014. Available online: https:www.cndc.bo/media/archivos/estadistica_anual/genbruta_2014.htm (accessed on 16 October 2021).
- Comité Nacional de Despacho de Carga (CNDC). Estadística Anual, Generación Bruta año 2020. 2020. Available online: https://www.cndc.bo/media/archivos/estadistica_anual/genbruta_2020.htm (accessed on 2 October 2021).
- Nacional de Electricidad VALLE HERMOSO, ENDE VALLE HERMOSO. Memoria Anual ENDE VALLE HERMOSO; Empresa Nacional de Electricidad VALLE HERMOSO; ENDE VALLE HERMOSO: Cochabamba, Bolivia, 2019. [Google Scholar]
- Empresa Nacional De Electricidad–Corporación, ENDE Proyectos en Estudio 2019. 2019. Available online: https://www.ende.bo/proyectos/estudio (accessed on 15 September 2021).
- Estado Plurinacional de Bolivia, Ministerio de Hidrocarburos y Energía, and Viceministerio de Electricidad y Energías Alternativas. Plan de Desarrollo de Energías Alternativas 2025. Viceministerio de Electricidad y Energías Alternativas, Bolivia; Estado Plurinacional de Bolivia, Ministerio de Hidrocarburos y Energias: La Paz, Bolivia, 2014. [Google Scholar]
- Fernandez, P. Turbinas Hidráulicas; Departamento de Ingeniería Eléctrica y Energética-Universidad de Cantabria: Cantabria, Spain, 2017. [Google Scholar]
- Lucano, M.; Fuentes, I. Evaluation of the Global Solar Radiation Potential in the Department of Cochabamba (Bolivia) Using Models of Geographic Information Systems and Satellite Images; Universidad Mayor de San Andres (UMSA): La Paz, Bolivia, 2010. [Google Scholar]
- Lucano, M.; Fuentes, I. Atlas de Radiación Solar Global de Bolivia; Universidad Mayor de San Andres (UMSA): La Paz, Bolivia, 2010. [Google Scholar]
- Manatechs. Hora de Salida y Puesta del Sol. 2018. Available online: https://salidaypuestadelsol.com/bolivia/cochabamba_1035.html (accessed on 9 September 2021).
- Miguel Fernández, G.; Rodriguez, R.O.; Terrazas, E. Cambio Climático, Agua y Energía en Bolivia; Departamento de Asuntos Económicos y Sociales de Naciones Unidas (DESA-United Nations)—ENERGÉTICA: Cochabamba, Bolivia, 2012. [Google Scholar]
- Fuentes, M.F. Estudio Sostiene que la Energía Solar es Factible en el 97% del Territorio Nacional; ENERGÉTICA: Cochabamba, Bolivia, 2012. [Google Scholar]
- Dateandtime.info. Coordenadas Goeográficas. 2017. Available online: http://dateandtime.info/es/citycoordinates.php?id=3901903 (accessed on 24 October 2021).
- Staffell, I.; Pfenninger, S. Renewables.ninja. 2018. Available online: www.renewables.ninja (accessed on 21 September 2021).
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Climate data.org. Datos Climáticos Mundiales. 2017. Available online: https://es.climate-data.org/ (accessed on 6 September 2021).
- Asea Brown Boveri, S.A. Cuaderno de Aplicaciones Técnicas n° 10. Plantas Fotovoltaicas; Asea Brown Boveri, S.A.: Barcelona, Spain, 2011. [Google Scholar]
- Peña, D.A.; Segura, A.G. El Módulo Fotovoltaico; Universidad de Jaen: Jaen, Spain, 2017. [Google Scholar]
- Bergman, L.; Enocksson, A. Design of a PV System with Variations of Hybrid System at Addis Ababa Institute of Technology; KTH School of Industrial Engineering and Management: Stockholm, Sweden, 2015. [Google Scholar]
- 3TIER. Informe Final. Atlas Eólico de Bolivia. Un Proyecto para la Corporación Financiera Internacional; 3TIER: Seatle, WA, USA, 2009. [Google Scholar]
- Finance, D.B. Concept Note—Three Wind Farms in Bolivia; Ministry of Foreign Affairs of Denmark: Copenhagen, Denmark, 2016. [Google Scholar]
- windpower.org. El Efecto del Parque. 2018. Available online: http://drømstørre.dk/wp-content/wind/miller/windpowerweb/es/tour/wres/park.htm (accessed on 12 October 2021).
- TheWindPower.net. Manufacturers and Turbines. 2018. Available online: https://www.thewindpower.net/turbines_manufacturers_es.php (accessed on 19 October 2021).
- Empresa Nacional de Electricidad, S.A. Memoria Anual 2018; ENDE: Cochabamba, Bolivia, 2018. [Google Scholar]
- Datosmacro. Bolivia, Emisiones de CO2. 2021. Available online: https://datosmacro.expansion.com/energia-y-medio-ambiente/emisiones-co2/bolivia (accessed on 19 September 2021).
Description | Field Name | Units | Value |
---|---|---|---|
Power Capacity (for one unit) | PowerCapacity | MW | Accurate [35] |
Unit name | Unit | Accurate [35] | |
Zone | Zone | Accurate [35] | |
Technology | Technology | Accurate [35] | |
Primary fuel | Fuel | Accurate [35] | |
Efficiency | Efficiency | % | Reference [36] |
Minimum up time | MinUpTime | h | Reference [36] |
Minimum down time | MinDownTime | h | Reference [36] |
Ramp-up rate | RampUpRate | %/min | References [36,37,38] |
Ramp-down rate | RampDownRate | %/min) | References [36,37,38] |
Start-up cost | StartUpCost | EUR | Reference [36] |
No load cost | NoLoadCost | EUR/h | References [36,39] |
Ramping cost | RampingCost | EUR/MW | Reference [40] |
Minimum load | PartLoadMin | % | References [2,36,41] |
Efficiency at minimum load | MinEfficiency | % | Reference [35] |
Start-up time | StartUPTime | h | References [2,36] |
CO intensity | CO Intensity | TCO/MWh | Reference [42] |
Number of units | Nunits | Accurate [35] |
Area | Central Name | Technology | Number of Units | Total Power (MW) |
---|---|---|---|---|
Central | Miguillas System | HDAM WAT | 9 | 21.11 |
Corani System | 10 | 280.35 | ||
Misicuni System | 3 | 120 | ||
San Jose San Jose II | HROR WAT | 4 | 124 | |
Kanata | 1 | 7.54 | ||
Valle Hermoso | GTUR GAS | 8 | 107.65 | |
Carrasco | 3 | 122.94 | ||
Bulo Bulo | 3 | 135.41 | ||
Entre Rios | 4 | 105.21 | ||
Entre Rios | COMC GAS | 3 | 376.98 | |
Oruro I | PHOT SUN | 50.01 | ||
Qollpana I & II | WTON WIN | 10 | 27 | |
North | Taquesi System | HDAM WAT | 2 | 89.19 |
Zongo System | 21 | 188.04 | ||
Quehata | HROR WAT | 2 | 1.97 | |
Kenko | GTUR GAS | 2 | - | |
El Alto | 2 | 46.19 | ||
Trinidad | GTUR OIL | 19 | 25.28 | |
Rurrenabaque | 1 | 1.8 | ||
Yucumo | 1 | 0.35 | ||
San Borja | 2 | 1.8 | ||
Say | 2 | 1.62 | ||
San Ignacio de Moxos | 2 | 0.73 | ||
San Buenaventura | GTUR BIO | 1 | 5 | |
Oriental | Guaracachi | COMC GAS | 3 | 192.92 |
Warnes | 2 | 248.1 | ||
Guaracachi | GTUR GAS | 5 | 126.72 | |
Santa Cruz | 2 | 38.07 | ||
Warnes | 5 | 195.56 | ||
Unagro | GTUR BIO | 1 | 14.22 | |
Guabira | 1 | 21 | ||
IAG | 1 | 5 | ||
South | Yura System | HROR WAT | 7 | 19.04 |
San Jacinto | HDAM WAT | 2 | 7.6 | |
Aranjuez | GTUR GAS | 10 | 33.76 | |
Karachipampa | 1 | - | ||
Del Sur | 4 | 147.55 | ||
Del Sur | COMC GAS | 2 | 232.32 | |
Uyuni ColchaK | PHOT SUN | 21 | 60.06 | |
Yunchara | 2 | 5 | ||
SIN | All | All Technologies | 184 | 3187.09 |
Area | Central | Technology | Situation | Total |
---|---|---|---|---|
Central | Oruro II | PHOT SUN | Projected up to 2021 | 50.01 |
Qollpana III | WTON WIN | Projected up to 2023 | 21 | |
Sehuencas_juntas | HDAM WAT | Projected up to 2025 | 279.88 | |
Banda Azul | Projected up to 2025 | 133.7 | ||
North | Guayaramerin | PHOT SUN | Projected up to 2025 | 3 |
Riberalta | Projected up to 2025 | 5.8 | ||
Umapalca_Palillada | HDAM WAT | Projected up to 2025 | 203 | |
SanCristobal_ Anazani_SantaRosa | HROR WAT | Projected up to 2025 | 45 | |
Titicaca | WTON WIN | Projected up to 2025 | 21 | |
Oriental | San Julian | WTON WIN | Projected up to 2021 | 39.6 |
WARNES I | Projected up to 2021 | 14.4 | ||
El Dorado | Projected up to 2021 | 54 | ||
Rositas | HDAM WAT | Projected up to 2025 | 400 | |
Warnes II | WTON WIN | Projected up to 2025 | 21 | |
South | La Ventolera | WTON WIN | Projected up to 2025 | 24 |
Laguna Colorada | STUR | Projected up to 2025 | 100 | |
CarrizalI_CarrizalII_CarrizalIII | HDAM WAT | Projected up to 2025 | 346.5 | |
Icla_Margarita | Projected up to 2025 | 270 |
Power Flow Direction | From Central Name | To Central Name | Voltage Level (kV) | NTC (MW) |
---|---|---|---|---|
CE <—> NO | Santivanez | Palca I | 230 | 430 |
Santivanez | Palca II | 230 | ||
Mazocruz | Vinto | 230 | ||
CE <—> OR | Carrasco | Yapacani | 230 | 500 |
Carrasco | Arboleda | 230 | ||
CE <—> SU | Catavi | Ocuri | 115 | 207.5 |
Santivanez | Sucre | 230 | ||
SIN | All Centrals | All Centrals | 230–115 | 1137.5 |
Power Flow Direction | From Central Name | To Central Name | Voltage Level (kV) | NTC (MW) |
---|---|---|---|---|
OR <—> SU | Camiri | Sucre I | 230 | 300 |
Camiri | Sucre II | 230 | ||
NO <—> OR | Paraiso | Troncos I | 230 | 160 |
Paraiso | Troncos II | 230 | ||
CE <—> SU | Santivanez | Sucre I | 115 | 300 |
Santivanez | Sucre II | 230 | ||
SIN | All Centrals | All Centrals | 230–115 | 760 |
Total | With Hydro Storage | Without Hydro Storage | Projected Installed Capacity | ||||
---|---|---|---|---|---|---|---|
Installed Capacity
MW | Scenario |
Storage Capacity
MWh | Scenario |
Storage Capacity
MWh |
Hydro
MW |
Thermal
MW |
VRES
MW |
5225.1 | 1(H) | 1,239,106 | 1(NH) | 0 | 2536.92 | 2286.18 | 402 |
5493.1 | 2(H) | 1,239,106 | 2(NH) | 0 | 2536.92 | 2286.18 | 670 |
5761.1 | 3(H) | 1,239,106 | 3(NH) | 0 | 2536.92 | 2286.18 | 938 |
5895.1 | 4(H) | 1,239,106 | 4(NH) | 0 | 2536.92 | 2286.18 | 1072 |
6029.1 | 5(H) | 1,239,106 | 5(NH) | 0 | 2536.92 | 2286.18 | 1206 |
6163.1 | 6(H) | 1,239,106 | 6(NH) | 0 | 2536.92 | 2286.18 | 1340 |
7165.1 | 7(H) | 1,239,106 | 7(NH) | 0 | 2536.92 | 2286.18 | 2342 |
9965.1 | 8(H) | 1,239,106 | 8(NH) | 0 | 2536.92 | 2286.18 | 5142 |
12,465.1 | 9(H) | 1,239,106 | 9(NH) | 0 | 2536.92 | 2286.18 | 7642 |
12,465.1 | 10(H) | 1,239,106 | 10(NH) | 0 | 2536.92 | 2286.18 | 7642 |
Scenario | Average Electricity Cost EUR/MWh | Total Load Shedding TWh | Maximum Load Shedding MWh | Total Curtailed RES TWh | Maximum Curtailed RES MW | VRES Installed Capacity MW |
---|---|---|---|---|---|---|
1(H) | 5.03 | 0.0002 | 53.41 | 0.0001 | 7.65 | 402 |
2(H) | 4.28 | 0.0000 | 0.00 | 0.0001 | 7.65 | 670 |
3(H) | 3.58 | 0.0001 | 46.22 | 0.0033 | 193.94 | 938 |
4(H) | 3.25 | 0.0000 | 21.35 | 0.0139 | 387.76 | 1072 |
5(H) | 2.95 | 0.0000 | 52.89 | 0.0424 | 510.94 | 1206 |
6(H) | 2.66 | 0.0000 | 0.00 | 0.0992 | 905.23 | 1340 |
7(H) | 2.63 | 0.0000 | 24.14 | 0.1100 | 1040.16 | 2342 |
8(H) | 1.01 | 0.0000 | 0.00 | 2.6500 | 3109.31 | 5142 |
9(H) | 0.50 | 0.0000 | 0.00 | 6.1700 | 5076.59 | 7642 |
10(H) | 0.22 | 0.0000 | 0.00 | 10.0800 | 6310.46 | 10,142 |
1(NH) | 87.72 | 0.0317 | 112.07 | 0.0000 | 0.00 | 402 |
2(NH) | 51.83 | 0.0227 | 112.07 | 0.0000 | 11.53 | 670 |
3(NH) | 34.17 | 0.0164 | 112.07 | 0.0103 | 268.24 | 938 |
4(NH) | 28.29 | 0.0144 | 112.07 | 0.0330 | 429.76 | 1072 |
5(NH) | 23.04 | 0.0129 | 112.07 | 0.0710 | 538.31 | 1206 |
6(NH) | 18.71 | 0.0109 | 112.07 | 0.1370 | 665.73 | 1340 |
7(NH) | 18.12 | 0.0109 | 112.07 | 0.1510 | 705.55 | 2342 |
8(NH) | 6.70 | 0.0034 | 112.07 | 2.6800 | 2561.69 | 5142 |
9(NH) | 4.87 | 0.0018 | 112.07 | 5.9700 | 4419.69 | 7642 |
10(NH) | 3.32 | 0.0012 | 112.07 | 9.6300 | 6308.87 | 10,142 |
Scenario | HYDRO | THERMAL | VRES | Thermal Generation | Covered Load by | |||
---|---|---|---|---|---|---|---|---|
Gen TWh | CO Mt | Gen TWh | CO Mt | Gen TWh | CO Mt | Displaced TWh | VRES % | |
1(H) | 3.28 | 0.00 | 7.25 | 2.11 | 1.21 | 0.00 | 0.00 | 10.31 |
2(H) | 3.27 | 0.00 | 6.44 | 1.81 | 2.02 | 0.00 | 0.81 | 17.22 |
3(H) | 3.27 | 0.00 | 5.63 | 1.52 | 2.83 | 0.00 | 1.62 | 24.13 |
4(H) | 3.27 | 0.00 | 5.24 | 1.39 | 3.22 | 0.00 | 2.01 | 27.45 |
5(H) | 3.27 | 0.00 | 4.87 | 1.26 | 3.59 | 0.00 | 2.38 | 30.61 |
6(H) | 3.27 | 0.00 | 4.51 | 1.14 | 3.95 | 0.00 | 2.74 | 33.67 |
7(H) | 3.27 | 0.00 | 3.47 | 1.12 | 4.99 | 0.00 | 3.78 | 42.54 |
8(H) | 3.21 | 0.00 | 1.35 | 0.43 | 7.17 | 0.00 | 5.90 | 61.13 |
9(H) | 3.15 | 0.00 | 0.46 | 0.21 | 8.13 | 0.00 | 6.79 | 69.25 |
10(H) | 2.72 | 0.00 | 0.18 | 0.09 | 8.84 | 0.00 | 7.07 | 75.29 |
1(NH) | 0.51 | 0.00 | 9.97 | 3.21 | 1.21 | 0.00 | 0.00 | 10.35 |
2(NH) | 0.51 | 0.00 | 9.17 | 2.89 | 2.02 | 0.00 | 0.80 | 17.26 |
3(NH) | 0.51 | 0.00 | 8.38 | 2.61 | 2.82 | 0.00 | 1.59 | 24.08 |
4(NH) | 0.51 | 0.00 | 8.00 | 2.47 | 3.20 | 0.00 | 1.97 | 27.33 |
5(NH) | 0.51 | 0.00 | 7.64 | 2.35 | 3.57 | 0.00 | 2.33 | 30.46 |
6(NH) | 0.51 | 0.00 | 7.30 | 2.24 | 3.91 | 0.00 | 2.67 | 33.36 |
7(NH) | 0.51 | 0.00 | 6.32 | 2.22 | 4.89 | 0.00 | 3.65 | 41.72 |
8(NH) | 0.48 | 0.00 | 4.18 | 1.46 | 7.07 | 0.00 | 5.79 | 60.27 |
9(NH) | 0.41 | 0.00 | 3.38 | 1.10 | 7.94 | 0.00 | 6.59 | 67.69 |
10(NH) | 0.38 | 0.00 | 3.00 | 0.59 | 8.35 | 0.00 | 6.97 | 71.18 |
Scenario | CE –> NO | CE –> OR | CE –> SU | NO –> CE | NO –> OR | OR –> CE | OR –> NO | OR –> SU | SU –> CE | SU –> OR |
---|---|---|---|---|---|---|---|---|---|---|
1(H) | 37 | 2606 | 0 | 0 | 4735 | 859 | 2351 | 4753 | 1984 | 928 |
2(H) | 23 | 3000 | 0 | 0 | 4655 | 369 | 2745 | 5143 | 1799 | 527 |
3(H) | 14 | 3322 | 1 | 0 | 4594 | 143 | 2855 | 5556 | 1617 | 229 |
4(H) | 14 | 3360 | 0 | 0 | 4574 | 37 | 2818 | 5744 | 1651 | 132 |
5(H) | 23 | 3457 | 0 | 0 | 4564 | 30 | 2755 | 5798 | 1611 | 120 |
6(H) | 22 | 3383 | 0 | 0 | 4508 | 54 | 2827 | 5875 | 1631 | 98 |
7(H) | 13 | 3419 | 0 | 0 | 4554 | 52 | 2830 | 5740 | 1618 | 147 |
8(H) | 9 | 3567 | 7 | 0 | 4693 | 487 | 2906 | 5885 | 1533 | 71 |
9(H) | 7 | 3735 | 72 | 0 | 4665 | 987 | 2983 | 6145 | 1544 | 103 |
10(H) | 8 | 3649 | 85 | 0 | 4633 | 1293 | 3112 | 6206 | 1957 | 169 |
1(NH) | 10 | 2360 | 0 | 0 | 4591 | 0 | 2353 | 5828 | 2696 | 0 |
2(NH) | 15 | 2359 | 0 | 0 | 4583 | 0 | 2390 | 6099 | 2383 | 0 |
3(NH) | 14 | 2394 | 0 | 0 | 4619 | 0 | 2235 | 6483 | 2080 | 0 |
4(NH) | 16 | 2394 | 0 | 0 | 4636 | 0 | 2220 | 6523 | 2006 | 0 |
5(NH) | 16 | 2431 | 0 | 0 | 4729 | 0 | 2194 | 6501 | 1926 | 0 |
6(NH) | 16 | 2454 | 0 | 0 | 4817 | 0 | 2152 | 6523 | 1857 | 0 |
7(NH) | 18 | 2479 | 0 | 0 | 4801 | 0 | 2128 | 6534 | 1836 | 0 |
8(NH) | 15 | 2726 | 0 | 0 | 5025 | 217 | 2601 | 6366 | 925 | 0 |
9(NH) | 13 | 2827 | 2 | 0 | 4956 | 689 | 2843 | 6396 | 1280 | 3 |
10(NH) | 15 | 2839 | 4 | 0 | 4892 | 968 | 3100 | 6464 | 1853 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navia, M.; Orellana, R.; Zaráte, S.; Villazón, M.; Balderrama, S.; Quoilin, S. Energy Transition Planning with High Penetration of Variable Renewable Energy in Developing Countries: The Case of the Bolivian Interconnected Power System. Energies 2022, 15, 968. https://doi.org/10.3390/en15030968
Navia M, Orellana R, Zaráte S, Villazón M, Balderrama S, Quoilin S. Energy Transition Planning with High Penetration of Variable Renewable Energy in Developing Countries: The Case of the Bolivian Interconnected Power System. Energies. 2022; 15(3):968. https://doi.org/10.3390/en15030968
Chicago/Turabian StyleNavia, Marco, Renan Orellana, Sulmayra Zaráte, Mauricio Villazón, Sergio Balderrama, and Sylvain Quoilin. 2022. "Energy Transition Planning with High Penetration of Variable Renewable Energy in Developing Countries: The Case of the Bolivian Interconnected Power System" Energies 15, no. 3: 968. https://doi.org/10.3390/en15030968
APA StyleNavia, M., Orellana, R., Zaráte, S., Villazón, M., Balderrama, S., & Quoilin, S. (2022). Energy Transition Planning with High Penetration of Variable Renewable Energy in Developing Countries: The Case of the Bolivian Interconnected Power System. Energies, 15(3), 968. https://doi.org/10.3390/en15030968