Large Eddy Simulations of a Low-Swirl Gaseous Partially Premixed Lifted Flame in Presence of Wall Heat Losses †
Abstract
:1. Introduction
2. Experimental Test Rig
3. Flame Characteristics
4. Combustion Modeling
4.1. FGM Model
4.2. FGM-EXT Model
4.3. TF Model
5. Numerical Setup
6. Results
6.1. Flow-Field and Local Mixture Composition
6.2. Chemical Species
6.3. Temperature Field
7. Considerations on the Stabilization Mechanism
8. Conclusions
Author Contributions
Funding

Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| FGM | Flamelet Generated Manifold model |
| FTT | Flow-Through Time |
| IRZ | Inner Recirculation Zone |
| HR | Heat Release |
| LBO | Lean Blow-Off |
| LES | Large Eddy Simulations |
| LOH | Lift-Off Height |
| ORZ | Outer Recirculation Zone |
| RANS | Reynolds Averaged Navier–Stokes |
| TF | Thickened Flame model |
References
- Lawn, C. Lifted flames on fuel jets in co-flowing air. Prog. Energy Combust. Sci. 2009, 35, 1–30. [Google Scholar] [CrossRef]
- Cabra, R.; Chen, J.Y.; Dibble, R.; Karpetis, A.; Barlow, R. Lifted methane–air jet flames in a vitiated coflow. Combust. Flame 2005, 143, 491–506. [Google Scholar] [CrossRef]
- O’Loughlin, W.; Masri, A. A new burner for studying auto-ignition in turbulent dilute sprays. Combust. Flame 2011, 158, 1577–1590. [Google Scholar] [CrossRef]
- Day, M.; Tachibana, S.; Bell, J.; Lijewski, M.; Beckner, V.; Cheng, R.K. A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames: I. Methane flames. Combust. Flame 2012, 159, 275–290. [Google Scholar] [CrossRef]
- Fokaides, P.A.; Kasabov, P.; Zarzalis, N. Experimental Investigation of the stability mechanism and emissions of a lifted swirl nonpremixed flame. J. Eng. Gas Turbines Power 2008, 130, 011508. [Google Scholar] [CrossRef]
- Kasabov, P. Experimentelle Untersuchungen an Abgehobenen Flammen unter Druck. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2014. [Google Scholar]
- Fokaides, P.; Zarzalis, N. Lean blowout dynamics of a lifted stabilized, non-premixed swirl flame. In Proceedings of the Third European Combustion Meeting, Chania, Greece, 11–13 April 2007; Volume 7, p. 2. [Google Scholar]
- Kasabov, P.; Zarzalis, N.; Habisreuther, P. Experimental study on lifted flames operated with liquid kerosene at elevated pressure and stabilized by outer recirculation. Flow Turbul. Combust. 2013, 90, 605–619. [Google Scholar] [CrossRef]
- Lyons, K.M. Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: Experiments. Prog. Energy Combust. Sci. 2007, 33, 211–231. [Google Scholar] [CrossRef]
- Kern, M.; Fokaides, P.; Habisreuther, P.; Zarzalis, N. Applicability of a flamelet and a presumed jpdf 2-domain-1-step-kinetic turbulent reaction model for the simulation of a lifted swirl flame. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2009; Volume 48838, pp. 359–368. [Google Scholar]
- Sedlmaier, J. Numerische und Experimentelle Untersuchung einer Abgehobenen Flamme unter Druck. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2019. [Google Scholar]
- Langone, L.; Pampaloni, D.; Mazzei, L.; Andreini, A. Analysis of a gaseous partially premixed lifted flame in swirling flow through different LES combustion models. In Proceedings of the 10th European Combustion Meeting, Naples, Italy, 14–15 April 2021. [Google Scholar]
- Langone, L.; Sedlmaier, J.; Nassini, P.C.; Mazzei, L.; Harth, S.; Andreini, A. Numerical Modeling of Gaseous Partially Premixed Low-Swirl Lifted Flame at Elevated Pressure. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 84133, p. V04BT04A068. [Google Scholar]
- Lefebvre, A.H.; Ballal, D.R. Gas Turbine Combustion: Alternative Fuels and Emissions; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Sedlmaier, J.; Habisreuther, P.; Zarzalis, N.; Jansohn, P. Influence of liquid and gaseous fuel on lifted flames at elevated pressure stabilized by outer recirculation. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2014; Volume 45684, p. V04AT04A054. [Google Scholar]
- Bradley, D.; Kwa, L.; Lau, A.; Missaghi, M.; Chin, S. Laminar flamelet modeling of recirculating premixed methane and propane-air combustion. Combust. Flame 1988, 71, 109–122. [Google Scholar] [CrossRef]
- Bradley, D.; Lau, A. The mathematical modelling of premixed turbulent combustion. Pure Appl. Chem. 1990, 62, 803–814. [Google Scholar] [CrossRef]
- Van Oijen, J.; Lammers, F.; De Goey, L. Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 2001, 127, 2124–2134. [Google Scholar] [CrossRef]
- Bilger, R. The structure of turbulent nonpremixed flames. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1989; Volume 22, pp. 475–488. [Google Scholar]
- ANSYS. Fluent 19.3 Theory Guide; ANSYS: Canonsburg, PA, USA, 2019. [Google Scholar]
- Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.; Gardiner, W.C.J.; et al. GRI3.0 Mechanism. Available online: http//www.me.berkeley.edu/gri_mech/ (accessed on 20 January 2022).
- Van Oijen, J.; Donini, A.; Bastiaans, R.; ten Thije Boonkkamp, J.; De Goey, L. State-of-the-art in premixed combustion modeling using flamelet generated manifolds. Prog. Energy Combust. Sci. 2016, 57, 30–74. [Google Scholar] [CrossRef] [Green Version]
- Galeazzo, F.C.C.; Prathap, C.; Kern, M.; Habisreuther, P.; Zarzalis, N.; Beck, C.; Krebs, W.; Wegner, B. Investigation of a flame anchored in crossflow stream of vitiated air at elevated pressures. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2012; Volume 44687, pp. 1225–1233. [Google Scholar]
- Tang, Y.; Raman, V. Large eddy simulation of premixed turbulent combustion using a non-adiabatic, strain-sensitive flamelet approach. Combust. Flame 2021, 234, 111655. [Google Scholar] [CrossRef]
- Donini, A.; Bastiaans, R.; Van Oijen, J.; De Goey, L. A 5-D implementation of FGM for the large eddy simulation of a stratified swirled flame with heat loss in a gas turbine combustor. Flow Turbul. Combust. 2017, 98, 887–922. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Verma, I.; Modak, A.; Li, S. Fully Non-Adiabatic Flamelet Generated Manifold Model for High Fidelity Modeling of Turbulent Combustion in Gas Turbine Like Conditions. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 84133, p. V04BT04A026. [Google Scholar]
- Massey, J.C.; Chen, Z.X.; Swaminathan, N. Modelling Heat Loss Effects in the Large Eddy Simulation of a Lean Swirl-Stabilised Flame. Flow Turbul. Combust. 2021, 106, 1355–1378. [Google Scholar] [CrossRef]
- Tay-Wo-Chong, L.; Zellhuber, M.; Komarek, T.; Im, H.G.; Polifke, W. Combined influence of strain and heat loss on turbulent premixed flame stabilization. Flow Turbul. Combust. 2016, 97, 263–294. [Google Scholar] [CrossRef]
- Tay-Wo-Chong, L.; Scarpato, A.; Polifke, W. LES combustion model with stretch and heat loss effects for prediction of premix flame characteristics and dynamics. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2017; Volume 50848, p. V04AT04A029. [Google Scholar]
- Zimont, V.L.; Lipatnikov, A.N. A numerical model of premixed turbulent combustion of gases. Chem. Phys. Rep. 1995, 14, 993–1025. [Google Scholar]
- Schmid, H.P.; Habisreuther, P.; Leuckel, W. A model for calculating heat release in premixed turbulent flames. Combust. Flame 1998, 113, 79–91. [Google Scholar] [CrossRef]
- Kutkan, H.; Amato, A.; Campa, G.; Ghirardo, G.; Tay Wo Chong, L.; Æsøy, E. Modelling of Turbulent Premixed CH4/H2/Air Flames Including the Influence of Stretch and Heat Losses. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2021; Volume 84942, p. V03AT04A034. [Google Scholar]
- Klarmann, N.; Sattelmayer, T.; Geng, W.; Zoller, B.T.; Magni, F. Impact of Flame Stretch and Heat Loss on Heat Release Distributions in Gas Turbine Combustors: Model Comparison and Validation. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2016; Volume 49767, p. V04BT04A031. [Google Scholar]
- Klarmann, N.; Sattelmayer, T.; Geng, W.; Magni, F. Flamelet generated manifolds for partially premixed, highly stretched and non-adiabatic combustion in gas turbines. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016; p. 2120. [Google Scholar]
- Klarmann, N. Modeling Turbulent Combustion and CO Emissions in Partially-Premixed Conditions Considering Flame Stretch and Heat Loss; Verlag Dr. Hut GmbH: Munchen, Germany, 2019. [Google Scholar]
- Goodwin, D.G.; Moffat, H.K.; Speth, R.L. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes; Caltech: Pasadena, CA, USA, 2009; p. 124. [Google Scholar]
- Nassini, P.C.; Pampaloni, D.; Meloni, R.; Andreini, A. Lean blow-out prediction in an industrial gas turbine combustor through a LES-based CFD analysis. Combust. Flame 2021, 229, 111391. [Google Scholar] [CrossRef]
- Colin, O.; Ducros, F.; Veynante, D.; Poinsot, T. A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 2000, 12, 1843–1863. [Google Scholar] [CrossRef]
- Poinsot, T.; Veynante, D. Theoretical and Numerical Combustion; RT Edwards, Inc.: Philadelphia, PA, USA, 2005. [Google Scholar]
- Legier, J.P.; Poinsot, T.; Veynante, D. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. In Proceedings of the Summer Program, Stanford, CA, USA, 2–27 July 2000; p. 12. [Google Scholar]
- Fiorina, B.; Veynante, D.; Candel, S. Modeling combustion chemistry in large eddy simulation of turbulent flames. In Proceedings of the Eighth International Symposium on Turbulence and Shear Flow Phenomena, Poitiers, France, 28–30 August 2013. [Google Scholar]
- Franzelli, B.; Riber, E.; Gicquel, L.Y.; Poinsot, T. Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame. Combust. Flame 2012, 159, 621–637. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Qian, C.; Liu, J.; Liberman, M.A. Influence of chemical kinetics on detonation initiating by temperature gradients in methane/air. Combust. Flame 2018, 197, 400–415. [Google Scholar] [CrossRef] [Green Version]
- Franzelli, B.; Riber, E.; Cuenot, B. Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame. Comptes Rendus Mec. 2013, 341, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Lilly, D.K. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A Fluid Dyn. 1992, 4, 633–635. [Google Scholar] [CrossRef]
- Celik, I.; Cehreli, Z.; Yavuz, I. Index of resolution quality for large eddy simulations. J. Fluids Eng. 2005, 127, 949–958. [Google Scholar] [CrossRef]
- Gant, S. Practical quality measures for large-eddy simulation. In Direct and Large-Eddy Simulation VII; Springer: Berlin/Heidelberg, Germany, 2010; pp. 217–222. [Google Scholar]
- Rosenberg, D.A.; Allison, P.M.; Driscoll, J.F. Flame index and its statistical properties measured to understand partially premixed turbulent combustion. Combust. Flame 2015, 162, 2808–2822. [Google Scholar] [CrossRef] [Green Version]
















| Operating pressure | 101,325 Pa |
| Air inlet temperature | 373 K |
| Air mass flow | 0.0185 kg/s |
| Nozzle pressure drop | 2% |
| Equivalence ratio | 0.65 |
| Combustion Model | Average Time | FTT |
|---|---|---|
| FGM | 117 ms | 8.75 |
| FGM-EXT | 150 ms | 11.50 |
| TF | 180 ms | 13.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langone, L.; Amerighi, M.; Andreini, A. Large Eddy Simulations of a Low-Swirl Gaseous Partially Premixed Lifted Flame in Presence of Wall Heat Losses. Energies 2022, 15, 788. https://doi.org/10.3390/en15030788
Langone L, Amerighi M, Andreini A. Large Eddy Simulations of a Low-Swirl Gaseous Partially Premixed Lifted Flame in Presence of Wall Heat Losses. Energies. 2022; 15(3):788. https://doi.org/10.3390/en15030788
Chicago/Turabian StyleLangone, Leonardo, Matteo Amerighi, and Antonio Andreini. 2022. "Large Eddy Simulations of a Low-Swirl Gaseous Partially Premixed Lifted Flame in Presence of Wall Heat Losses" Energies 15, no. 3: 788. https://doi.org/10.3390/en15030788
APA StyleLangone, L., Amerighi, M., & Andreini, A. (2022). Large Eddy Simulations of a Low-Swirl Gaseous Partially Premixed Lifted Flame in Presence of Wall Heat Losses. Energies, 15(3), 788. https://doi.org/10.3390/en15030788

