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Abstract: Electrochemical oxidation of resorcinol on a polycrystalline platinum electrode was
investigated in five different solutions, namely 0.5 and 0.1 M H2SO4, 0.5 M Na2SO4, 0.5 and 0.1
M NaOH. The rates of electrochemical degradation of resorcinol were determined based on the
obtained reaction parameters, such as resistance, capacitance and current-density. The electrochemical
analyses (cyclic voltammetry and a.c. impedance spectroscopy) were carried-out by means of
a three-compartment, Pyrex glass cell. These results showed that the electrochemical oxidation of
resorcinol is strongly pH-dependent. In addition, the energy dispersive X-ray (EDX) spectroscopy
technique was employed for Pt electrode surface characterization. Additionally, the quantitative
determination of resorcinol removal was performed by means of instrumental high-performance
liquid chromatography/mass spectrometry (HPLC/MS) methodology.

Keywords: oxidation of resorcinol; a.c. impedance spectroscopy; energy dispersive X-ray spectroscopy;
0.5 M H2SO4; 0.5 M Na2SO4; 0.1 M NaOH; 0.1 M H2SO4; 0.5 M NaOH

1. Introduction

Pollution of the natural environment has become one of the main topics of sustainable development.
In fact, organic pollutants are associated with some of the most dangerous chemicals. A very good
example of such a harmful substance is resorcinol, due to its severe toxicity, low biodegradability,
as well as its widespread use in many technological processes. Resorcinol belongs to a group of phenolic
compounds, which are classified as a toxic industrial pollutants with severe health consequences.
Even at low concentrations, phenols can lead to thyroid dysfunction, causing damage to red blood
cells and the liver. Moreover, this group of pollutants possesses carcinogenic potential and high
reactivity. Thus, in the presence of microorganisms, both inorganic and organic compounds dissolved
in water could produce other harmful substances [1–4]. The main source of resorcinol is industrial
wastewaters, posing problems for such important industry sectors such as petrochemicals and
drug manufacturing [5–10].

Nowadays, multiple techniques are used for removing pollutants from water and environment.
Ozonation is a chemical water treatment technique, which employs ozone (O3) molecules to oxidize
and decompose pollutants in wastewater leading to their elimination. Unfortunately, this method could
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eliminate a maximum of 80% of the pollutants and may be uneconomical due to the high equipment and
operational costs [11–13]. Another important process is based on the phenomenon of photocatalysis,
where a metal oxide catalyst is activated by absorption of photons of appropriate energy and are
thus capable of speeding up the degradation reactions of phenolic compounds [14–16]. Despite many
advantages, this method is very sensitive to changing conditions, e.g., catalyst dose, exposure time,
solution pH and light intensity [17]. Another process is the Fenton reaction. It is a catalytic reaction
between iron (III) and hydrogen peroxide, which leads to the formation of highly oxidative radical
species including the hydroxyl radical (OH•), superoxide radical (O2−•), hydro-peroxyl radical (HO2•)
and some organic radicals – alkyl (R•), peroxyl (RO2•) [18,19]. Those species are very effective
oxidizing agents for the degradation of organic waste materials (e.g., resorcinol). In modern days the
Fenton reaction is one of the most commonly used methods for the wastewater treatment. In contrast
to other methods, the Fenton reaction oxidizes phenol pollutants in aqueous solution to carbon
dioxide and water as by-products [20–22]. Despite the high efficiency and formation of harmless end
products, the Fenton reaction has a disadvantage of high cost and generation of excessive volumes
of sludge [23,24]. Adsorption is based on the phenomena of intermolecular forces of attraction,
which occur between molecules of pollutants in wastewater and a solid phase of the adsorbent having
a highly porous surface structure. As a result of this physical process, some of the solute molecules from
the solution could become aggregated at the solid surface of the adsorbent [25–28]. On the other hand,
the concentration of the to-be-removed substance, the presence of other organic components, variation
of pH and temperature parameters can negatively affect the effectiveness of the adsorption process [29].

In recent years, one of the methods that has attracted a great deal of attention for the treatment of
wastewater containing toxic or refractory organic pollutants is electrochemical oxidation. The utilization
of this method for the degradation of phenolic compounds has many benefits, including high efficiency,
easy automation and environmental friendliness [30–41]. Although numerous works have been
published on this subject, only few are related to resorcinol, one of the most commonly encountered
phenolic compounds.

In general, the process of resorcinol electrooxidation is associated with the conversion of a resorcinol
molecule into carboxylic acids and finally the formation of H2O and CO2 molecules [33,42]. However,
it is also agreed that resorcinol electrooxidation might partly lead to the formation of polymers [32].
A schematic representation and description of these processes were presented in a recent publication
from this laboratory [43]. The purpose of this work is principally concerned with the kinetic aspects of
resorcinol electrooxidation (degradation) and electrosorption reactions, examined on the surface of the
polycrystalline platinum electrode, in 0.5 and 0.1 M H2SO4, 0.5 M Na2SO4 also 0.5 and 0.1 M NaOH
supporting electrolytes by means of electrochemical methods (cyclic voltammetry and a.c. impedance
spectroscopy).

2. Results and Discussion

2.1. EDX Characterization of Polycrystalline Platinum

Figure 1a,b present exemplary EDX spectra recorded prior to and after a resorcinol electrodegradation
test was carried-out. Correspondingly, Table 1 presents changes in the surface composition of the
polycrystalline platinum electrode, depending on the working electrolyte. The presence of 7.05 wt. % of C
element on the Pt electrode surface, recorded before the measurements, most likely comes from the carbon
tape used to position the sample in the sample holder. Electrooxidation of resorcinol led to a significant
(solution-dependent) increase in the registered average wt. % of carbon and oxygen elements, as compared
to the untested Pt electrode.
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Figure 1. (a) EDX spectrum carried-out at an acceleration voltage of 10 kV and a working distance of 
10.0 mm for a fresh polycrystalline platinum electrode; (b) as in (a), but after electrochemical 
examinations (600 cyclic voltammetry cycles-CV). 

Table 1. EDX-derived surface elemental compositions for polycrystalline platinum samples recorded 
prior to and after resorcinol electrochemical oxidation (600 CV cycles), carried-out in all working 
solutions. 

Elements Electrolyte Before After 

Pt/% 

0.1 M H2SO4 

92.50 
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0.5 M H2SO4 71.93 
0.5 M Na2SO4 72.83 
0.1 M NaOH 82.73 
0.5 M NaOH 83.14 
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24.02 
0.5 M H2SO4 24.31 
0.5 M Na2SO4 23.22 
0.1 M NaOH 15.65 
0.5 M NaOH 15.27 
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0.1 M H2SO4 

0.45 

3.44 
0.5 M H2SO4 3.76 
0.5 M Na2SO4 3.95 
0.1 M NaOH 1.62 
0.5 M NaOH 1.59 

The overall significant increase of Pt surface content of carbon and oxygen elements after the 
resorcinol electrooxidation could be explained by the partial formation of strongly-bonded polymeric 
species on the surface of the platinum electrode (clearly discernible as a surface-adsorbed, yellowish 
layer). On the other hand, a radical increase of Pt surface oxygen content was partly caused by the 
platinum surface oxidation process. 

2.2. Electrochemical Characterization of the Resorcinol Oxidation Reaction 

The cyclic voltammetric behaviour of resorcinol (at 1 × 10−3 M) on polycrystalline Pt electrode 
surface is presented in Figures 2a–c for acidic, neutral and alkaline solutions, respectively, together 
with baseline CV profiles for solutions without resorcinol. Hence, in Figure 2a a major anodic 
oxidation peak can be observed in the CV profiles over the potential range 1.1–1.5 V vs. RHE (for 0.1 
and 0.5 M H2SO4). This anodic peak is associated with the resorcinol oxidation process [44,45]. 
Nonetheless, some of the resorcinol radicals that become adsorbed on the electrode surface could 
partly form dimers and then polymers, causing considerable blocking of the electrochemically active 

Figure 1. (a) EDX spectrum carried-out at an acceleration voltage of 10 kV and a working distance
of 10.0 mm for a fresh polycrystalline platinum electrode; (b) as in (a), but after electrochemical
examinations (600 cyclic voltammetry cycles-CV).

Table 1. EDX-derived surface elemental compositions for polycrystalline platinum samples recorded prior
to and after resorcinol electrochemical oxidation (600 CV cycles), carried-out in all working solutions.

Elements Electrolyte Before After

Pt/%

0.1 M H2SO4

92.50

72.54
0.5 M H2SO4 71.93
0.5 M Na2SO4 72.83
0.1 M NaOH 82.73
0.5 M NaOH 83.14

C/%

0.1 M H2SO4

7.05

24.02
0.5 M H2SO4 24.31
0.5 M Na2SO4 23.22
0.1 M NaOH 15.65
0.5 M NaOH 15.27

O/%

0.1 M H2SO4

0.45

3.44
0.5 M H2SO4 3.76
0.5 M Na2SO4 3.95
0.1 M NaOH 1.62
0.5 M NaOH 1.59

The overall significant increase of Pt surface content of carbon and oxygen elements after the
resorcinol electrooxidation could be explained by the partial formation of strongly-bonded polymeric
species on the surface of the platinum electrode (clearly discernible as a surface-adsorbed, yellowish
layer). On the other hand, a radical increase of Pt surface oxygen content was partly caused by the
platinum surface oxidation process.

2.2. Electrochemical Characterization of the Resorcinol Oxidation Reaction

The cyclic voltammetric behaviour of resorcinol (at 1 × 10−3 M) on polycrystalline Pt electrode
surface is presented in Figure 2a–c for acidic, neutral and alkaline solutions, respectively, together with
baseline CV profiles for solutions without resorcinol. Hence, in Figure 2a a major anodic oxidation peak
can be observed in the CV profiles over the potential range 1.1–1.5 V vs. RHE (for 0.1 and 0.5 M H2SO4).
This anodic peak is associated with the resorcinol oxidation process [44,45]. Nonetheless, some of
the resorcinol radicals that become adsorbed on the electrode surface could partly form dimers and
then polymers, causing considerable blocking of the electrochemically active area surface [10,30–32].
This effect is clearly visible in the CV profiles of Figure 2a, where the anodic peaks are correspondingly
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radically inhibited after the first cycle from 8.26 to 2.61 mA cm−2 and from 7.62 to 2.09 mA cm−2 for
0.5 M H2SO4, and 0.1 M H2SO4. Moreover, a decrease of current-density takes place with consecutive
cycles. The following anodic peak starting at 1.7 V vs. RHE (for both solutions in the presence of
resorcinol) is associated with oxygen evolution reaction and is significantly shifted towards more
positive potentials (by ca. 0.2 V), as compared to baseline CV profiles. In addition, a broad cathodic
peak can also be observed in Figure 2a at a potential range of 0.5–0.8 V/RHE (0.1 M H2SO4 and 0.5 M
H2SO4 solutions). The latter peak most likely corresponds to desorption of OH- ions [46,47]; however,
it could also be associated with partial and limited reversibility of the resorcinol oxidation process on
the Pt electrode surface [10,30–32].
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Figure 2. Cyclic voltammograms recorded on the polycrystalline platinum electrode surface (a) in 0.1 and
0.5 M H2SO4; (b) 0.5 M Na2SO4; (c) 0.1 and 0.5 M NaOH supporting solutions, carried-out in the presence
(R) and absence of resorcinol (no-R) at the concentration of 1 × 10−3 M and a sweep-rate of 50 mV s−1.

Similar voltammetric behaviour was recorded on the Pt electrode, studied in 0.5 M Na2SO4, 0.1
and 0.5 M NaOH (see Figure 2b,c), where an anodic feature (associated with resorcinol oxidation) is
observed over the potential ranges of 1.3–1.7 V and 1.1–1.4 V, in neutral and basic solutions, respectively.



Molecules 2019, 24, 2309 5 of 11

However, in contrast to the behaviour observed in acidic solutions, voltammetric profiles in neutral
and alkaline solutions are characterized by radically lower current-densities, namely 3.42, 4.47 and
4.41 mA cm−2 for 0.5 M Na2SO4, 0.1 and 0.5 M NaOH, respectively. Nevertheless, in case of alkaline
solutions, the reduction of the current-density level was less noticeable (from 4.47 and 4.41 to 3.10
and 3.02 mA cm−2), being actually preserved on this level (ca. 3.00 mA cm−2) after additional cycles.
On the contrary, the current-density for acidic and neutral solutions, was steadily decreasing through
continuous voltametric cycling.

With respect to the peak current derived from the cyclic voltammogram for Pt electrode in 0.5
M H2SO4 solution, the results presented in this paper compare quite well with work published by
Nady et al. [32], where peak current on analogues Pt electrode at a sweep-rate of 50 mV s−1 reached
10 mA cm−2 for the resorcinol concentration of 1 × 10−2 M.

On the other hand, the a.c. impedance behaviour of the resorcinol electrooxidation process at the
polycrystalline platinum electrode, in contact with 0.1 and 0.5 M H2SO4, 0.5 M Na2SO4 also 0.1 and
0.5 M NaOH solutions, is shown in Figure 3a,b and Table 2. For all examined solutions, the Nyquist
impedance spectra (along with the corresponding Bode plots) recorded over the studied potential
range (1150–1250 mV/RHE for 0.5 M H2SO4 and 0.1 M NaOH, 1400–1500 mV/RHE for 0.5 M H2SO4,
and 1200–1300 mV/RHE for 0.1 M H2SO4 and 0.5 M NaOH) exhibited one visible and somewhat
depressed partial semicircle (or a single broad peak in the phase-angle/frequency Bode diagram).
Taking into account that a small, but noticeable capacitance dispersion effect was observed on the Pt
electrode surface, the CPE: constant phase element-modified equivalent circuit model with a single
time constant was used to fit the experimentally obtained impedance data (see Figure 4).

The charge-transfer resistance, RF parameter (Table 2) corresponds to the oxidation process of
resorcinol on the Pt electrode surface. In case of all five examined solutions, the RF had a tendency
to increase upon augmentation of the electrode potential and reached its maximum values of 7431,
3730, 9870, 2230 and 2359 Ω cm2 for the solutions of 0.1 M H2SO4 (at 1300 mV/RHE), 0.5 M H2SO4

(at 1250 mV/RHE), 0.5 M Na2SO4 (at 1500 mV/RHE), 0.1 M NaOH (at 1250 mV/RHE) and 0.5 M NaOH
(at 1300 mV/RHE), correspondingly. This behaviour could be explained in terms of the formation of
surface-poisoning resorcinol polymer (paragraph 1 of Section 2.2.). The above phenomenon could be
supported through a significant reduction of the recorded Cdl parameter values upon an increase of
the electrode potential (Table 2).
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Figure 3. (a) Complex-plane impedance plots for resorcinol electrooxidation on polycrystalline platinum
electrode surface, in contact with 0.1 and 0.5 M H2SO4, 0.5 M Na2SO4, 0.1 and 0.5 M NaOH solutions,
recorded at room temperature for potential values from 1150 through 1400 mV vs. RHE, corresponding
to the minimum values of the recorded Faradaic charge-transfer resistance parameter; (b) corresponding
Bode impedance plots (solid lines correspond to representation of the data according to an equivalent
circuit model shown in Figure 4).
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Table 2. Parameters for the process of resorcinol electrooxidation (at 1 × 10−3 M) on polycrystalline
platinum electrode surface in contact with 0.1 and 0.5 M H2SO4, 0.5 M Na2SO4, 0.1 and 0.5 M NaOH
solutions, achieved by fitting the equivalent circuit model shown in Figure 4 to the experimentally-
obtained impedance data [dimensionless ϕ parameter, which determines the constant phase angle in
the complex-plane plot (0 ≤ ϕ ≤ 1) of the CPE circuit, varied between 0.90 and 0.98].

E/mV RF/Ω cm2 Cdl/µF cm−2sϕ−1

Pt in 0.1 M H2SO4
1200 5018 ± 60 85 ± 6
1250 6762 ± 144 55 ± 5
1300 7431 ± 131 45 ± 3

Pt in 0.5 M H2SO4
1150 2860 ± 280 91 ± 10
1200 3090 ± 360 80 ± 8
1250 3730 ± 480 79 ± 9

Pt in 0.5 M Na2SO4
1400 6750 ± 430 96 ± 8
1450 8880 ± 750 93 ± 6
1500 9870 ± 970 60 ± 8

Pt in 0.1 M NaOH
1150 630 ± 80 100 ± 2
1200 740 ± 90 94 ± 2
1250 2230 ± 130 64 ± 2

Pt in 0.5 M NaOH
1200 945 ± 14 99 ± 5
1250 1072 ± 34 82 ± 3
1300 2359 ± 49 75 ± 3

In fact, based on the recorded charge-transfer resistance values, the resorcinol electrodegradation
is most efficient in alkaline solution. On the other hand, the recorded impedance data did not allow
for the derivation of the adsorption charge-transfer resistance and pseudocapacitance parameters
(associated with resorcinol electrosorption). However, as the Cdl parameter values recorded in Table 2
are significantly higher than those typically observed for platinum electrodes [48,49], one cannot
exclude the possibility that a part of the recorded double-layer capacitance could be associated with
pseudocapacitance related to surface oxidation or electrosorption phenomena.
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Figure 4. Equivalent circuit model for electrooxidation of resorcinol on Pt electrode surface. The circuit
exhibits a Faradaic charge-transfer resistance, RF in a parallel combination with the double-layer
capacitance, Cdl (shown here as CPE: constant phase element), jointly in series with an uncompensated
solution resistance, RS.

Additionally, prolonged cyclic voltammetry trials (600 cycles, at a sweep-rate of 100 mV s−1 for the
potential range of 500–1600 mV) were carried-out for all examined solutions in order to derive information
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on the mechanism of resorcinol degradation (for 1 × 10−3 M resorcinol). Thus, based on the results of
combined HPLC/MS analysis one could assume that the process of resorcinol electrodegradation primarily
leads to opening of the aromatic ring and to the formation of H2O and CO2 molecules as basic products.
The above is proven by the lack of hydroquinone or benzoquinone species (or any other by-products of the
resorcinol oxidation process) in the recorded chromatograms (Figure 5).
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The recorded final concentration of resorcinol in 0.1 and 0.5 M H2SO4, 0.5 M Na2SO4 0.1 and 0.5 M
NaOH solutions came to 8.9 × 10−4, 8.7 × 10−4, 8.8 × 10−4, 7.4 × 10−4 and 7.8 × 10−4 M, respectively.
Furthermore, the HPLC/MS analysis shows that electrooxidation of resorcinol proceeded faster in
an alkaline environment then in acidic/neutral solutions. This is most likely caused by excessive
abundance of hydroxyl species in basic medium, which could facilitate the breakdown of the aromatic
resorcinol rings [5,32].

3. Materials and Methods

Supporting solutions of 0.1 M NaOH, 0.5 M Na2SO4 and 0.5 M H2SO4 were prepared from
99.99% NaOH and 99.99% Na2SO4 pellets (Merck, Warsaw, Poland), and sulphuric acid of the highest
purity available (SEASTAR Chemicals, Sidney BC, Canada), respectively. All solutions were made up
from ultra-pure water produced by means of Millipore Direct-Q3 UV system with 18.2 MΩ cm water
resistivity. The resorcinol (>99%, Sigma-Aldrich, Warsaw, Poland) concentration was on the order of
1 × 10−3 M.

During the course of this study, a three-compartment electrochemical cell made from Pyrex glass
was employed to carry-out the kinetic investigations of the resorcinol electrodegradation process.
The cell contained three electrodes: a working electrode (WE) made from polycrystalline Pt wire
(SA= 0.62 cm2: 1.0 mm diameter of 99.9998% purity, Johnson Matthey, Inc., Audubon, PA, USA)
in the central part of the cell, a Pd wire (0.5 mm diameter of 99.9% purity, Aldrich) reversible
hydrogen electrode (RHE) and a Pt wire (1.0 mm diameter of 99.9998% purity, Johnson Matthey, Inc.)
counter electrode (CE), both in separate compartments. All procedures regarding the preparation of
the electrodes and the cell pre-treatments were as those previously described in other works from
this laboratory [43,50,51].

For all electrochemical measurements (a.c. impedance spectroscopy and cyclic voltammetry
tests), a 12.608 W Full Electrochemical System (Solartron, Hampshire, England) was employed.
All experiments were performed at room temperature. The impedance measurements were carried-out
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at an a.c. signal of 5 mV and the frequency was swept between 1.0 × 105 and 0.5 × 10−1 Hz, where cyclic
voltammetry measurements were performed at a sweep-rate of 50 mV s–1. The instruments were
controlled by ZPlot 2.9 (Corrware 2.9) software for Windows (Scribner Associates, Inc., Southern Pines,
NC, USA), whereas data analysis was conducted with ZView 2.9 (Corrview 2.9) software package.
The impedance spectra were fitted by means of a complex, non-linear, least-squares immittance fitting
program, LEVM 6, written by Macdonald [52].

Moreover, HPLC/MS analyses were performed to quantitatively evaluate the reaction products/
intermediates. These analyses were carried-out by means of a HPLC (LC 20 Prominence, Shimadzu,
Kyoto, Japan) system combined with a QTRAP 5500 mass spectrometer (AB SCIEX, Concord,
ON, Canada), supplemented with an ESI ion source, triple quadrupole and an ion trap. Reaction
products were separated by means of an XBridge C18 (3.5 µm, 150 × 2.1 mm) chromatographic column
(Waters, Milford, MA, USA) at 45 ◦C for the mobile phase flow of 0.2 mL min−1. Both qualitative
and quantitative analyses were conducted based on the multiple reaction monitoring (MRM)
method. The quantitative analysis was performed through the application of linear calibration
curves (R2 = 0.993), acquired by serial dilution of standard stock. A calibration curve of four points
was used consisting of 3260, 1603, 326 and 32.6 µg/mL aliquots. Three replicates of all HPLC/MS
measurements were performed.

Additionally, a spectroscopic characterization was performed on the Pt WE, before and after
electrooxidation trials. Measurements were carried-out by means of a Quanta FEG 250 Scanning Electron
Microscope (SEM, Thermo Fisher Scientific, Hillsboro, OR, USA), equipped with an Energy-Dispersive
X-ray Spectroscopy (EDX) supplement (XFlash 5010, Bruker, Madison, WI, USA). The EDX analyses
were derived for an acceleration voltage of 10 kV with the primary intention of confirming the
presence of resorcinol-derived polymer on the surface of the examined electrode. Usually, three EDX
measurements were conducted independently for all experimental arrangements.

4. Conclusions

The electrochemical analysis of resorcinol electrooxidation on polycrystalline platinum in 0.1
and 0.5 M H2SO4, 0.5 M Na2SO4, 0.1 and 0.5 M NaOH solutions was carried-out by means of cyclic
voltammetry and electrochemical impedance spectroscopy techniques. The electrochemical oxidation
of resorcinol leads to the degradation of the aromatic ring structure and partly to electropolymerization
of resorcinol on the electrode surface, where generated polymeric compound(s) blocks the electrode
surface, which does significantly impede electrochemical activity of the Pt electrode. The above was
confirmed by EDX-derived elemental composition analysis, performed prior to and after electrochemical
experiments. Although, there is no linear dependence of the solution pH on the kinetics of resorcinol
electrooxidation, based on the obtained results one could easily differentiate between the electrochemical
behaviour of resorcinol in all three studied solutions. Most importantly, the alkaline solution was
found to appreciably facilitate the process of resorcinol electrodegradation, which was evidenced by
the conducted experiments. The above most likely results from the increased surface presence of
oxygen and hydroxyl species in a basic medium, as compared to that in sulphate-based, neutral and
acidic solutions.
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