The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Agricultural Biomass
4.2. Forest Biomass
4.3. Summary
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the Promotion of Electricity Produced from Renewable Energy Sources in the Internal Electricity Market, Official Journal L 283, 27/10/2001 P. 0033-0040. Available online: http://europa.eu.int/eur-lex/pri/en/oj/dat/2001/l_283/l_28320011027en00330040.pdf (accessed on 17 October 2022).
- Europian Commision. EU Biodiversity Strategy for 2030; COM (2020) 380 Final; European Commission: Brussels, Belgium, 2020; Available online: https://www.eumonitor.eu/9353000/1/j4nvhdfcs8bljza_j9vvik7m1c3gyxp/vl8tqb8jwtyy (accessed on 10 August 2022).
- Kigle, S.; Ebner, M.; Guminski, A. Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System. Energies 2022, 15, 1334. [Google Scholar] [CrossRef]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Arvizu, D.; Bruckner, T.; Christensen, J.; Devernay, J.-M.; Faaij, A.; Fischedick, M.; et al. Summary for Policy Makers. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlöme, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2011. [Google Scholar]
- European Parliament and the Council: Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC; The European Parliament and the Council: Brussels, Belgium, 2009. Available online: https://www.legislation.gov.uk/eudr/2009/28/contents# (accessed on 17 October 2022).
- Alatzas, S.; Moustakas, K.; Malamis, D.; Vakalis, S. Biomass potential from agricultural waste for energetic utilization in Greece. Energies 2019, 12, 1095. [Google Scholar] [CrossRef]
- Faaij, A.P.C. Repairing What Policy Is Missing Out on: A Constructive View on Prospects and Preconditions for Sustainable Biobased Economy Options to Mitigate and Adapt to Climate Change. Energies 2022, 15, 5955. [Google Scholar] [CrossRef]
- Ceotto, E.; Candilo, M. Sustainable Bioenergy Production, Land and Nitrogen Use. In Biodiversity, Biofuels, Agroforestry and Conservation Agriculture; Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2011; Volume 5, pp. 101–122. [Google Scholar] [CrossRef]
- Congress US: Energy Policy Act of 2005; U.S. Congress: Washington DC, USA, 2005. Available online: https://www.epa.gov/laws-regulations/summary-energy-policy-act (accessed on 17 October 2022).
- Congress US: Energy Independence and Security Act of 2007; U.S. Congress: Washington DC, USA, 2007. Available online: https://en.wikipedia.org/wiki/Energy_Independence_and_Security_Act_of_2007 (accessed on 17 October 2022).
- Turkenburg, W.C.; Beurskens, J.; Faaij, A.; Fraenkel, P.; Fridleifsson, I.; Lysen, E.; Mills, D.; Moreira, J.R.; Nilsson, L.J.; Schaap, A.; et al. Renewable Energy Technologies. In World Energy Assessment; Goldemberg, J., Ed.; United Nations Development Programme: New York, NY, USA, 2000. [Google Scholar]
- Da Costa, A.C.A.; Junior, N.P.; Aranda, D.A.G. The situation of biofuels in Brazil: New generation technologies. Renew. Sustain. Energy Rev. 2010, 14, 3041–3049. [Google Scholar] [CrossRef]
- Ministério da Agricultura Pecuária e Abastecimento. Produção Brasileira de Etanol; Ministério da Agricultura Pecuária e Abastecimento: Brasilia, Brasil, 2011.
- Ministério da Agricultura Pecuária e Abastecimento. Balancio Nacional da Cana-de-Acucar e Agroenergia; Ministério da Agricultura Pecuária e Abastecimento: Brasilia, Brasil, 2007.
- Fischer, G.; Schrattenholzer, L. Global bioenergy potentials through 2050. Biomass Bioenergy 2001, 20, 151–159. [Google Scholar] [CrossRef]
- Haberl, H.; Beringer, T.; Bhattacharya, S.C.; Erb, K.-H.; Hoogwijk, M. The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr Opin Environ Sustainability 2010, 2, 394–403. [Google Scholar] [CrossRef]
- Hoogwijk, M.; Faaij, A.; Eickhout, B.; Devries, B.; Turkenburg, W. Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 2005, 29, 225–257. [Google Scholar] [CrossRef]
- Alakangas, E.; Heikkinen; Lensu, T.; Vesterinen, P. Biomass Fuel Trade in Europe; VTT: Jyväskylä, Finland, 2007. [Google Scholar]
- Bauen, A.; Woods, J.; Hailes, R. Bioelectricity Vision: Achieving 15% of Electricity from Biomass in OECD Countries by 2020; Imperial College London, Centre for Energy Policy and Technology and E4tech (UK) Ltd.: London, UK, 2004. [Google Scholar]
- Böttcher, H.; Dees, M.; Fritz, S.M.; Goltsev, V.; Gunia, K.; Huck, I.; Lindner, M.; Paappanen, T.; Pekkanen, J.M.; Ramos, C.I.S.; et al. Biomass Energy Europe: Illustration Case for Europe; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2010. [Google Scholar]
- De Wit, M.; Faaij, A.P.C.; Fischer, G.; Prieler, S.; Velthuizen, H.T. Biomass Resources Potential and Related Costs. In The Cost-Supply Potential of Biomass Resources in the EU-27, Switzerland, Norway and the Ukraine; Copernicus Institute, Utrecht University and the International Institute of Applied Systems Analysis: Utrecht, The Netherlands; Laxenburg, Austria, 2008. [Google Scholar]
- Ericsson, K.; Nilsson, L. Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy 2006, 30, 1–15. [Google Scholar] [CrossRef]
- Andersen, S.P.B.; Doming, A.; Domingo, G.C. Biomass in the EU Green Deal: Towards Consensus on the Use of Biomass for EU Bioenergy, Policy Report; Institute for European Environmental Policy (IEEP): Brussels, Belgium, 2021. [Google Scholar]
- Fischer, G.; Hiznyik, E.; Prieler, S.; Van Velthuizen, H.T. Assessment of Biomass Potentials for Biofuel Feedstock Production in Europe: Methodology and Results; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2007. [Google Scholar]
- Fischer, G.; Prieler, S.; Van Velthuizen, H.; Berndes, G.; Faaij, A.; Londo, M.; De Wit, M. Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures, Part II: Land use scenarios. Biomass Bioenergy 2010, 34, 173–187. [Google Scholar] [CrossRef]
- Hall, D.O.; House, J.I. Biomass energy in Western Europe to 2050. Land Use Policy 1995, 12, 37–48. [Google Scholar] [CrossRef]
- Hetsch, S. Potential Sustainable Wood Supply in Europe; United Nations Economic Commission for Europe/Food and Agriculture Organization of the United Nations: Geneva, Switzerland, 2009. [Google Scholar]
- Johansson, T.B.; Kelly, H.; Reddy, A.K.N.; Williams, R.H. Renewable fuels and electricity for a growing world economy. In Renewable Energy-Sources for Fuels and Electricity; Johansson, T.B., Kelly, H., Reddy, A.K.N., Williams, R.H., Eds.; Island Press: Washington DC, USA, 1993; pp. 1–72. [Google Scholar]
- Scarlat, N.; Martinov, M.; Dallemand, J.-F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Manag. 2010, 30, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Siemons, R.; Vis, M.; Van den Berg, D.; McChesney, I.; Whiteley, M.; Nikolaou, N. Bio-Energy ’s Role in the EU Energy Market: A View of Developments until 2020; Biomass Technology Group (BTG), Energy for Sustainable Development, Centre for Renewable Energy (CRES): Enshcede, The Netherlands, 2004. [Google Scholar]
- Skytte, K.; Meibom, P.; Henriksen, T.C. Electricity from biomass in the European Union–With or without biomass import. Biomass Bioenergy 2006, 30, 385–392. [Google Scholar] [CrossRef]
- Van Dam, J.; Faaij, A.; Lewandowski, I.; Fischer, G. Biomass production potentials in Central and Eastern Europe under different scenarios. Biomass Bioenergy 2007, 31, 345–366. [Google Scholar] [CrossRef]
- RENEW. Renewable Fuels for Advanced Powertrains; SYNCOM Forschungs und Entwicklungsberatung: Ganderkesee, Germany, 2008. [Google Scholar]
- De Wit, M.; Faaij, A. European biomass resource potential and costs. Biomass Bioenergy 2010, 34, 188–202. [Google Scholar] [CrossRef]
- Fischer, G.; Prieler, S.; Van Velthuizen, H.; Lensink, S.M.; Londo, M.; De Wit, M. Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures. Part I: Land productivity potentials. Biomass Bioenergy 2010, 34, 159–172. [Google Scholar] [CrossRef]
- Panoutsou, C.; Eleftheriadis, J.; Nikolaou, A. Biomass supply in EU27 from 2010 to 2030. Energy Policy 2009, 37, 5675–5686. [Google Scholar] [CrossRef]
- Campbell, J.E.; Lobell, D.B.; Genova, R.C.; Field, C.B. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 2008, 42, 5791–5794. [Google Scholar] [CrossRef]
- World Energy Council. 2010 Survey of Energy Resources; World Energy Council: London, UK, 2010; Available online: https://www.worldenergy.org/publications/entry/world-energy-resources-2010-survey (accessed on 17 October 2022).
- Berndes, G. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 2003, 25, 1–28. [Google Scholar] [CrossRef]
- Offermann, R.; Seidenberger, T.; Thrän, D.; Kaltschmitt, M.; Zinoviev, S.; Miertus, S. Assessment of global bioenergy potentials. Mitig Adapt. Strateg Glob. Chang. 2011, 16, 103–115. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Olba–Zięty, E.; Akincza, M. Bioenergy technologies and biomass potential vary in Northern European countries. Renew. Sustain. Energy Rev. 2020, 133, 110238. [Google Scholar] [CrossRef]
- European Environment Agency, EU Bioenergy Potential from a Resource-Efficiency Perspective; Publications Office of the European Union: Luxembourg, 2013; ISBN 978-92-9213-397-9. [CrossRef]
- Energy Supply and Use by NACE Rev. 2 Activity [ENV_AC_PEFASU] Source of Data: Eurostat-Last Updated Date: Thursday, February 17, 2022 11:00 PM. Available online: https://ec.europa.eu/info/legal-notice_en (accessed on 8 September 2022).
- Kjärstad, J.; Johnsson, F. The Role of Biomass to Replace Fossil Fuels in a Regional Energy System. The Case West. Sweden. Thermal Science 2016, 20, 1023–1036. [Google Scholar] [CrossRef]
- Wielgosiński, G.; Łechtańska, P.; Namiecińska, O. Emission of Some Pollutants from Biomass Combustion in Comparison to Hard Coal Combustion. J. Energy Inst. 2017, 90, 787–796. [Google Scholar] [CrossRef]
- Harrison, J.; On, E. Stirling Engine Systems for Small and Micro Combined Heat and Power (CHP) Applications. In Small and Micro Combined Heat and Power (CHP) Systems; Beith, R., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 179–205. [Google Scholar] [CrossRef]
- Uris, M.; Linares, J.I.; Arenas, E. Feasibility Assessment of an Organic Rankine Cycle (ORC) Cogeneration Plant (CHP/CCHP) Fueled by Biomass for a District Network in Mainland Spain. Energy 2017, 133, 969–985. [Google Scholar] [CrossRef]
- Cazzaniga, N.E.; Jonsson, R.; Palermo, D.; Camia, A. Sankey Diagrams of Woody Biomass Flows in the EU-28; EC Joint Research Centre, Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Cazzaniga, N.E.; Jonsson, R.; Pilli, R.; Camia, A. Wood Resource Balances of EU-28 and Member States; EC Joint Research Centre, Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Joint Forest Sector Questionnaire: Final 2021 Data. Available online: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fcdn.forestresearch.gov.uk%2F2022%2F02%2Fjqoct22web.xlsx&wdOrigin=BROWSELINK (accessed on 28 November 2022).
- Scarlat, N.; Dallemand, J.-F.; Taylor, N.; Banja, M. Brief on Biomass for Energy in the European Union. 2019. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC109354 (accessed on 30 October 2022).
- Henry, R.J. Evaluation of plant biomass resources available for replacement of fossil oil. Plant Biotechnol. J. 2010, 8, 288–293. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859252/, (accessed on 2 September 2022). [CrossRef] [PubMed]
- Biomass in the EU Green Deal; Institute for European Environmental Policy: Brussels, Belgium, 2021; Available online: https://ieep.eu/uploads/articles/attachments/a14e272d-c8a7-48ab-89bc-31141693c4f6/Bimass%20in%20the%20EU%20Green%20Deal.pdf?v=63804370211 (accessed on 29 October 2022).
- Directive 2003/54/EC of the European Parliament and of the Council of 26 June 2003 Concerning Common Rules for the Internal Market in Electricity. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32003L0054 (accessed on 15 October 2022).
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/eli/dir/2009/28/oj (accessed on 15 October 2022).
- Kowalik, P. Use of biomass as an energy feedstock. In Thermochemical Processing of Coal and Biomasy; Ściążko, M., Zieliński, H., Eds.; Wyd. Instytutu Chemicznej Przeróbki Węgla: Kraków, Poland, 2003; pp. 39–41. [Google Scholar]
- Mirowski, T.; Mokrzycki, E.; Uliasz-Bocheńczyk, A. Energy Use of Biomass; IGSMiE PAN KRAKÓW 2018; Instytut Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk. ISBN 978-83-62922-94-9. Available online: https://min-pan.krakow.pl/wydawnictwo/wp-content/uploads/sites/4/2019/09/2018-biomasa-wer-z-licencj%C4%85_fin.pdf (accessed on 8 September 2022).
- Hamzat, A.; Yakubu Gombe, S.; Pindiga, Y. Briquette from Agricultural Waste a Sustainable Domestic Cooking Energy. Gombe Tech. Educ. J. 2019, 12, 63–69. Available online: https://www.researchgate.net/publication/353295231_Briquette_from_Agricultural_Waste_a_Sustainable_Domestic_Cooking_Energy (accessed on 5 September 2022).
- Koryś, K.A.; Latawiec, A.E.; Grotkiewicz, K.; Kuboń, M. The Review of Biomass Potential for Agricultural Biogas Production in Poland. Sustainability 2019, 11, 6515. [Google Scholar] [CrossRef]
- Mydlarz, K.; Wieruszewski, M. Economic, Technological as Well as Environmental and Social Aspects of Local Use of Wood By-Products Generated in Sawmills for Energy Purposes. Energies 2022, 15, 1337. [Google Scholar] [CrossRef]
- Beurskens, L.W.M.; Hekkenberg, M. Renewable Energy Projections as Published in the National Renewable Energy Action Plans of the European Member States; Energy Research Centre of the Netherlands and European Environment Agency: Petten, The Netherlands, 2011; Available online: http://www.ecn.nl/nreap (accessed on 2 November 2022).
- Marczak, P. Use of Animal Fat as Biofuel-Selected Issues: Topical Studies OT-589; Warszawa 2010; Kancelaria Senatu Biuro Analiz i Dokumentacji Dział Analiz i Opracowań Tematycznych. Available online: https://www.senat.gov.pl/gfx/senat/pl/senatopracowania/101/plik/ot-589.pdf (accessed on 8 September 2022).
- Rogner, H.; Barthel, F.; Cabrera, M.; Faaij, A.; Giroux, M.; Hall, D.O.; Kagramanian, V.; Kononov, S.; Lefevre, T.; Moreira, R.; et al. Energy Resources. In World Energy Assessment: Energy and the Challenge of Sustainability; Goldemberg, J., Ed.; United Nations Development Programme: New York, NY, USA, 2000. [Google Scholar]
- Gostomczyk, W. Organization of the Logistics System in the Production and Use of Energy Biomass; Koszalin University of Technology: Koszalin, Poland, 2012; Volume 4/2. [Google Scholar]
- Edrisi, S.A.; Abhilash, P.C. Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario. Renew. Sustain. Energy Rev. 2016, 54, 1537–1551. [Google Scholar] [CrossRef]
- Bridgwater, A.; Toft, A.; Brammer, J. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew. Sustain. Energy Rev. 2002, 6, 181–246. [Google Scholar] [CrossRef]
- Kozakiewicz, P. Physics of Wood in Theory and Tasks; SGGW: Warsaw, Poland, 2012; ISBN 978-83-7583-356-0. [Google Scholar]
- Czekała, W.; Bartnikowska, S.; Fiszer, A.; Olszewska, A.; Kaniewski, J. Processing of carpentry residue into solid biofuels: Energetic and economic analysis. Arch. Waste Manag. Environ. Protect. 2015, 17/4, 59–66. [Google Scholar]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency: Energy Technology Perspectives 2008. Paris, FR: International Energy Agency. 2008. Available online: https://iea.blob.core.windows.net/assets/0e190efb-daec-4116-9ff7-ea097f649a77/etp2008.pdf (accessed on 10 November 2022).
- Resch, G.; Held, A.; Faber, T.; Panzer, C.; Toro, F.; Haas, R. Potentials and prospects for renewable energies at global scale. Energy Policy 2008, 36, 4048–4056. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Górna, A.; Mydlarz, K.; Adamowicz, K. Wood Biomass Resources in Poland Depending on Forest Structure and Industrial Processing of Wood Raw Material. Energies 2022, 15, 4897. [Google Scholar] [CrossRef]
- Mandley, S.; Wicke, B.; Junginger, H.; Van Vuuren, D.; Daioglou, V. Integrated assessment of the role of bioenergy within the EU energy transition targets to 2050. GCB Bioenergy 2022, 14, 157–172. [Google Scholar] [CrossRef]
- Zappa, W.; Junginger, M.; Van den Broek, M. Can liberalised electricity markets support decarbonised portfolios in line with the Paris Agreement? A case study of Central Western Europe. Energy Policy 2021, 149, 111987. [Google Scholar] [CrossRef]
- Mantau, U. Biomass Supply Potentials for the EU and Biomass Demand from the Material Sector by 2030; Final Report; PricewaterhouseCoopers EU Services EESV’s Consortium: London, UK, 2016. [Google Scholar]
- Gurría, P.; González, H.; Ronzon, T.; Tamosiunas, S.; López, R.; García Condado, S.; Ronchetti, G.; Guillén, J.; Banja, M.; Fiore, G.; et al. Biomass flows in the European Union; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- IEA Bioenergy Countries’ Report—Update 2021 Implementation of Bioenergy in the IEA Bioenergy Member Countries; IEA Bioenergy ExCo November 2021; Luc Pelkmans, Technical Coordinator; IEA Bioenergy TCP: Paris, France; ISBN 978-1-910154-93-9.
- Van Vuuren, D.P.; Van Vliet, J.; Stehfest, E. Future bio-energy potential under various natural constraints. Energy Policy 2009, 37, 4220–4230. [Google Scholar] [CrossRef]
- Nabuurs, G.; Pussinen, A.; van Brusselen, J.; Schelhaas, M. Future harvesting pressure on European forests. Eur J. For. Res. 2006, 126, 391–400. [Google Scholar] [CrossRef]
- Don, A.; Osborne, B.; Hastings, A.; Skiba, U.; Carter, M.S.; Drewer, J.; Flessa, H.; Freibauer, A.; Hyvönen, N.; Jones, M.B.; et al. Land-use change to bioenergy production in Europe: Implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 2011, 4, 372–391. [Google Scholar] [CrossRef]
- Cockerill, S.; Martin, C. Are biofuels sustainable? The EU perspective. Biotechnol Biofuels 2008, 1, 9. [Google Scholar] [CrossRef]
- Rotterdam Coal Futures Chart. Available online: https://pl.investing.com/commodities/rotterdam-coal-futures-streaming-chart (accessed on 25 October 2022).
- Hoogwijk, M.; Faaija, A.; van den Broeka, R.; Berndesb, G.; Dolf Gielenc, D.; Turkenburg, W. Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 2003, 25, 119–133. [Google Scholar] [CrossRef]
- Share of Energy from Renewable Sources. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_ind_ren/default/table?lang=en (accessed on 12 October 2022).
- Hakala, E.; Lähde, V.; Majava, A.; Toivanen, T.; Vadén, T.; Järvensivu, P.; Eronen, J.T. Northern Warning Lights: Ambiguities of Environmental Security in Finland and Sweden. Sustainability 2019, 11, 2228. [Google Scholar] [CrossRef]
- Schmid, L. Another State Is Possible—Greening the Sources of Power. Available online: https://www.greeneuropeanjournal.eu/inne-panstwo-jest-mozliwe-zazielenianie-zrodel-wladzy/ (accessed on 28 November 2022).
- Mikuła, A.; Raczkowska, M.; Utzig, M. Pro-Environmental Behaviour in the European Union Countries. Energies 2021, 14, 5689. [Google Scholar] [CrossRef]
- Eurostat: EnergyMixDependencyImportsRussia-10MARCH2022 REV. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:EnergyMixDependencyImportsRussia-10MARCH2022_REV_update.xlsx (accessed on 10 November 2022).
- European Commision. Energy Supply and Use by NACE Rev. 2 Activity [ENV_AC_PEFASU$DEFAULTVIEW]. Available online: http://ec.europa.eu/eurostat/web/products-datasets/-/env_ac_pefasu (accessed on 12 October 2022).
- Krasuska, E.; Cadórniga, C.; Tenorio, J.L.; Testa, G.; Scordia, D. Potential land availability for energy crops production in Europe. Biofuels Bioprod. Biorefin. 2010, 4, 658–673. [Google Scholar] [CrossRef]
- Eurostat. Farmland: Number of Farms and Areas by Size of Farm (UAA) and Region; Eurostat: Brussels, Belgium, 2011. [Google Scholar]
- Daioglou, V.; Doelman, J.C.; Wicke, B.; Faaij, A.; Van Vuuren, D.P. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Change 2019, 54, 88–101. [Google Scholar] [CrossRef]
- Biomass and Agriculture: Sustainability, Markets and Policies; OECD: Paris, France, 2004; Available online: https://vdoc.pub/download/biomass-and-agriculture-sustainability-markets-and-policies-5etfsvelmih0 (accessed on 10 August 2022).
- Janiszewska, D.; Ossowska, L. Diversification of European Union Member States due to the production of renewable energy from agriculture and forestry. Probl. World Agric. 2018, 18, 95–104. [Google Scholar] [CrossRef]
- Gokcol, C.; Dursun, B.; Alboyaci, B.; Sunan, E. Importance of biomass energy as alternative to other sources in Turkey. Energy Policy 2009, 37, 424–431. [Google Scholar] [CrossRef]
- Muscat, A.; de Olde, E.M.; Kovacic, Z.; de Boer, I.J.M.; Ripoll-Bosch, R. Food, energy or biomaterials? Policy coherence across agro-food and bioeconomy policy domains in the EU. Environ. Sci. Policy 2021, 123, 21–30. [Google Scholar] [CrossRef]
- Hamelin, L.; Borzecka, M.; Kozak, M.; Pudełko, R.A. Spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 2019, 100, 127–142. [Google Scholar] [CrossRef]
- Kluts, I.; Wicke, B.; Leemans, R.; Faaij, A. Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renew. Sustain. Energy Rev. 2017, 69, 719–734. [Google Scholar] [CrossRef]
- Haase, M.; Rösch, C.; Ketzer, D. GIS-based assessment of sustainable crop residue potentials in European regions. Biomass Bioenergy 2016, 86, 156–171. [Google Scholar] [CrossRef]
- Tonini, D.; Hamelin, L.; Astrup, T.F. Environmental implications of the use of agroindustrial residues for biorefineries: Application of a deterministic model for indirect land-use changes. GCB Bioenergy 2016, 8, 698–706. [Google Scholar] [CrossRef]
- Hamelin, L.; Naroznova, I.; Wenzel, H. Environmental consequences of different carbon alternatives for increased manure-based biogas. Appl. Energy 2014, 114, 774–782. [Google Scholar] [CrossRef]
- European Commission. Energy for the Future: Renewable Sources of Energy, White Paper for a Community Strategy and Action Plan, COM(97)599 Final 26/11/1997. Available online: http://europa.eu.int/comm/energy/library/599fi_en.pdf (accessed on 17 September 2022).
- Directive 2018/2001/EC of the European Parliament and of the Council of 11 December September 2018 on the Promotion of Electricity Produced from Renewable Energy Sources in the Internal Electricity Market, Official Journal L 328/82, PE/48/2018/REV/1. Available online: http://data.europa.eu/eli/dir/2018/2001/oj (accessed on 17 November 2022).
- Elbersen, B.; Startisky, I.; Hengeveld, G.; Schelhaas, M.-J.; Naeff, H.; Bottcher, H. Atlas of EU Biomass Potentials. 2012. Available online: http://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/biomass_futures_atlas_of_technical_and_economic_biomass_potential_en.pdf (accessed on 20 August 2022).
- Sustainable Biomass Availability in the EU to 2050. Imperial College, London 2021. Available online: https://www.concawe.eu/publication/sustainable-biomass-availability-in-the-eu-to-2050/ (accessed on 20 August 2022).
- Agriculture, Forestry and Fishery Statistics—Statistical Books Eurostat; Luxemburg, European Union 2020. Corine cover 2018, European Environment Agency (EFA). Available online: https://ec.europa.eu/eurostat/documents/3217494/12069644/KS-FK-20-001-EN-N.pdf/a7439b01-671b-80ce-85e4-4d803c44340a?t=1608139005821 (accessed on 20 November 2022).
- EU Agricultural Outlook 2021-31: Lower Demand for Feed to Impact Arable Crops. December 2021. Available online: https://agriculture.ec.europa.eu/news/eu-agricultural-outlook-2021-31-lower-demand-feed-impact-arable-crops-2021-12-09_en (accessed on 19 October 2022).
- Eurostat, FAO, ITTO, and UNECE, 2017. Joint Forest Sector Questionnaire 2017—Definitions. Eurostat. Available online: https://circabc.europa.eu/sd/a/c8c83831-84f1-4ba2-966de7ee87b2b170/Definitions%20in%20English%20-%20JFSQ%202017.doc (accessed on 20 November 2022).
- FAOSTAT. ResourceSTAT; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Mantau, U.; Saal, U.; Prins, K.; Steierer, F.; Lindner, M.; Verkerk, H.; Eggers, J.; Leek, N.; Oldenburger, J.; Asikainen, A.; et al. EUwood—Real Potential for Changes in Growth and Use of EU Forests; University of Hamburg: Hamburg, Germany, 2010. [Google Scholar]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef]
- IPBES Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental SciencePolicy Platform on Biodiversity and Ecosystem Services—Advance Unedited Version. 2019. Available online: https://ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf (accessed on 3 February 2020).
- Felton, A.; Gustafsson, L.; Roberge, J.-M.; Ranius, T.; Hjältén, J.; Rudolphi, J. How climate change adaptation and mitigation strategies can threaten or enhance the biodiversity of production forests: Insights from Sweden. Biol. Conserv. 2016, 194, 11–20. [Google Scholar] [CrossRef]
- Plas, F.; van der Manning, P.; Allan, E.; Scherer-Lorenzen, M.; Verheyen, K.; Wirth, C.; Zavala, M.A.; Hector, A.; Ampoorter, E.; Baeten, L.; et al. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat. Commun. 2016, 7, 1–11. [Google Scholar] [CrossRef]
- Petrauskas, E.; Kuliešis, A. Scenario-based analysis of possible management alternatives for Lithuanian forests in the 21st century. Balt. For. 2004, 10, 11. [Google Scholar]
- Knoke, T.; Messerer, K.; Paul, C. The role of economic diversification in forest ecosystem management. Curr. For. Rep. 2017, 3, 93–106. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Felton, A.; Nilsson, U.; Sonesson, J.; Felton, A.M.; Roberge, J.M.; Ranius, T.; Ahlström, M.; Bergh, J.; Björkman, C.; Boberg, J.; et al. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio 2016, 45, 124–139. [Google Scholar] [CrossRef]
- Paillet, Y.; Bergès, L.; Hjältén, J.; Ódor, P.; Avon, C.; Bernhardt-Römermann, M.; Bijlsma, R.J.; De Bruyn, L.U.C.; Fuhr, M.; Grandin, U.; et al. Biodiversity differences between managed and unmanaged forests: Meta-analysis of species richness in Europe. Conserv. Biol. 2010, 24, 101–112. [Google Scholar] [CrossRef]
- Jucker, T.; Bouriaud, O.; Avacaritei, D.; Coomes, D.A. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: Linking patterns and processes. Ecol. Lett. 2014, 17, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- Borges, J.G.; Marques, S.; Garcia-Gonzalo, J.; Rahman, A.U.; Bushenkov, V.; Sottomayor, M.; Carvalho, P.O.; Nordström, E.M. A multiple criteria approach for negotiating ecosystem services supply targets and forest owners’ programs. For. Sci. 2017, 63, 49–61. [Google Scholar] [CrossRef]
- Biber, P.; Borges, J.G.; Moshammer, R.; Barreiro, S.; Botequim, B.; Brodrechtova, Y.; Brukas, V.; Chirici, G.; Cordero-Debets, R.; Corrigan, E.; et al. How sensitive are ecosystem services in european forest landscapes to silvicultural treatment? Forests 2015, 6, 1666–1695. [Google Scholar] [CrossRef]
- Bugalho, M.N.; Dias, F.S.; Briñas, B.; Cerdeira, J.O. Using the high conservation value forest concept and Pareto optimization to identify areas maximizing biodiversity and ecosystem services in cork oak landscapes. Agrofor. Syst. 2016, 90, 35–44. [Google Scholar] [CrossRef]
- Dieler, J.; Uhl, E.; Biber, P.; Müller, J.; Rötzer, T.; Pretzsch, H. Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe. Eur. J. For. Res. 2017, 136, 739–766. [Google Scholar] [CrossRef]
- Felton, A.; Löfroth, T.; Angelstam, P.; Gustafsson, L.; Hjältén, J.; Felton, A.M.; Simonsson, P.; Dahlberg, A.; Lindbladh, M.; Svensson, J.; et al. Keeping pace with forestry: Multi-scale conservation in a changing production forest matrix. Ambio 2020, 49, 1050–1064. [Google Scholar] [CrossRef]
- Maes, J.; Paracchini, M.L.; Zulian, G.; Dunbar, M.B.; Alkemade, R. Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol. Conserv. 2012, 155, 1–12. [Google Scholar] [CrossRef]
- Harrison, P.A.; Berry, P.M.; Simpson, G.; Haslett, J.R.; Blicharska, M.; Bucur, M.; Dunford, R.; Egoh, B.; Garcia-Llorente, M.; Geamănă, N.; et al. Linkages between biodiversity attributes and ecosystem services: A systematic review. Ecosyst. Serv. 2014, 9, 191–203. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Whittingham, M.J. The future of agri-environment schemes: Biodiversity gains and ecosystem service delivery? J. Appl. Ecol. 2011, 48, 509–513. [Google Scholar] [CrossRef]
- Pukkala, T. Does biofuel harvesting and continuous cover management increase carbon sequestration? For. Policy Econ. 2014, 43, 41–50. [Google Scholar] [CrossRef]
- Peckham, S.D.; Gower, S.T.; Buongiorno, J. Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S. Carbon Balance Manag. 2012, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Tzelepi, V.; Zeneli, M.; Kourkoumpas, D.-S.; Karampinis, E.; Gypakis, A.; Nikolopoulos, N.; Grammelis, P. Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review. Energies 2020, 13, 3390. [Google Scholar] [CrossRef]
- Mandley, S.J.; Daioglou, V.; Junginger, H.M.; Van Vuuren, D.P.; Wicke, B. EU bioenergy development to 2050. Renew. Sustain. Energy Rev. 2020, 127, 109858. [Google Scholar] [CrossRef]
- Gurria, P.; Gonzalez Hermoso, H.; Cazzaniga, N.; Gediminas Jasinevicius, G.; Mubareka, S.; De Laurentiis, V.; Caldeira, C.; Sala, S.; Ronchetti, G.; Guillén, J.; et al. EU Biomass Flows; Publications Office of the EU: Luxembourg, 2022. [Google Scholar] [CrossRef]
- De Vries, B.J.M.; Van Vuuren, D.P.; Hoogwijk, M.M. Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach. Energy Policy 2007, 35, 2590–2610. [Google Scholar] [CrossRef]
- Doornbosch, R.; Steenblik, R. Biofuels: Is the Cure Worse Than the Disease? Paris, France: Organisation for Economic Co-Operation and Development. 2007. Available online: https://www.oecd.org/sd-roundtable/papersandpublications/39348696.pdf (accessed on 10 October 2022).
- Dornburg, V.; Faaij, A.; Verweij, P.; Langeveld, H.; Gvd, V.; Wester, F.; Hv, K.; Kv, D.; Meeusen, M.; Banse, M.; et al. Assessment of Global Biomass Potentials and Their Links to Food, Water, Biodiversity, Energy Demand and Economy; Utrecht University: Utrecht, The Netherlands, 2008. [Google Scholar]
- Dornburg, V.; van Vuuren, D.; van de Ven, G.; Langeveld, H.; Meeusen, M.; Banse, M.; van Oorschot, M.; Ros, J.; Jan van den Born, G.; Aiking, H.; et al. Bioenergy revisited: Key factors in global potentials of bioenergy. Energy Environ. Sci. 2010, 3, 258–267. [Google Scholar] [CrossRef]
- Field, C.; Campbell, J.; Lobell, D. Biomass energy: The scale of the potential resource. Trends Ecol. Evol. 2008, 23, 65–72. [Google Scholar] [CrossRef]
- Ruiz, P.; Nijs, W.; Tarvydas, D.; Sgobbi, A.; Zucker, A.; Pilli, R.; Thrän, D. ENSPRESO—An open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials. Energy Strat. Rev. 2019, 26, 100379. [Google Scholar] [CrossRef]
- Camia, A.; Giuntoli, J.; Jonsson, R.; Robert, N.; Cazzaniga, N.E.; Jasinevičius, G.; Avitabile, V.; Grassi, G.; Barredo, J.I.; Mubareka, S. The Use of Woody Biomass for Energy Purposes in the EU; EUR 30548 EN; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-27867-2. [Google Scholar] [CrossRef]
- Commission, E. Energy 2020 A Strategy for Competitive, Sustainable and Secure Energy; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Fujino, J.; Yamaji, K.; Yamamoto, H. Biomass-Balance Table for evaluating bioenergy resources. Appl. Energy 1999, 63, 75–89. [Google Scholar] [CrossRef]
- State of Europe’s Forests 2020. Available online: https://foresteurope.org/state-of-europes-forests/ (accessed on 30 October 2022).
- FAOSTAT Forestry Production and Trade. 2018. Available online: https://www.fao.org/faostat/en/#data/FO (accessed on 10 October 2022).
- EU Wood Pellet Annual, 2022; Prepared by: Bob Flach and Sophie Bolla. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=EU%20Wood%20Pellet%20Annual_The%20Hague_European%20Union_E42022-0049.pdf (accessed on 2 November 2022).
- Poland, T.M.; Rassati, D. Improved biosecurity surveillance of non-native forest insects: A review of current methods. J. Pest Sci. 2019, 92, 37–49. [Google Scholar] [CrossRef]
- Jactel, H.; Desprez-Loustau, M.L.; Battisti, A.; Brockerhoff, E.; Santini, A.; Stenlid, J.; Zalucki, M.P. Pathologists and entomologists must join forces against forest pest and pathogen invasions. NeoBiota 2020, 58, 107. [Google Scholar] [CrossRef]
- Schubert, R.; Schellnhuber, H.J.; Buchmann, N.; Epiney, A.; Grießhammer, R.; Kulessa, M.; Messner, D.; Rahmstorf, S.; Schmid, J. Future Bioenergy and Sustainable Land Use; Earthscan: London, UK, 2009. [Google Scholar]
- Rettenmaier, N.; Schorb, A.; Köppen, S.; Berndes, G.; Christou, M.; Dees, M.; Domac, J.; Eleftheriadis, I.; Goltsev, V.; Kajba, D.; et al. Status of Biomass Resource Assessments, Version 3; University of Freiburg, Department of Remote Sensing and Landscape Information Systems: Freiburg, Germany, 2010. [Google Scholar]
- Asikainen, A.; Liiri, H.; Peltola, S.; Karjalainen, T.; Laitila, J. Forest Energy Potential in Europe (EU27); Finnish Forest Research Institute: Helsinki, Finland, 2008.
- Pizzi, S.; Caputo, A.; Corvino, A.; Venturelli, A. Management research and the UN Sustainable Development Goals (SDGs). J. Clean. Prod. 2020, 276, 124033. [Google Scholar] [CrossRef]
- Rivera-Cadavid, L.; Manyoma-Velásquez, P.C.; Manotas-Duque, D.F. Supply Chain Optimization for Energy Cogeneration Using Sugarcane Crop Residues (SCR). Sustainability 2019, 11, 6565. [Google Scholar] [CrossRef]
- Blair, M.J.; Gagnon, B.; Klain, A.; Kulišić, B. Contribution of Biomass Supply Chains for Bioenergy to Sustainable Development Goals. Land 2021, 10, 181. [Google Scholar] [CrossRef]
- Capron, M.E.; Stewart, J.R.; de Ramon N’Yeurt, A.; Chambers, M.D.; Kim, J.K.; Yarish, C.; Jones, A.T.; Blaylock, R.B.; James, S.C.; Fuhrman, R.; et al. Restoring Pre-Industrial CO2 Levels While Achieving Sustainable Development Goals. Energies 2020, 13, 4972. [Google Scholar] [CrossRef]
- European Biomass Associtation. Forest Sustainability and Carbon Balance of EU Importation of North American Forest Biomass for Bioenergy Production; Aebiom: Brussels, Belgium, 2013. [Google Scholar]
- Stenzel, F.; Greve, P.; Lucht, W.; Tramberend, S.; Wada, Y.; Gerten, D. Irrigation of biomass plantations may globally increase water stress more than climate change. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Kircher, M. The transition to a bio-economy: Emerging from the oil age. Biofuel Bioprod. Bior. 2012, 6, 369–375. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.; O’sullivan, M.; Andrew, R.; Hauck, J.; Peters, G.; Peters, W.; Pongratz, J.; Sitch, S.; Le Quéré, C.; et al. Global Carbon Budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef]
- Tvaronavičienė, M.; Prakapienė, D.; Garškaitė-Milvydienė, K.; Prakapas, R.; Nawrot, Ł. Energy efficiency in the long run in the selected European countries. Econ. Sociol 2018, 11, 245–254. [Google Scholar] [CrossRef]
- Bordelanne, O.; Montero, M.; Bravin, F.; Prieur-Vernat, A.; Oliveti-Selmi, O.; Pierre, H.; Papadopoulo, M.; Muller, T. Biomethane CNG hybrid: A reduction by more than 80% of the greenhouse gases emissions compared to gasoline. J. Nat. Gas. Sci. Eng. 2011, 3, 617–624. [Google Scholar] [CrossRef]
- Kabir, M.M.; Rajendran, K.; Taherzadeh, M.J.; Sárvári Horváth, I. Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Bioresour. Technol. 2015, 178, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, M.; Karimi, K.; Zilouei, H.; Taherzadeh, M.J. Enhanced ethanol and biogas production from pinewood by NMMO pretreatment and detailed biomass analysis. Biomed. Res. Int. 2014, 2014, 469378. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress Energy Combust. Sci. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Carvalho, L.; Wopienka, E.; Pointner, C.; Lundgren, J.; Verma, V.K.; Haslinger, W.; Schmidl, C. Performance of a pellet boiler fired with agricultural fuels. Appl. Energy 2013, 104, 286–296. [Google Scholar] [CrossRef]
- Picchi, G.; Silvestri, S.; Cristoforetti, A. Vineyard residues as a fuel for domestic boilers in Trento Province (Italy): Comparison to wood chips and means of polluting emissions control. Fuel 2013, 113, 43–49. [Google Scholar] [CrossRef]
Types and Sources of Biomass | Primary Biomass | Secondary Biomass 1 |
---|---|---|
Vegetal agricultural biomass | grassy energy crops (giant miscanthus, Virginia mallow); timberland (willow, poplar, black locust, and others) | cereal, rapeseed, and grass straws; organic residue from food industry; cereal grains, sugar crops, oilseeds, other crops, and by-products from crops |
Vegetal forest biomass | firewood | logging residues, wood shavings, sawdust, wood chips, others, including wastepaper and waste generated by wood-processing plants |
Animal biomass | manure and slurry; fats and bone meal |
Vegetal Biomass 1 | Animal Biomass | |
---|---|---|
Agricultural Biomass | Forest Biomass | |
briquettes pellets biogas | briquettes pellets woodchips from woody plants in plantations | biogas |
NACE_R2 (Labels) | Energy Products 1 | Wood, Wood Waste and Other Solid Biomass, Charcoal 1 | Liquid Biofuels | Biogas |
---|---|---|---|---|
TJ | ||||
Total—all NACE activities | 1,946,381.0 | 48,271.4 | 13,312.0 | 6677.7 |
Agriculture, forestry, and fishing | 54,319.3 | 46,454.8 | 0 | 0 |
Manufacturing | 1,580,356.0 | 1816.6 | 13,312.0 | 0 |
Electricity, gas, steam, and air conditioning supply | 292,363.2 | 0 | 0 | 0 |
Water supply; sewerage, waste management, and remediation activities | 14,990.6 | 0 | 0 | 6677.7 |
Construction | 98.4 | 0 | 0 | 0 |
Wholesale and retail trade; repair of motor vehicles and motorcycles | 40.1 | 0 | 0 | 0 |
Accommodation and food service activities | 7.4 | 0 | 0 | 0 |
Public administration and defense; compulsory social security | 42.5 | 0 | 0 | 0 |
Education | 3934.0 | 0 | 0 | 0 |
Human health and social work activities | 229.7 |
Area | Farmland (Housand Hectares) 1 | Land area (Housand Hectares) 1 | Percentage of Agricultural Land in Total Area % | Forest and Other Wooded Land (Housand Hectares) 1 | Percentage of Agricultural Land in Total Area % |
---|---|---|---|---|---|
Belgium | 1354.3 | 3045.1 | 44 | 722 | 24 |
Bulgaria | 4468.5 | 11,000.1 | 41 | 3917 | 36 |
Czechia | 3455.4 | 7721.2 | 45 | 2677 | 35 |
Denmark | 2614.6 | 4198.7 | 62 | 665 | 16 |
Germany | 16,715.3 | 35,329.6 | 47 | 11,419 | 32 |
Estonia | 995.1 | 4346.6 | 23 | 2533 | 58 |
Ireland | 4883.7 | 6865.5 | 71 | 848 | 12 |
Greece | 4553.8 | 13,004.8 | 35 | 6537 | 50 |
Spain | 23,229.8 | 50,265.4 | 46 | 27,954 | 56 |
France | 27,814.2 | 63,388.6 | 44 | 18,096 | 29 |
Croatia | 1563.0 | 5589.6 | 28 | 2557 | 46 |
Italy | 12,598.2 | 29,773.4 | 42 | 11,432 | 38 |
Cyprus | 111.9 | 921.3 | 12 | 386 | 42 |
Latvia | 1930.9 | 6329.0 | 31 | 3519 | 56 |
Lithuania | 2924.6 | 6264.3 | 47 | 2263 | 36 |
Luxembourg | 130.7 | 258.6 | 51 | 91 | 35 |
Hungary | 4670.6 | 9124.8 | 51 | 2253 | 25 |
Malta | 11.1 | 31.3 | 35 | 1 | 3 |
Netherlands | 1796.3 | 3418.8 | 53 | 370 | 11 |
Austria | 2669.8 | 8251.9 | 32 | 4029 | 49 |
Poland | 14,405.7 | 30,723.6 | 47 | 9483 | 31 |
Portugal | 3641.7 | 9099.6 | 40 | 4855 | 53 |
Romania | 12,502.5 | 23,427.0 | 53 | 6945 | 30 |
Slovenia | 488.4 | 2014.5 | 24 | 1265 | 63 |
Slovakia | 1889.8 | 4870.2 | 39 | 1946 | 40 |
Finland | 2233.1 | 30,431.6 | 7 | 23,155 | 76 |
Sweden | 3012.6 | 40,730.0 | 7 | 30,344 | 75 |
Total | 156,665.6 | 41,425.1 | 38 | 180,262 | 44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieruszewski, M.; Mydlarz, K. The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources. Energies 2022, 15, 9601. https://doi.org/10.3390/en15249601
Wieruszewski M, Mydlarz K. The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources. Energies. 2022; 15(24):9601. https://doi.org/10.3390/en15249601
Chicago/Turabian StyleWieruszewski, Marek, and Katarzyna Mydlarz. 2022. "The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources" Energies 15, no. 24: 9601. https://doi.org/10.3390/en15249601
APA StyleWieruszewski, M., & Mydlarz, K. (2022). The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources. Energies, 15(24), 9601. https://doi.org/10.3390/en15249601