Designing Efficient Renewable Energy Portfolios for Optimal Coverage of European Power Demand under Transmission Constraints
Abstract
:1. Introduction
2. Literature Review
3. Contribution to the State-of-the-Art
4. Methodology
4.1. Model Presentation
4.2. Practical Considerations
- 1.
- No cross-border connection (No Interconnection);
- 2.
- Cross-border connection with constrained transmission capacity(Constrained Interconnection);
- 3.
- Cross-border connection with unconstrained transmission capacity(Unconstrained Interconnection).
4.3. Sensitivity Analysis
5. Empirical Study
5.1. Sample Data
5.1.1. Load Data
5.1.2. RES Capacity Factor Data
5.1.3. Cross-Border Net Transmission Capacity Data
5.2. Pareto Optimal Sets
5.3. Composition of Optimal Portfolios
5.3.1. The Case of Wind Energy
5.3.2. Pooling of Resources
5.4. Sensitivity Analysis
6. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Set of country indices | |
Set of time period (TP) indices | |
Typical country index | |
Typical time period index (corresponding to a sample day) | |
Installed wind/solar capacity in country i, in MW | |
Aggregate capacity factor of wind/solar power stations for country | |
i and TP t, in MWh/MW | |
Cross-border energy flow between countries i and j in TP t, in MWh | |
Surplus energy to be curtailed in country i and TP t, in MWh | |
Energy deficit to be balanced by conventional power plants in country | |
i and TP t, in MWh | |
Optimization criteria weighting coefficients | |
Wind/solar generated energy in country i and TP t, in MWh | |
Electricity load in country i and TP t, in MWh | |
Total energy imports/exports in/from country i and in TP t, in MWh | |
Cross-border total energy transfer for country i and TP t, in MWh | |
Constraint on energy transfer from country i to country j, in MWh | |
Constraint on energy transfer from country j to country i, in MWh |
References
- EC. Energy Roadmap 2050; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- EC. Directive 2005/89/EC of the European Parliament and of the Council of 18 January 2006 Concerning Measures to Safeguard Security of Electricity Supply and Infrastructure Investment. 2005. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32005L0089 (accessed on 15 February 2022).
- Landberg, L. The availability and variability of the European wind resource. Int. J. Sol. Energy 1997, 18, 313–320. [Google Scholar] [CrossRef]
- Thomaidis, N.S.; Santos-Alamillos, F.J.; Pozo-Vázquez, D.; Usaola-García, J. Optimal management of wind and solar energy resources. Comput. Oper. Res. 2016, 66, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Jaureguy-Naudin, M. The European Power System. Decarbonization and Cost Reduction: Lost in Transmissions? INIS-FR–15-0181. 2012. Available online: https://www.ifri.org/sites/default/files/atoms/files/notedelifrienergiemjaureguynaudin.pdf (accessed on 15 February 2022).
- Markowitz, H. Portfolio Selection. J. Financ. 1952, 7, 77–91. [Google Scholar] [CrossRef]
- Santos-Alamillos, F.J.; Brayshaw, D.J.; Methven, J.; Thomaidis, N.S.; Ruiz-Arias, J.A.; Pozo-Vázquez, D. Exploring the meteorological potential for planning a high performance European electricity super-grid: Optimal power capacity distribution among countries. Environ. Res. Lett. 2017, 12, 114030. [Google Scholar] [CrossRef]
- Cassola, F.; Burlando, M.; Antonelli, M.; Ratto, C.F. Optimization of the regional spatial distribution of wind power plants to minimize the variability of wind energy input into power supply systems. J. Appl. Meteorol. Climatol. 2008, 47, 3099–3116. [Google Scholar] [CrossRef]
- Roques, F.; Hiroux, C.; Saguan, M. Optimal wind power deployment in Europe—A portfolio approach. Energy Policy 2010, 38, 3245–3256. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, R.A.; Becker, S.; Greiner, M. Cost-optimal design of a simplified, highly renewable pan-European electricity system. Energy 2015, 83, 658–668. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Mathiesen, B.V. Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes. Renew. Energy 2018, 123, 236–248. [Google Scholar] [CrossRef]
- Heide, D.; Von Bremen, L.; Greiner, M.; Hoffmann, C.; Speckmann, M.; Bofinger, S. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renew. Energy 2010, 35, 2483–2489. [Google Scholar] [CrossRef]
- Andersen, E.D.; Andersen, K.D. The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In High Performance Optimization; Springer: Berlin/Heidelberg, Germany, 2000; pp. 197–232. [Google Scholar]
- Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. 2014. Available online: http://cvxr.com/cvx (accessed on 1 December 2021).
- Zitzler, E.; Brockhoff, D.; Thiele, L. The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Matsushima, Japan, 5–8 March 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 862–876. [Google Scholar]
- ENTSO-E. Historical Data (Until December 2015)—Consumption Data: Hourly Load Values 2006–2015. 2015. Available online: https://transparency.entsoe.eu/ (accessed on 15 November 2021).
- World Administrative Boundaries-Countries and Territories. 2019. Available online: https://public.opendatasoft.com/explore/dataset/world-administrative-boundaries/export/ (accessed on 15 March 2021).
- Gonzalez Aparicio, I.; Zucker, A.; Careri, F.; Monforti, F.; Huld, T.; Badger, J. EMHIRES Dataset: Wind Power Generation. European Meteorological Derived High Resolution RES Generation Time Series for Present and Future Scenarios; Publications Office of the European Union: Luxembourg, 2016; EUR 28171 EN. [Google Scholar] [CrossRef]
- Gonzalez Aparicio, I.; Huld, T.; Careri, F.; Monforti, F.; Zucker, A. EMHIRES dataset Part II: Solar power generation. In European Meteorological Derived HIgh Resolution RES Generation Time Series for Present and Future Scenarios. Part II: PV Generation Using the PVGIS Model; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Heide, D.; Greiner, M.; Von Bremen, L.; Hoffmann, C. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation. Renew. Energy 2011, 36, 2515–2523. [Google Scholar] [CrossRef] [Green Version]
- Widén, J. Correlations between large-scale solar and wind power in a future scenario for Sweden. IEEE Trans. Sustain. Energy 2011, 2, 177–184. [Google Scholar] [CrossRef]
- Santos-Alamillos, F.; Pozo-Vázquez, D.; Ruiz-Arias, J.; Lara-Fanego, V.; Tovar-Pescador, J. Analysis of spatiotemporal balancing between wind and solar energy resources in the southern Iberian Peninsula. J. Appl. Meteorol. Climatol. 2012, 51, 2005–2024. [Google Scholar] [CrossRef]
- Budischak, C.; Sewell, D.; Thomson, H.; Mach, L.; Veron, D.E.; Kempton, W. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time. J. Power Sources 2013, 225, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Monforti, F.; Huld, T.; Bódis, K.; Vitali, L.; D’isidoro, M.; Lacal-Arántegui, R. Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach. Renew. Energy 2014, 63, 576–586. [Google Scholar] [CrossRef]
- ENTSO-E. NTC Values Summer 2010. 2011. Available online: https://www.entsoe.eu/fileadmin/user_upload/_library/ntc/archive/NTC_Values_-_Summer-2010.pdf (accessed on 13 January 2022).
- ENTSO-E. NTC Values Winter 2010–2011. 2011. Available online: https://www.entsoe.eu/fileadmin/user_upload/_library/ntc/archive/NTC-Values-Winter-2010-2011.pdf (accessed on 13 January 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomaidis, N.S.; Moukas, A.-I. Designing Efficient Renewable Energy Portfolios for Optimal Coverage of European Power Demand under Transmission Constraints. Energies 2022, 15, 9375. https://doi.org/10.3390/en15249375
Thomaidis NS, Moukas A-I. Designing Efficient Renewable Energy Portfolios for Optimal Coverage of European Power Demand under Transmission Constraints. Energies. 2022; 15(24):9375. https://doi.org/10.3390/en15249375
Chicago/Turabian StyleThomaidis, Nikolaos S., and Alexios-Ioannis Moukas. 2022. "Designing Efficient Renewable Energy Portfolios for Optimal Coverage of European Power Demand under Transmission Constraints" Energies 15, no. 24: 9375. https://doi.org/10.3390/en15249375
APA StyleThomaidis, N. S., & Moukas, A.-I. (2022). Designing Efficient Renewable Energy Portfolios for Optimal Coverage of European Power Demand under Transmission Constraints. Energies, 15(24), 9375. https://doi.org/10.3390/en15249375