Enviro-Economic Assessment of HHO–CNG Mixture Utilization in Spark Ignition Engine for Performance and Environmental Sustainability
Abstract
1. Introduction
2. Materials and Methods
2.1. Schematic Arrangement
2.2. Test Approach
2.3. Environmental and Enviro-Economic Assessment
3. Results
3.1. Comparative Performance Assessment
3.2. Exhaust Emissions
3.3. Enviro-Economic Assessment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ijaz Malik, M.A.; Usman, M.; Hayat, N.; Zubair, S.W.H.; Bashir, R.; Ahmed, E. Experimental evaluation of methanol-gasoline fuel blend on performance, emissions and lubricant oil deterioration in SI engine. Adv. Mech. Eng. 2021, 13, 16878140211025213. [Google Scholar] [CrossRef]
- Demirbas, A.; Bafail, A.; Ahmad, W.; Sheikh, M. Biodiesel production from non-edible plant oils. Energy Explor. Exploit. 2016, 34, 290–318. [Google Scholar] [CrossRef]
- Balat, H.; Öz, C. Technical and Economic Aspects of Carbon Capture an Storage—A Review. Energy Explor. Exploit. 2007, 25, 357–392. [Google Scholar] [CrossRef]
- Iodice, P.; Senatore, A. Influence of Ethanol-Gasoline Blended Fuels on Cold Start Emissions of a Four-Stroke Motorcycle. Methodology and Results. 0148-7191; SAE Technical Paper; 2013. Available online: https://pubmed.ncbi.nlm.nih.gov/15923082/ (accessed on 31 August 2021).
- Singh, M.; Gandhi, S.K.; Mahla, S.K.; Sandhu, S.S. Experimental investigations on performance and emission characteristics of variable speed multi-cylinder compression ignition engine using Diesel/Argemone biodiesel blends. Energy Explor. Exploit. 2018, 36, 535–555. [Google Scholar] [CrossRef]
- Malik, M.A.I.; Usman, M.; Bashir, R.; Hanif, M.S.; Zubair, S.W.H. Use of methanol-gasoline blend: A comparison of SI engine characteristics and lubricant oil condition. J. Chin. Inst. Eng. 2022, 45, 402–412. [Google Scholar] [CrossRef]
- Balat, M. Usage of energy sources and environmental problems. Energy Explor. Exploit. 2005, 23, 141–167. [Google Scholar] [CrossRef]
- Park, C.; Kim, C.; Lee, S.; Lee, S.; Lee, J. Comparative evaluation of performance and emissions of CNG engine for heavy-duty vehicles fueled with various caloric natural gases. Energy 2019, 174, 1–9. [Google Scholar] [CrossRef]
- Alexander, J.; Porpatham, E. Investigations on Combustion Characteristics of Lean Burn SI Engine Fuelled with Ethanol and LPG. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Malang City, Indonesia, 12–13 March 2019; p. 012020. [Google Scholar]
- Rahman, M.A. Induction of hydrogen, hydroxy, and LPG with ethanol in a common SI engine: A comparison of performance and emission characteristics. Environ. Sci. Pollut. Res. 2019, 26, 3033–3040. [Google Scholar] [CrossRef]
- Demirbas, A. Alternative fuels for transportation. Energy Explor. Exploit. 2006, 24, 45–54. [Google Scholar] [CrossRef]
- Ozsezen, A.N.; Turkcan, A.; Sayin, C.; Canakci, M. Comparison of performance and combustion parameters in a heavy-duty diesel engine fueled with iso-butanol/diesel fuel blends. Energy Explor. Exploit. 2011, 29, 525–541. [Google Scholar] [CrossRef]
- Zhu, L.; He, Z.; Xu, Z.; Lu, X.; Fang, J.; Zhang, W.; Huang, Z. In-cylinder thermochemical fuel reforming (TFR) in a spark-ignition natural gas engine. Proc. Combust. Inst. 2017, 36, 3487–3497. [Google Scholar] [CrossRef]
- Liu, J.; Duan, X.; Yuan, Z.; Liu, Q.; Tang, Q. Experimental study on the performance, combustion and emission characteristics of a high compression ratio heavy-duty spark-ignition engine fuelled with liquefied methane gas and hydrogen blend. Appl. Therm. Eng. 2017, 124, 585–594. [Google Scholar] [CrossRef]
- Alrazen, H.A.; Ahmad, K. HCNG fueled spark-ignition (SI) engine with its effects on performance and emissions. Renew. Sustain. Energy Rev. 2018, 82, 324–342. [Google Scholar] [CrossRef]
- Amirante, R.; Distaso, E.; Di Iorio, S.; Sementa, P.; Tamburrano, P.; Vaglieco, B.; Reitz, R. Effects of natural gas composition on performance and regulated, greenhouse gas and particulate emissions in spark-ignition engines. Energy Convers. Manag. 2017, 143, 338–347. [Google Scholar] [CrossRef]
- Korakianitis, T.; Namasivayam, A.; Crookes, R. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Prog. Energy Combust. Sci. 2011, 37, 89–112. [Google Scholar] [CrossRef]
- Paparao, J.; Murugan, S. Oxy-hydrogen gas as an alternative fuel for heat and power generation applications-A review. Int. J. Hydrogen Energy 2021, 46, 37705–37735. [Google Scholar] [CrossRef]
- Ceviz, M.A.; Sen, A.K.; Küleri, A.K.; Öner, I.V. Engine performance, exhaust emissions, and cyclic variations in a lean-burn SI engine fueled by gasoline–hydrogen blends. Appl. Therm. Eng. 2012, 36, 314–324. [Google Scholar] [CrossRef]
- Greenwood, J.; Erickson, P.; Hwang, J.; Jordan, E. Experimental results of hydrogen enrichment of ethanol in an ultra-lean internal combustion engine. Int. J. Hydrogen Energy 2014, 39, 12980–12990. [Google Scholar] [CrossRef]
- Ma, F.; Wang, M.; Jiang, L.; Deng, J.; Chen, R.; Naeve, N.; Zhao, S. Performance and emission characteristics of a turbocharged spark-ignition hydrogen-enriched compressed natural gas engine under wide open throttle operating conditions. Int. J. Hydrogen Energy 2010, 35, 12502–12509. [Google Scholar] [CrossRef]
- Ma, F.; Wang, M.; Jiang, L.; Chen, R.; Deng, J.; Naeve, N.; Zhao, S. Performance and emission characteristics of a turbocharged CNG engine fueled by hydrogen-enriched compressed natural gas with high hydrogen ratio. Int. J. Hydrogen Energy 2010, 35, 6438–6447. [Google Scholar] [CrossRef]
- Ma, F.; Wang, Y.; Ding, S.; Jiang, L. Twenty percent hydrogen-enriched natural gas transient performance research. Int. J. Hydrogen Energy 2009, 34, 6523–6531. [Google Scholar] [CrossRef]
- Demirbas, A. Current advances in alternative motor fuels. Energy Explor. Exploit. 2003, 21, 475–487. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, M.; Naqvi, M.; Saleem, M.W.; Hussain, J.; Naqvi, S.R.; Jahangir, S.; Usama, J.; Muhammad, H.; Idrees, S. Use of Gasoline, LPG and LPG-HHO Blend in SI Engine: A Comparative Performance for Emission Control and Sustainable Environment. Processes 2020, 8, 74. [Google Scholar] [CrossRef]
- Santilli, R.M. A new gaseous and combustible form of water. Int. J. Hydrogen Energy 2006, 31, 1113–1128. [Google Scholar] [CrossRef]
- Yilmaz, A.C.; Uludamar, E.; Aydin, K. Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines. Int. J. Hydrogen Energy 2010, 35, 11366–11372. [Google Scholar] [CrossRef]
- Wang, S.; Ji, C.; Zhang, J.; Zhang, B. Improving the performance of a gasoline engine with the addition of hydrogen–oxygen mixtures. Int. J. Hydrogen Energy 2011, 36, 11164–11173. [Google Scholar] [CrossRef]
- Ji, C.; Wang, S. Effect of hydrogen addition on combustion and emissions performance of a spark ignition gasoline engine at lean conditions. Int. J. Hydrogen Energy 2009, 34, 7823–7834. [Google Scholar] [CrossRef]
- Wang, S.; Ji, C.; Zhang, B. Starting a spark-ignited engine with the gasoline–hydrogen mixture. Int. J. Hydrogen Energy 2011, 36, 4461–4468. [Google Scholar] [CrossRef]
- Usman, M.; Hayat, N. Use of CNG and Hi-octane gasoline in SI engine: A comparative study of performance, emission, and lubrication oil deterioration. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 1–15. [Google Scholar] [CrossRef]
- Usman, M.; Hayat, N.; Bhutta, M.M.A. SI engine fueled with gasoline, CNG and CNG-HHO blend: Comparative evaluation of performance, emission and lubrication oil deterioration. J. Therm. Sci. 2021, 30, 1199–1211. [Google Scholar] [CrossRef]
- Musmar, S.E.A.; Al-Rousan, A.A. Effect of HHO gas on combustion emissions in gasoline engines. Fuel 2011, 90, 3066–3070. [Google Scholar] [CrossRef]
- Farooq, M.S.; Ali, U.; Farid, M.M.; Mukhtar, T. Experimental Investigation of Performance and Emissions of Spark Ignition Engine Fueled with Blends of HHO Gas with Gasoline and CNG. Int. J. Therm. Environ. Eng. 2021, 18, 27–34. [Google Scholar]
- Wang, S.; Ji, C.; Zhang, B.; Liu, X. Performance of a hydroxygen-blended gasoline engine at different hydrogen volume fractions in the hydroxygen. Int. J. Hydrogen Energy 2012, 37, 13209–13218. [Google Scholar] [CrossRef]
- Subramanian, B.; Ismail, S. Production and use of HHO gas in IC engines. Int. J. Hydrogen Energy 2018, 43, 7140–7154. [Google Scholar] [CrossRef]
- EL-Kassaby, M.M.; Eldrainy, Y.A.; Khidr, M.E.; Khidr, K.I. Effect of hydroxy (HHO) gas addition on gasoline engine performance and emissions. Alex. Eng. J. 2016, 55, 243–251. [Google Scholar] [CrossRef]
- Anwar, M.N.; Fayyaz, A.; Sohail, N.F.; Khokhar, M.F.; Baqar, M.; Khan, W.D.; Rasool, K.; Rehan, M.; Nizami, A.S. CO2 capture and storage: A way forward for sustainable environment. J. Environ. Manag. 2018, 226, 131–144. [Google Scholar] [CrossRef]
- Caliskan, H. Environmental and enviroeconomic researches on diesel engines with diesel and biodiesel fuels. J. Clean. Prod. 2017, 154, 125–129. [Google Scholar] [CrossRef]
- Gürbüz, H.; Şöhret, Y.; Akçay, H. Environmental and enviroeconomic assessment of an LPG fueled SI engine at partial load. J. Environ. Manag. 2019, 241, 631–636. [Google Scholar] [CrossRef]
- Shamekhi, A.H.; KHATIB, Z.N.; Shamekhi, A. A Comprehensive Comparative Investigation of Compressed Natural Gas as an Alternative Fuel in a Bi-fuel Spark Ignition Engine. 2008, Volume 27, pp. 73–83. Available online: https://www.sid.ir/paper/567589/en (accessed on 31 August 2021).
- Ma, F.; Wang, Y.; Liu, H.; Li, Y.; Wang, J.; Zhao, S. Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine. Int. J. Hydrogen Energy 2007, 32, 5067–5075. [Google Scholar] [CrossRef]
- Darade, P.; Dalu, R. Investigation of performance and emissions of CNG fuelled VCR engine. Emerg. Technol. Adv. Eng. 2013, 3, 77–83. [Google Scholar]
- Jahirul, M.I.; Masjuki, H.H.; Saidur, R.; Kalam, M.; Jayed, M.; Wazed, M. Comparative engine performance and emission analysis of CNG and gasoline in a retrofitted car engine. Appl. Therm. Eng. 2010, 30, 2219–2226. [Google Scholar] [CrossRef]
- Duc, K.N.; Duy, V.N.; Hoang-Dinh, L.; Viet, T.N.; Le-Anh, T. Performance and emission characteristics of a port fuel injected, spark ignition engine fueled by compressed natural gas. Sustain. Energy Technol. Assess. 2019, 31, 383–389. [Google Scholar]
- Usman, M.; Hayat, N. Lubrication, emissions, and performance analyses of LPG and petrol in a motorbike engine: A comparative study. J. Chin. Inst. Eng. 2020, 43, 47–57. [Google Scholar] [CrossRef]
- Tang, C.F.; Tan, B.W. The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam. Energy 2015, 79, 447–454. [Google Scholar] [CrossRef]
- Ma, F.; Ding, S.; Wang, Y.; Wang, M.; Jiang, L.; Naeve, N.; Zhao, S. Performance and emission characteristics of a spark-ignition (SI) hydrogen-enriched compressed natural gas (HCNG) engine under various operating conditions including idle conditions. Energy Fuels 2009, 23, 3113–3118. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Li, C.; Wu, J. Experimental and modeling study of performance and emissions of SI engine fueled by natural gas–hydrogen mixtures. Int. J. Hydrogen Energy 2010, 35, 2680–2683. [Google Scholar] [CrossRef]
- Yan, F.; Xu, L.; Wang, Y. Application of hydrogen enriched natural gas in spark ignition IC engines: From fundamental fuel properties to engine performances and emissions. Renew. Sustain. Energy Rev. 2018, 82, 1457–1488. [Google Scholar] [CrossRef]
- Zylka, A.; Krzywanski, J.; Czakiert, T.; Idziak, K.; Sosnowski, M.; Grabowska, K.; Prauzner, T.; Nowak, W. The 4th Generation of CeSFaMB in numerical simulations for CuO-based oxygen carrier in CLC system. Fuel 2019, 255, 115776. [Google Scholar] [CrossRef]
- Idziak, K.; Czakiert, T.; Krzywanski, J.; Zylka, A.; Kozlowska, M.; Nowak, W. Safety and environmental reasons for the use of Ni-, Co-, Cu-, Mn-and Fe-based oxygen carriers in CLC/CLOU applications: An overview. Fuel 2020, 268, 117245. [Google Scholar] [CrossRef]
- Czakiert, T.; Krzywanski, J.; Zylka, A.; Nowak, W. Chemical looping combustion: A brief overview. Energies 2022, 15, 1563. [Google Scholar] [CrossRef]
- Krzywanski, J.; Czakiert, T.; Nowak, W.; Shimizu, T.; Zylka, A.; Idziak, K.; Sosnowski, M.; Grabowska, K. Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility: A comprehensive model. Energy 2022, 251, 123896. [Google Scholar] [CrossRef]
- Muhammad Ashraf, W.; Moeen Uddin, G.; Muhammad Arafat, S.; Afghan, S.; Hassan Kamal, A.; Asim, M.; Haider Khan, M.; Waqas Rafique, M.; Naumann, U.; Niazi, S.G. Optimization of a 660 MWe supercritical power plant performance—A case of industry 4.0 in the data-driven operational management Part 1. Thermal efficiency. Energies 2020, 13, 5592. [Google Scholar] [CrossRef]
- Muhammad Ashraf, W.; Moeen Uddin, G.; Hassan Kamal, A.; Haider Khan, M.; Khan, A.A.; Afroze Ahmad, H.; Ahmed, F.; Hafeez, N.; Muhammad Zawar Sami, R.; Muhammad Arafat, S. Optimization of a 660 MWe supercritical power plant performance—A case of Industry 4.0 in the data-driven operational management. Part 2. Power generation. Energies 2020, 13, 5619. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Mika, L.; Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Nowak, W.; Siwek, T.; Bieniek, A. Modeling of a combined cycle gas turbine integrated with an adsorption chiller. Energies 2020, 13, 515. [Google Scholar] [CrossRef]
- Weber, R.; Mueller, C.; Reinhart, C. Building for Zero, The Grand Challenge of Architecture without Carbon (October 8, 2021). 2021. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3939009 (accessed on 4 November 2021).
- Yontar, A.A.; Doğu, Y. Investigation of the effects of gasoline and CNG fuels on a dual sequential ignition engine at low and high load conditions. Fuel 2018, 232, 114–123. [Google Scholar] [CrossRef]
- Yao, Z.; Cao, X.; Shen, X.; Zhang, Y.; Wang, X.; He, K. On-road emission characteristics of CNG-fueled bi-fuel taxis. Atmos. Environ. 2014, 94, 198–204. [Google Scholar] [CrossRef]










| Engine Parameters | Specification |
|---|---|
| Number of cylinders | 1 |
| Capacity (cc) | 219 |
| Cooling system | Water cooled |
| Peak torque (Nm) | 15.1 |
| Ignition type | Spark aided |
| Peak power (kW) | 7.4 |
| Bore and stroke (mm) | 67 × 62.2 |
| Properties | HHO | CNG | Gasoline |
|---|---|---|---|
| Phase | Gas | Compressed gas | Liquid |
| RON a | >130 | 120 | 97 |
| Density (kg/liter at 15.48 °C) | 0.0827 b | 0.128 | 0.73 |
| Air to fuel ration (A/F) | 34.2 | 17 | 14.7 |
| Ignition temperature (K) | 867 | 723 | 633 |
| Heating value (kJ/kg × 103) | 120 | 49 | 46.3 |
| Factors | Divisions |
|---|---|
| Speed range | 1600 to 4400 rpm with gap of 400 rpm |
| Throttling | 80% wide open throttle (WOT) condition |
| Fuel | CNG, HHO–CNG, and gasoline |
| Performance parameters | BP, BSFC, and EGT |
| Emission parameters | CO, CO2, HC, and NOx |
| Statistical tool | Weibull distribution for 50% and 95% confidence intervals |
| Emission Parameters | Measurement Range | Accuracy |
|---|---|---|
| CO | 0–10,000 ppm | ±5 ppm |
| NOx | 0–4000 ppm | ±1 ppm |
| HC | 100–18,000 ppm | ±2% of reading |
| CO2 | 0–50% | ±0.3% |
| Fuel Type | HC Emission Content (ppm) | ||||
|---|---|---|---|---|---|
| Mean ± Stdev | p Value | Skewness | Mean ± 50% CI | Mean ± 95% CI | |
| Gasoline | 1396.5 ± 194.02 | >0.25 | 0.95 | 1396.5 ± 46.27 | 1396.5 ± 134.54 |
| HHO–CNG | 622.88 ± 85.20 | >0.25 | 0.0077 | 622.88 ± 20.32 | 622.88 ± 59.05 |
| Fuel | Carbon Dioxide Emission Content (CO2 _%) | ||||
|---|---|---|---|---|---|
| Mean ± Stdev | p Value | Skewness | Mean ± 50% CI | Mean ± 95% CI | |
| Gasoline | 7.62 ± 1.21 | >0.25 | 0.95 | 7.62 ± 0.29 | 7.62 ± 0.84 |
| HHO–CNG | 5.5 ± 1.23 | >0.25 | 0.90 | 5.5 ± 0.29 | 5.5 ± 0.85 |
| Fuel | Carbon Monoxide Emission Content (CO_ ppm) | ||||
|---|---|---|---|---|---|
| Mean ± Stdev | p Value | Skewness | Mean ± 50% CI | Mean ± 95% CI | |
| Gasoline | 1399.25 ± 202.74 | >0.25 | 0.84 | 1399.25 ± 48.35 | 1399.25 ± 140.49 |
| HHO–CNG | 628.88 ± 76.3 | >0.25 | −0.085 | 628.88 ± 18.08 | 628.88 ± 52.53 |
| Fuel | Oxides of Nitrogen Emission Contents (NOX _ ppm) | ||||
|---|---|---|---|---|---|
| Mean ± Stdev | p Value | Skewness | Mean ± 50% CI | Mean ± 95% CI | |
| Gasoline | 266.63 ± 178.52 | >0.25 | 0.34 | 266.63 ± 42.57 | 266.63 ± 123.70 |
| HHO–CNG | 238.38 ± 171.46 | >0.25 | 0.43 | 238.38 ± 40.89 | 238.38 ± 118.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, M.; Malik, M.A.I.; Bashir, R.; Riaz, F.; Raza, M.J.; Suleman, K.; Rehman, A.-u.; Ashraf, W.M.; Krzywanski, J. Enviro-Economic Assessment of HHO–CNG Mixture Utilization in Spark Ignition Engine for Performance and Environmental Sustainability. Energies 2022, 15, 8253. https://doi.org/10.3390/en15218253
Usman M, Malik MAI, Bashir R, Riaz F, Raza MJ, Suleman K, Rehman A-u, Ashraf WM, Krzywanski J. Enviro-Economic Assessment of HHO–CNG Mixture Utilization in Spark Ignition Engine for Performance and Environmental Sustainability. Energies. 2022; 15(21):8253. https://doi.org/10.3390/en15218253
Chicago/Turabian StyleUsman, Muhammad, Muhammad Ali Ijaz Malik, Rehmat Bashir, Fahid Riaz, Muhammad Juniad Raza, Khubaib Suleman, Abd-ul Rehman, Waqar Muhammad Ashraf, and Jaroslaw Krzywanski. 2022. "Enviro-Economic Assessment of HHO–CNG Mixture Utilization in Spark Ignition Engine for Performance and Environmental Sustainability" Energies 15, no. 21: 8253. https://doi.org/10.3390/en15218253
APA StyleUsman, M., Malik, M. A. I., Bashir, R., Riaz, F., Raza, M. J., Suleman, K., Rehman, A.-u., Ashraf, W. M., & Krzywanski, J. (2022). Enviro-Economic Assessment of HHO–CNG Mixture Utilization in Spark Ignition Engine for Performance and Environmental Sustainability. Energies, 15(21), 8253. https://doi.org/10.3390/en15218253

