A Divide and Conquer Strategy for Sweeping Coverage Path Planning
(This article belongs to the Section F: Electrical Engineering)
Abstract
:1. Introduction
2. Related Work
3. Problem Modelling
4. Sweeping Coverage Path Planning
4.1. Divide and Conquer Strategy
Algorithm 1: Divide and conquer sweeping coverage path planner. |
4.1.1. Single Room Path Planning
Algorithm 2:CPPforRoom. Coverage path planning for a single room. |
Data: Room polygon (), door points (), cleaning span () Result: Path (W) 1 ErodePolygon() 2 NearestPoint(); 3 NearestPoint(); 4 RCPP; 5 6 ; 7 return |
4.1.2. Shortest Cleaning Tour
4.1.3. Rooms of One Door-Solving a TSP
4.1.4. Rooms of Two Doors-Solving a RPP
4.2. General Case Insight
5. Experiments
5.1. Synthetic Scenarios
5.2. Case Study
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CPP | coverage path planning |
DnCS | divide and conquer strategy |
GA | genetic algorithm |
MDPI | multidisciplinary digital publishing institute |
RPP | rural postman problem |
RCPP | rotating callipers path planner |
S-CPP | sweeping coverage path planning problem |
TSP | travelling salesman problem |
UAV | unmanned aerial vehicle |
uRPP | undirected rural postman problem |
References
- Plessen, M.M.G. Partial field coverage based on two path planning patterns. Biosyst. Eng. 2018, 171, 16–29. [Google Scholar] [CrossRef]
- Engelsons, D.; Tiger, M.; Heintz, F. Coverage Path Planning in Large-scale Multi-floor Urban Environments with Applications to Autonomous Road Sweeping. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 3328–3334. [Google Scholar]
- Galceran, E.; Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst. 2013, 61, 1258–1276. [Google Scholar] [CrossRef] [Green Version]
- Rottmann, N.; Denz, R.; Bruder, R.; Rueckert, E. A Probabilistic Approach for Complete Coverage Path Planning with low-cost Systems. In Proceedings of the 2021 European Conference on Mobile Robots (ECMR), Bonn, Germany, 31 August –3 September 2021; pp. 1–8. [Google Scholar]
- Luo, B.; Huang, Y.; Deng, F.; Li, W.; Yan, Y. Complete Coverage Path Planning for Intelligent Sweeping Robot. In Proceedings of the 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 14–16 April 2021; pp. 316–321. [Google Scholar]
- Tang, G.; Tang, C.; Zhou, H.; Claramunt, C.; Men, S. R-DFS: A coverage path planning approach based on region optimal decomposition. Remote Sens. 2021, 13, 1525. [Google Scholar] [CrossRef]
- Cho, S.W.; Park, H.J.; Lee, H.; Shim, D.H.; Kim, S.Y. Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations. Comput. Ind. Eng. 2021, 161, 107612. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, X.; Zhu, S. Combined coverage path planning for autonomous cleaning robots in unstructured environments. In Proceedings of the 2008 7th World Congress on Intelligent Control and Automation, Chongqing, China, 25–27 June 2008; pp. 8271–8276. [Google Scholar]
- Vasquez-Gomez, J.I.; Herrera-Lozada, J.C.; Olguin-Carbajal, M. Coverage Path Planning for Surveying Disjoint Areas. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 899–904. [Google Scholar]
- Khanam, Z.; Saha, S.; Ehsan, S.; Stolkin, R.; Mcdonald-Maier, K. Coverage path planning techniques for inspection of disjoint regions with precedence provision. IEEE Access 2020, 9, 5412–5427. [Google Scholar] [CrossRef]
- Choi, Y.; Choi, Y.; Briceno, S.; Mavris, D.N. Multi-UAS path-planning for a large-scale disjoint disaster management. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 799–807. [Google Scholar]
- Wang, Y.; Kirubarajan, T.; Tharmarasa, R.; Jassemi-Zargani, R.; Kashyap, N. Multiperiod coverage path planning and scheduling for airborne surveillance. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 2257–2273. [Google Scholar] [CrossRef]
- Shao, X.X.; Gong, Y.J.; Zhan, Z.H.; Zhang, J. Bipartite Cooperative Coevolution for Energy-Aware Coverage Path Planning of UAVs. IEEE Trans. Artif. Intell. 2022, 3, 29–42. [Google Scholar] [CrossRef]
- Khanam, Z.; McDonald-Maier, K.; Ehsan, S. Near-Optimal Coverage Path Planning of Distributed Regions for Aerial Robots with Energy Constraint. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 1659–1664. [Google Scholar]
- Tan, C.S.; Mohd-Mokhtar, R.; Arshad, M.R. A comprehensive review of coverage path planning in robotics using classical and heuristic algorithms. IEEE Access 2021, 9, 119310–119342. [Google Scholar] [CrossRef]
- Hu, G.; Hu, Z.; Wang, H. Complete coverage path planning for road cleaning robot. In Proceedings of the 2010 International Conference on Networking, Sensing and Control (ICNSC), Chicago, IL, USA, 10–12 April 2010; pp. 643–648. [Google Scholar]
- Dakulović, M.; Horvatić, S.; Petrović, I. Complete coverage D* algorithm for path planning of a floor-cleaning mobile robot. IFAC Proc. Vol. 2011, 44, 5950–5955. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Lee, S.; Viet, H.H.; Chung, T. B-theta*: An efficient online coverage algorithm for autonomous cleaning robots. J. Intell. Robot. Syst. 2017, 87, 265–290. [Google Scholar] [CrossRef]
- Zhang, H.; Hong, W.; Chen, M. A Path Planning Strategy for Intelligent Sweeping Robots. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 11–15. [Google Scholar]
- Le, A.V.; Ku, P.C.; Than Tun, T.; Huu Khanh Nhan, N.; Shi, Y.; Mohan, R.E. Realization energy optimization of complete path planning in differential drive based self-reconfigurable floor cleaning robot. Energies 2019, 12, 1136. [Google Scholar] [CrossRef] [Green Version]
- Kyaw, P.T.; Paing, A.; Thu, T.T.; Mohan, R.E.; Le, A.V.; Veerajagadheswar, P. Coverage path planning for decomposition reconfigurable grid-maps using deep reinforcement learning based travelling salesman problem. IEEE Access 2020, 8, 225945–225956. [Google Scholar] [CrossRef]
- Liu, H.; Ma, J.; Huang, W. Sensor-based complete coverage path planning in dynamic environment for cleaning robot. CAAI Trans. Intell. Technol. 2018, 3, 65–72. [Google Scholar] [CrossRef]
- Miao, X.; Lee, J.; Kang, B.Y. Scalable coverage path planning for cleaning robots using rectangular map decomposition on large environments. IEEE Access 2018, 6, 38200–38215. [Google Scholar] [CrossRef]
- Lakshmanan, A.K.; Mohan, R.E.; Ramalingam, B.; Le, A.V.; Veerajagadeshwar, P.; Tiwari, K.; Ilyas, M. Complete coverage path planning using reinforcement learning for tetromino based cleaning and maintenance robot. Autom. Constr. 2020, 112, 103078. [Google Scholar] [CrossRef]
- Muthugala, M.V.J.; Samarakoon, S.B.P.; Elara, M.R. Tradeoff between area coverage and energy usage of a self-reconfigurable floor cleaning robot based on user preference. IEEE Access 2020, 8, 76267–76275. [Google Scholar] [CrossRef]
- Vasquez-Gomez, J.I.; Marciano-Melchor, M.; Valentin, L.; Herrera-Lozada, J.C. Coverage path planning for 2d convex regions. J. Intell. Robot. Syst. 2020, 97, 81–94. [Google Scholar] [CrossRef]
- Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Springer: Berlin/Heidelberg, Germany, 1972; pp. 85–103. [Google Scholar]
- Felsner, K.; Schlachter, K.; Zambal, S. Robotic Coverage Path Planning for Ultrasonic Inspection. Appl. Sci. 2021, 11, 10512. [Google Scholar] [CrossRef]
- Tnunay, H.; Moussa, K.; Hably, A.; Marchand, N. Virtual Leader based Trajectory Generation of UAV Formation for Visual Area Coverage. In Proceedings of the IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; pp. 1–6. [Google Scholar]
- Mayilvaganam, K.; Shrivastava, A.; Rajagopal, P. An optimal coverage path plan for an autonomous vehicle based on polygon decomposition and ant colony optimisation. Ocean. Eng. 2022, 252, 111101. [Google Scholar] [CrossRef]
- Lenstra, J.K.; Kan, A. On general routing problems. Networks 1976, 6, 273–280. [Google Scholar] [CrossRef]
- Corberán, Á.; Laporte, G. Arc Routing: Problems, Methods, and Applications; SIAM: Philadelphia, PA, USA, 2013. [Google Scholar]
- Xin, J.; Yu, B.; D’Ariano, A.; Wang, H.; Wang, M. Time-dependent rural postman problem: Time-space network formulation and genetic algorithm. Oper. Res. 2022, 22, 2943–2972. [Google Scholar] [CrossRef]
- Kang, M.J.; Han, C.G. Solving the rural postman problem using a genetic algorithm with a graph transformation. In Proceedings of the 1998 ACM Symposium on Applied Computing, Atlanta, GA, USA, 27 February–1 March 1998; pp. 356–360. [Google Scholar]
- Masutti, T.A.; de Castro, L.N. Neuro-immune approach to solve routing problems. Neurocomputing 2009, 72, 2189–2197. [Google Scholar] [CrossRef]
- Pearn, W.; Wu, T. Algorithms for the rural postman problem. Comput. Oper. Res. 1995, 22, 819–828. [Google Scholar] [CrossRef]
- Bormann, R.; Jordan, F.; Li, W.; Hampp, J.; Hägele, M. Room segmentation: Survey, implementation, and analysis. In Proceedings of the 2016 IEEE international conference on robotics and automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1019–1026. [Google Scholar]
- Deng, D.; Jing, W.; Fu, Y.; Huang, Z.; Liu, J.; Shimada, K. Constrained heterogeneous vehicle path planning for large-area coverage. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4113–4120. [Google Scholar]
- Zhou, Y.; Yu, S.; Sun, R.; Sun, Y.; Sun, L. Topological segmentation for indoor environments from grid maps using an improved NJW algorithm. In Proceedings of the 2017 IEEE International Conference on Information and Automation (ICIA), Macao, China, 18–20 July 2017; pp. 142–147. [Google Scholar]
- Lin, Z.; Xiu, C.; Yang, W.; Yang, D. A Graph-Based Topological Maps Generation Method for Indoor Localization. In Proceedings of the 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, China, 22–23 March 2018; pp. 1–8. [Google Scholar]
- Perez-Gonzalez, A.; Benitez-Montoya, N.; Jaramillo-Duque, A.; Cano-Quintero, J.B. Coverage Path Planning with Semantic Segmentation for UAV in PV Plants. Appl. Sci. 2021, 11, 12093. [Google Scholar] [CrossRef]
- LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Jensen, M.A.F.; Bochtis, D.; Sørensen, C.G.; Blas, M.R.; Lykkegaard, K.L. In-field and inter-field path planning for agricultural transport units. Comput. Ind. Eng. 2012, 63, 1054–1061. [Google Scholar] [CrossRef]
- Mark, d.B.; Otfried, C.; Marc, v.K.; Mark, O. Computational Geometry Algorithms and Applications; Spinger: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Fogel, E.; Setter, O.; Wein, R.; Zucker, G.; Zukerman, B.; Halperin, D. 2D Regularized Boolean Set-Operations. In CGAL User and Reference Manual, 5th ed.; CGAL Editorial Board: Sophia Antipolis, France, 2022. [Google Scholar]
- Xu, A.; Viriyasuthee, C.; Rekleitis, I. Efficient complete coverage of a known arbitrary environment with applications to aerial operations. Auton. Robot. 2014, 36, 365–381. [Google Scholar] [CrossRef]
- Grefenstette, J.; Gopal, R.; Rosmaita, B.; Van Gucht, D. Genetic algorithms for the traveling salesman problem. In Proceedings of the First International Conference on Genetic Algorithms and Their Applications, Sheffield, UK, 12–14 September 1995; Lawrence Erlbaum: Mahwah, NJ, USA; pp. 160–168. [Google Scholar]
- Duan, L.; Lafarge, F. Image partitioning into convex polygons. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3119–3127. [Google Scholar]
- Gillies, S. The Shapely User Manual. 2013. Available online: https://pypi.org/project/Shapely (accessed on 8 August 2022).
- Vasquez, J.I. Optimal Coverage Path Planner Implementation. 2019. Available online: https://github.com/irvingvasquez/ocpp (accessed on 8 August 2022).
- Bormann, R.; Jordan, F.; Hampp, J.; Hägele, M. Indoor coverage path planning: Survey, implementation, analysis. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 1718–1725. [Google Scholar]
- Burgard, W.; Fox, D.; Thrun, S. Probabilistic Robotics; The MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Suzuki, S. Topological structural analysis of digitized binary images by border following. Comput. Vision, Graph. Image Process. 1985, 30, 32–46. [Google Scholar] [CrossRef]
DnCS-RCPP | DnCS-Contour | TSPP [9] | ||||
---|---|---|---|---|---|---|
Map | Trav. Dist. | C. Time (s) | Trav. Dist. | C. Time (s) | Trav. Dist. | C. Time (s) |
Map A | 6569 | 0.001 | 6663 | 0.001 | 6023 | 0.052 |
Map B | 12,315 | 0.036 | 13,249 | 0.041 | 11,881 | 0.078 |
Map C | 11,074 | 0.017 | 13,669 | 0.029 | 9919 | 0.024 |
DnCS-RCPP | DnCS-Contour | TSPP [9] | ||||
---|---|---|---|---|---|---|
Map | Trav. Dist. | C. Time (s) | Trav. Dist. | C. Time (s) | Trav. Dist. | C. Time (s) |
Building | 6284 | 0.012 | 7830 | 0.012 | 5972 | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasquez, J.I.; Merchán-Cruz, E.A. A Divide and Conquer Strategy for Sweeping Coverage Path Planning. Energies 2022, 15, 7898. https://doi.org/10.3390/en15217898
Vasquez JI, Merchán-Cruz EA. A Divide and Conquer Strategy for Sweeping Coverage Path Planning. Energies. 2022; 15(21):7898. https://doi.org/10.3390/en15217898
Chicago/Turabian StyleVasquez, Juan Irving, and Emmanuel Alejandro Merchán-Cruz. 2022. "A Divide and Conquer Strategy for Sweeping Coverage Path Planning" Energies 15, no. 21: 7898. https://doi.org/10.3390/en15217898