Performance Evaluation of the Impact of Clustering Methods and Parameters on Adaptive Neuro-Fuzzy Inference System Models for Electricity Consumption Prediction during COVID-19
Abstract
:1. Introduction
1.1. Related Work
1.2. Contribution and Paper Organization
- develop three ANFIS models by employing subtractive clustering, grid partitioning, and fuzzy c-means techniques, respectively.
- develop multiple sub-models by varying different parameters such as the input MF-type, output MF-type, cluster radius, and number of clusters.
- extensively compare overall prediction performances using five prominent performance metrics and computational time.
2. Materials and Methods
2.1. ANFIS Model
2.2. Clustering Technique
2.2.1. Subtractive Clustering (SC)
2.2.2. Grid Partitioning (GP)
2.2.3. Fuzzy c-Means Clustering (FCM)
2.3. Case Study
2.4. Data Collection
2.5. Performance Evaluation
3. Results and Discussion
Comparison between Optimal Sub-Models
4. Conclusions and Future Work
- In comparison to other sub-models, the ANFIS-FCM (with five clusters) is more efficient, with minimal prediction errors and exhibiting an adequate improvement in prediction. Based on the results, it can be concluded that the FCM is found to be a better clustering technique for the ANFIS to model electricity consumption. This is congruent with the findings of Abdulshahed et al. [50], which indicated that, in addition to its speed-boosting capability, the FCM clustering approach has the benefit of not restricting cluster borders, allowing objects to belong to more than one group rather than just one.
- Our study also revealed that the type of the data clustering technique selected as well as other significant parameters have a substantial impact on the accuracy of ANFIS modeling.
- Furthermore, it may not always be the case with ANFIS-FCM that adding more clusters improve performance; hence, it may be essential to conduct multiple experiments to determine the optimal number of clusters for a given model.
- Making strategic energy plans and planning for the future requires knowing how much energy is produced and consumed. The present study will help to provide a reliable energy forecast in ensuring energy supply stability and better operations for end-users, especially during unforeseen eventualities.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANFIS | Adaptive neuro-fuzzy inference systems |
ANN | Artificial neural networks |
GP | Grid partitioning |
SC | Subtractive clustering |
FCM | Fuzzy c-means |
CR | Clustering radius |
RMSE | Root Mean Square Error |
MR | Multiple Regression |
DNN | Deep Neural Network |
GP | Genetic Programing |
SVM | Support Vector Machine |
MAE | Mean Absolute Error |
RCoV | Coefficient of Variation |
CVRMSE | Coefficient of Variation of the Root Mean Square Error |
STLF | Short term load forcasting |
MAPE | Mean Absolute Percentage Error |
ML | Machine Learning |
FIS | Fuzzy inference systems |
SELU | Scaled exponential linear unit |
LGA | Local government areas |
GM | Gray models |
HVAC | Heating, ventilation, and air conditioning |
LM | Levenberg–Marquardt |
MF | Membership Function |
CT | Computational time |
References
- Souhe, F.G.Y.; Mbey, C.F.; Boum, A.T.; Ele, P.; Kakeu, V.J.F. A hybrid model for forecasting the consumption of electrical energy in a smart grid. J. Eng. 2022, 2022, 629–643. [Google Scholar] [CrossRef]
- Oladipo, S.; Sun, Y.; Wang, Z. An enhanced flower pollinated algorithm with a modified fluctuation rate for global optimisation and load frequency control system. IET Renew. Power Gener. 2022, 16, 1220–1245. [Google Scholar] [CrossRef]
- Buechler, E.; Powell, S.; Sun, T.; Astier, N.; Zanocco, C.; Bolorinos, J.; Flora, J.; Boudet, H.; Rajagopal, R. Global changes in electricity consumption during COVID-19. iScience 2022, 25, 103568. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Ma, G.; Chen, X.; Fan, J.; Yang, B. Prediction of electricity consumption during epidemic period based on improved particle swarm optimization algorithm. Energy Rep. 2022, 8, 437–446. [Google Scholar] [CrossRef]
- Mogaji, E. Impact of COVID-19 on transportation in Lagos, Nigeria. Transp. Res. Interdiscip. Perspect. 2020, 6, 100154. [Google Scholar] [CrossRef] [PubMed]
- Ebenso, B.; Otu, A. Can Nigeria contain the COVID-19 outbreak using lessons from recent epidemics? Lancet Glob. Health 2020, 8, e770. [Google Scholar] [CrossRef] [Green Version]
- Sanusi, Y.A.; Owoyele, G.S. Energy Poverty and its Spatial Differences in Nigeria: Reversing the Trend. Energy Procedia 2016, 93, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Andrade, J.V.B.; Salles, R.S.; Silva, M.N.S.; Bonatto, B.D. Falling Consumption and Demand for Electricity in South Africa—A Blessing and a Curse. In Proceedings of the 2020 IEEE PES/IAS PowerAfrica, PowerAfrica 2020, Nairobi, Kenya, 25–28 August 2020; Institute of Electrical and Electronics Engineers Inc.: Nairobi, Kenya, 2020; pp. 1–5. [Google Scholar]
- Luan, C.; Pang, X.; Wang, Y.; Liu, L.; You, S. Comprehensive Forecasting Method of Monthly Electricity Consumption Based on Time Series Decomposition and Regression Analysis. In Proceedings of the 2020 2nd International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 23–25 October 2020. [Google Scholar] [CrossRef]
- Dodamani, S.N.; Shetty, V.J.; Magadum, R.B. Short term load forecast based on time series analysis: A case study. In Proceedings of the 2015 International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 24–26 June 2015; pp. 299–303. [Google Scholar] [CrossRef]
- Charyloniuk, W.; Chen, M.S. Very short-term load forecasting using artificial neural networks. IEEE Trans. Power Syst. 2000, 15, 263–268. [Google Scholar] [CrossRef]
- Amin, M.A.A.; Hoque, M.A. Comparison of ARIMA and SVM for Short-term Load Forecasting. In Proceedings of the 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON), Jaipur, India, 13–15 March 2019; pp. 1–6. [Google Scholar]
- Zhang, Y.; Sun, H.; Guo, Y. Wind power prediction based on pso-svr and grey combination model. IEEE Access 2019, 7, 136254–136267. [Google Scholar] [CrossRef]
- Adedeji, P.A.; Akinlabi, S.; Ajayi, O.; Madushele, N. Non-linear autoregressive neural network (NARNET) with SSA filtering for a university energy consumption forecast. Procedia Manuf. 2019, 33, 176–183. [Google Scholar] [CrossRef]
- Rajamoorthy, R.; Arunachalam, G.; Kasinathan, P.; Devendiran, R.; Ahmadi, P.; Pandiyan, S.; Muthusamy, S.; Panchal, H.; Kazem, H.A.; Sharma, P. A novel intelligent transport system charging scheduling for electric vehicles using Grey Wolf Optimizer and Sail Fish Optimization algorithms. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 3555–3575. [Google Scholar] [CrossRef]
- Jaglan, A.K.; Cheela, V.R.S.; Vinaik, M.; Dubey, B. Environmental Impact Evaluation of University Integrated Waste Management System in India Using Life Cycle Analysis. Sustainability 2022, 14, 8361. [Google Scholar] [CrossRef]
- Sharma, V.; Tripathi, A.K. A systematic review of meta-heuristic algorithms in IoT based application. Array 2022, 14, 100164. [Google Scholar] [CrossRef]
- Xu, A.; Li, R.; Chang, H.; Xu, Y.; Li, X.; Lin, G.; Zhao, Y. Artificial neural network (ANN) modeling for the prediction of odor emission rates from landfill working surface. Waste Manag. 2022, 138, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Amber, K.P.; Ahmad, R.; Aslam, M.W.; Kousar, A.; Usman, M.; Khan, M.S. Intelligent techniques for forecasting electricity consumption of buildings. Energy 2018, 157, 886–893. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Mourshed, M.; Rezgui, Y. Trees vs. Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy Build. 2017, 147, 77–89. [Google Scholar] [CrossRef]
- Nakabi, T.A.; Toivanen, P. An ANN-based model for learning individual customer behavior in response to electricity prices. Sustain. Energy Grids Netw. 2019, 18, 100212. [Google Scholar] [CrossRef]
- Elbeltagi, E.; Wefki, H. Predicting energy consumption for residential buildings using ANN through parametric modeling. Energy Rep. 2021, 7, 2534–2545. [Google Scholar] [CrossRef]
- Chen, S.; Ren, Y.; Friedrich, D.; Yu, Z.; Yu, J. Prediction of office building electricity demand using artificial neural network by splitting the time horizon for different occupancy rates. Energy AI 2021, 5, 100093. [Google Scholar] [CrossRef]
- Moon, J.; Park, S.; Rho, S.; Hwang, E. A comparative analysis of artificial neural network architectures for building energy consumption forecasting. Int. J. Distrib. Sens. Netw. 2019, 15, 155014771987761. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Farnham, C.; Azuma, C.; Emura, K. Predictive artificial neural network models to forecast the seasonal hourly electricity consumption for a University Campus. Sustain. Cities Soc. 2018, 42, 82–92. [Google Scholar] [CrossRef]
- Jang, J.S.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Perveen, G.; Rizwan, M.; Goel, N. An ANFIS-based model for solar energy forecasting and its smart grid application. Eng. Reports 2019, 1, e12070. [Google Scholar] [CrossRef] [Green Version]
- Adedeji, P.A.; Akinlabi, S.A.; Madushele, N.; Olatunji, O.O. Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: A mini review. J. Clean. Prod. 2020, 269, 122104. [Google Scholar] [CrossRef]
- Esmaili, M.; Aliniaeifard, S.; Mashal, M.; Vakilian, K.A.; Ghorbanzadeh, P.; Azadegan, B.; Seif, M.; Didaran, F. Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations. Agric. Water Manag. 2021, 258, 107201. [Google Scholar] [CrossRef]
- Alrassas, A.M.; Al-Qaness, M.A.A.; Ewees, A.A.; Ren, S.; Elaziz, M.A.; Damaševičius, R.; Krilavičius, T. Optimized ANFIS Model Using Aquila Optimizer for Oil Production Forecasting. Processes 2021, 9, 1194. [Google Scholar] [CrossRef]
- Thakkar, A.; Chaudhari, K. Fusion in stock market prediction: A decade survey on the necessity, recent developments, and potential future directions. Inf. Fusion 2021, 65, 95–107. [Google Scholar] [CrossRef]
- Olatunji, O.O.; Akinlabi, S.; Madushele, N.; Adedeji, P.A. A GA-ANFIS Model for the Prediction of Biomass Elemental Properties. In Trends in Manufacturing and Engineering Management; Springer: Singapore, 2021; pp. 1099–1114. [Google Scholar] [CrossRef]
- Chen, H.Y.; Lee, C.H. Electricity consumption prediction for buildings using multiple adaptive network-based fuzzy inference system models and gray relational analysis. Energy Rep. 2019, 5, 1509–1524. [Google Scholar] [CrossRef]
- Ghenai, C.; Al-Mufti, O.A.A.; Al-Isawi, O.A.M.; Amirah, L.H.L.; Merabet, A. Short-term building electrical load forecasting using adaptive neuro-fuzzy inference system (ANFIS). J. Build. Eng. 2022, 52, 104323. [Google Scholar] [CrossRef]
- Kaysal, A.; Köroglu, S.; Oguz, Y.; Kaysal, K. Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference Systems Approaches to Forecast the Electricity Data for Load Demand, an Analysis of Dinar District Case. In Proceedings of the 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 19–21 October 2018; pp. 1–6. [Google Scholar]
- Klimenko, V.V.; Luferov, V.S.; Stefantsov, A.G. Neuro-fuzzy models for operational forecasting of electric energy consumption of the urban system. AIP Conf. Proc. 2021, 2410, 20010. [Google Scholar] [CrossRef]
- Sharma, P.; Sahoo, B.B.; Said, Z.; Hadiyanto, H.; Nguyen, X.P.; Nižetić, S.; Huang, Z.; Hoang, A.T.; Li, C. Application of machine learning and Box-Behnken design in optimizing engine characteristics operated with a dual-fuel mode of algal biodiesel and waste-derived biogas. Int. J. Hydrogen Energy 2022. [Google Scholar] [CrossRef]
- Adeleke, O.; Akinlabi, S.; Jen, T.C.; Adedeji, P.A.; Dunmade, I. Evolutionary-based neuro-fuzzy modelling of combustion enthalpy of municipal solid waste. Neural Comput. Appl. 2022, 34, 7419–7436. [Google Scholar] [CrossRef]
- Fattahi, H. Adaptive neuro fuzzy inference system based on fuzzy c–means clustering algorithm, a technique for estimation of tbm penetration rate. Iran Univ. Sci. Technol. 2016, 6, 159–171. [Google Scholar]
- Adedeji, P.A.; Akinlabi, S.; Madushele, N.; Olatunji, O.O. Wind turbine power output very short-term forecast: A comparative study of data clustering techniques in a PSO-ANFIS model. J. Clean. Prod. 2020, 254, 120135. [Google Scholar] [CrossRef]
- Adedeji, P.; Madushele, N.; Akinlabi, S. Adaptive Neuro-fuzzy Inference System (ANFIS) for a multi-campus institution energy consumption forecast in South Africa. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Washington, DC, USA, 27–29 September 2018; pp. 950–958. [Google Scholar]
- Adeleke, O.; Akinlabi, S.A.; Jen, T.C.; Dunmade, I. Prediction of municipal solid waste generation: An investigation of the effect of clustering techniques and parameters on ANFIS model performance. Environ. Techology 2020, 43, 1634–1647. [Google Scholar] [CrossRef]
- Pandit, A.; Panda, S. Prediction of earthquake magnitude using soft computing techniques: ANN and ANFIS. Arab. J. Geosci. 2021, 14, 1260. [Google Scholar] [CrossRef]
- Wei, M.; Bai, B.; Sung, A.H.; Liu, Q.; Wang, J.; Cather, M.E. Predicting injection profiles using ANFIS. Inf. Sci. 2007, 177, 4445–4461. [Google Scholar] [CrossRef]
- Narayanan, S.J.; Paramasivam, I.; Bhatt, R.B.; Khalid, M. A Study on the Approximation of Clustered Data to Parameterized Family of Fuzzy Membership Functions for the Induction of Fuzzy Decision Trees. Cybern. Inf. Technol. 2015, 15, 75–96. [Google Scholar] [CrossRef]
- Benmouiza, K.; Cheknane, A. Clustered ANFIS network using fuzzy c-means, subtractive clustering, and grid partitioning for hourly solar radiation forecasting. Theor. Appl. Climatol. 2019, 137, 31–43. [Google Scholar] [CrossRef]
- Küükdeniz, T.; Baray, A.; Ecerkale, K.; Esnaf, Ş. Integrated use of fuzzy c-means and convex programming for capacitated multi-facility location problem. Expert Syst. Appl. 2012, 39, 4306–4314. [Google Scholar] [CrossRef]
- Rezakazemi, M.; Dashti, A.; Asghari, M.; Shirazian, S. H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int. J. Hydrog. Energy 2017, 42, 15211–15225. [Google Scholar] [CrossRef]
- Barak, S.; Sadegh, S.S. Forecasting energy consumption using ensemble ARIMA-ANFIS hybrid algorithm. Int. J. Electr. Power Energy Syst. 2016, 82, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Abdulshahed, A.M.; Longstaff, A.P.; Fletcher, S. The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl. Soft Comput. 2015, 27, 158–168. [Google Scholar] [CrossRef]
- Elias, P.; Omojola, A. Case study: The challenges of climate change for Lagos, Nigeria. Curr. Opin. Environ. Sustain. 2015, 13, 74–78. [Google Scholar] [CrossRef]
- Nkeki, N.F.; Ojeh, V.N. Flood risks analysis in a littoral African city: Using geographic information system. In Geographic Information Systems (GIS): Techniques, Applications and Technologies; Nielson, Ed.; Nova Science Publisher: New York, NY, USA, 2014. [Google Scholar]
- Fasona, M.J.; Omojola, A.S.; Odunuga, S.; Tejuoso, O.; Amogu, N. An appraisal of sustainable water management solutions for large cities in developing countries through GIS: The case of Lagos, Nigeria. In Proceedings of the Symposium S2 Held during the 7th IAHS Scientific Assembly, Foz do Iguacu, Brazil, 3–9 April 2005; pp. 49–57. [Google Scholar]
- Ojeh, V.N.; Balogun, A.A.; Okhimamhe, A.A. Urban-Rural Temperature Differences in Lagos. Climate 2016, 4, 29. [Google Scholar] [CrossRef]
- Eminoglu, U.; Turksoy, O. Power curve modeling for wind turbine systems: A comparison study. Int. J. Ambient. Energy 2019, 42, 1912–1921. [Google Scholar] [CrossRef]
- Kwon, Y.; Kwasinski, A.; Kwasinski, A. Solar Irradiance Forecast Using Naïve Bayes Classifier Based on Publicly Available Weather Forecasting Variables. Energies 2019, 12, 1529. [Google Scholar] [CrossRef] [Green Version]
- Ceylan, Z. The impact of COVID-19 on the electricity demand: A case study for Turkey. Int. J. Energy Res. 2021, 45, 13022. [Google Scholar] [CrossRef]
- Talpur, N.; Salleh, M.N.M.; Hussain, K. An investigation of membership functions on performance of ANFIS for solving classification problems. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Melaka, Malaysia, 6–7 May 2017; IOP Publishing: Bristol, UK, 2017; Volume 226, p. 12103. [Google Scholar]
- Shieh, H.-L.; Chang, P.-L.; Lee, C.-N. An efficient method for estimating cluster radius of subtractive clustering based on genetic algorithm. In Proceedings of the 2013 IEEE International Symposium on Consumer Electronics (ISCE), Hsinchu, Taiwan, 3–6 June 2013; pp. 139–140. [Google Scholar]
- Alfarraj, O.; Alkhalaf, S. Optimized automatic generation of fuzzy rules for nonlinear system based on subtractive clustering algorithm for medical image segmentation. J. Med. Imaging Health Inform. 2017, 7, 500–507. [Google Scholar] [CrossRef]
- Wiharto, W.; Suryani, E. The analysis effect of cluster numbers on fuzzy c-means algorithm for blood vessel segmentation of retinal fundus image. In Proceedings of the 2019 International Conference on Information and Communications Technology, ICOIACT 2019, Yogyakarta, Indonesia, 24–25 July 2019; Institute of Electrical and Electronics Engineers Inc.: Yogyakarta, Indonesia; pp. 106–110. [Google Scholar]
- Lu, Y.; Ma, T.; Yin, C.; Xie, X.; Tian, W.; Zhong, S.M. Implementation of the Fuzzy C-Means Clustering Algorithm in Meteorological Data. Int. J. Database Theory Appl. 2013, 6, 1–18. [Google Scholar] [CrossRef]
- Verma, H.; Agrawal, R.K.; Sharan, A. An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation. Appl. Soft Comput. 2016, 46, 543–557. [Google Scholar] [CrossRef]
- Cao, L.; Li, Y.; Zhang, J.; Jiang, Y.; Han, Y.; Wei, J. Electrical load prediction of healthcare buildings through single and ensemble learning. Energy Rep. 2020, 6, 2751–2767. [Google Scholar] [CrossRef]
Reference | Work Performed/Contributions |
---|---|
Amber et al. [19] |
|
Ahmad et al. [20] |
|
Nakabi and Toivanen [21] |
|
Elbeltagi and Wefki [22] |
|
| |
Chen et al. [23] |
|
| |
Moon et al. [24] |
|
| |
Yuan et al. [25] |
|
Chen and Lee [33] |
|
| |
Ghenai et al. [34] |
|
| |
Kaysal et al. [35] |
|
Klimenko et al. [36] |
|
Sharma et al. [37] |
|
Present study |
|
Metrics | Value Range | Description |
---|---|---|
MAPE [1,57] | High prediction accuracy | |
Good prediction | ||
Reasonable prediction | ||
Inaccurate prediction | ||
RMSE, CVRMSE, MAE, and RCoV | _ | The lower, the better |
Clustering Techniques | Parameters | Values |
---|---|---|
ANFIS-SC | Cluster radius | 0.2–0.4 |
Maximum iteration | 100 | |
ANFIS-GP | Input MF-type | pi, gbell, tri, gauss, gauss2, dsig, trap, and psig |
Maximum iteration | 100 | |
Output MF-type | Linear and constant | |
ANFIS-FCM | Number of clusters | 3–10 |
Number of exponents for partitioning matrix | 2 | |
Minimum improvement | 1 × 10−5 | |
Maximum iteration | 100 |
Sub-Models | Input MF-Type | Output MF-Type | Performance Metrics | ||||||
---|---|---|---|---|---|---|---|---|---|
MAPE (%) | MAE | RCoV | CVRMSE | RMSE | CT | ||||
ANFIS-GP1 | gauss-MF | linear | Training | 5.0138 | 472.8122 | 0.0700 | 7.0274 | 687.40497 | 30.0878 |
Testing | 84.1609 | 7.3954 × 103 | 0.1225 | 346.2284 | 32,611.3971 | ||||
ANFIS-GP2 | gauss2-MF | constant | Training | 9.4504 | 814.5582 | 0.0460 | 11.7296 | 1123.9006 | 27.7249 |
Testing | 12.5516 | 1.1631 × 103 | 0.0482 | 19.2452 | 1902.3109 | ||||
ANFIS GP3 | psig-MF | constant | Training | 9.1262 | 801.4651 | 0.0356 | 11.5814 | 1122.0374 | 29.6727 |
Testing | 13.6967 | 1.2211 × 103 | 0.0405 | 20.1592 | 1942.6808 | ||||
ANFIS-GP4 | dsig-MF | constant | Training | 9.3543 | 815.7195 | 0.0268 | 11.7613 | 1137.9259 | 24.2021 |
Testing | 11.8197 | 1.0390 × 103 | 0.0309 | 14.8571 | 1436.2819 | ||||
ANFIS-GP5 | gbell-MF | linear | Training | 5.1877 | 486.7460 | 0.0552 | 7.6887 | 751.8639 | 39.4217 |
Testing | 61.5922 | 5.7619 × 103 | 0.1146 | 222.4340 | 20,966.8652 | ||||
ANFIS-GP6 | gbell-MF | constant | Training | 8.8232 | 779.5360 | 0.0449 | 11.0775 | 1069.8740 | 27.0600 |
Testing | 13.1720 | 1.1779 × 103 | 0.0452 | 18.6001 | 1805.5231 | ||||
ANFIS-GP7 | pi-MF | constant | Training | 10.3207 | 882.4454 | 0.0288 | 12.6490 | 1208.959654 | 46.1492 |
Testing | 12.1423 | 1.1783 × 103 | 0.0310 | 16.8299 | 1672.9600 | ||||
ANFIS-GP8 | trap-MF | constant | Training | 9.1756 | 823.4156 | 0.0332 | 11.6138 | 1130.8751 | 29.3157 |
Testing | 13.5419 | 1.0960 × 103 | 0.0429 | 15.7328 | 1498.1607 |
Sub-Models | CR | MAPE (%) | MAE | RCoV | CVRMSE | RMSE | CT | |
---|---|---|---|---|---|---|---|---|
ANFIS-SC1 | 0.20 | Training | 2.0576 | 201.0070 | 0.0728 | 2.9255 | 283.939928 | 39.0700 |
Testing | 60.6256 | 5.7020 × 103 | 0.1853 | 131.5269 | 12,621.8789 | |||
ANFIS-SC2 | 0.25 | Training | 7.7495 | 691.5490 | 0.0626 | 9.7370 | 944.158461 | 15.2957 |
Testing | 13.0112 | 1.1325 × 103 | 0.0660 | 15.7447 | 1514.2368 | |||
ANFIS-SC3 | 0.30 | Training | 8.5915 | 756.0585 | 0.0631 | 10.5997 | 1024.873313 | 16.7884 |
Testing | 13.2075 | 1.2014 × 103 | 0.0695 | 18.0500 | 1747.5688 | |||
ANFIS-SC4 | 0.35 | Training | 9.2934 | 822.7136 | 0.0609 | 11.2543 | 1088.581692 | 13.0126 |
Testing | 11.6966 | 1.0468 × 103 | 0.0553 | 14.4775 | 1400.4314 | |||
ANFIS-SC5 | 0.40 | Training | 9.7865 | 864.8082 | 0.0306 | 12.1638 | 1181.081709 | 13.0404 |
Testing | 10.1282 | 858.7494 | 0.0357 | 12.3323 | 1182.2446 |
Sub-Models | Number of Clusters | Performance Metrics | ||||||
---|---|---|---|---|---|---|---|---|
MAPE (%) | MAE | RCoV | CVRMSE | RMSE | CT | |||
ANFIS-FCM1 | 3 | Training | 8.8971 | 807.7366 | 0.0486 | 11.1069 | 1084.3716 | 12.3577 |
Testing | 12.7277 | 1.0389 × 103 | 0.0526 | 14.9356 | 1413.3285 | |||
ANFIS-FCM2 | 4 | Training | 9.1943 | 804.2966 | 0.0522 | 11.6728 | 1119.8581 | 12.1095 |
Testing | 11.2632 | 1.0641 × 103 | 0.0522 | 14.9091 | 1469.540 | |||
ANFIS-FCM3 | 5 | Training | 9.5025 | 825.5622 | 0.0631 | 11.6820 | 1122.0839 | 12.6918 |
Testing | 9.3122 | 898.5070 | 0.0586 | 11.5727 | 1137.6024 | |||
ANFIS-FCM4 | 6 | Training | 7.8826 | 714.3356 | 0.0491 | 9.9487 | 961.4013 | 12.1603 |
Testing | 12.5762 | 1.1284 × 103 | 0.0449 | 15.2612 | 1479.4627 | |||
ANFIS-FCM5 | 7 | Training | 7.9179 | 704.8515 | 0.0643 | 10.0507 | 972.3543 | 14.4743 |
Testing | 11.8698 | 1.0346 × 103 | 0.0716 | 14.0547 | 1358.9270 | |||
ANFIS-FCM6 | 8 | Training | 7.5298 | 689.9388 | 0.0623 | 9.4583 | 917.2727 | 12.0877 |
Testing | 17.2638 | 1.4172 × 103 | 0.0709 | 31.8057 | 3057.7771 | |||
ANFIS-FCN7 | 9 | Training | 7.2745 | 661.4251 | 0.0646 | 9.1091 | 885.1362 | 12.9587 |
Testing | 13.2125 | 1.1575 × 103 | 0.0516 | 18.1648 | 1738.3412 | |||
ANFIS-FCN8 | 10 | Training | 7.1858 | 660.2679 | 0.0653 | 9.2931 | 905.1756 | 11.7112 |
Testing | 12.9859 | 1.1093 × 103 | 0.0777 | 16.2063 | 1542.1511 |
Sub-Models | Parameters | Performance Metrics | |||||
---|---|---|---|---|---|---|---|
MAPE (%) | MAE | RCoV | CVRMSE | RMSE | CT | ||
ANFIS-GP4 | dsigMF, constant | 11.8197 | 1.0390 × 103 | 0.0309 | 14.8571 | 1436.2819 | 24.2021 |
ANFIS-SC5 | CR = 0.40 | 10.1282 | 858.7494 | 0.0357 | 12.3323 | 1182.2446 | 13.0404 |
ANFIS-FCM3 | Number of clusters = 5 | 9.3122 | 898.5070 | 0.0586 | 11.5727 | 1137.6024 | 12.6918 |
Reference | Model | Case Study | Performance Metrics | |||||
---|---|---|---|---|---|---|---|---|
MAPE (%) | MAE | RCoV | CVRMSE | RMSE | CT | |||
Adedeji et al. [41] | ANFIS | South Africa | 20.3900 | - | - | - | 5,485,068.99 | 1.0900 |
Moon et al. [24] | ANN | South Korea | 9.7600 | - | - | 15.0000 | - | - |
Cao et al. [64] | RF | China | 9.6400 | - | - | 12.5700 | - | - |
Cao et al. [64] | Support Vector Regression | China | 10.6700 | - | - | 13.6800 | - | - |
Present study | ANFIS | Nigeria | 9.3122 | 898.5070 | 0.0586 | 11.5727 | 1137.6024 | 12.6918 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oladipo, S.; Sun, Y.; Amole, A. Performance Evaluation of the Impact of Clustering Methods and Parameters on Adaptive Neuro-Fuzzy Inference System Models for Electricity Consumption Prediction during COVID-19. Energies 2022, 15, 7863. https://doi.org/10.3390/en15217863
Oladipo S, Sun Y, Amole A. Performance Evaluation of the Impact of Clustering Methods and Parameters on Adaptive Neuro-Fuzzy Inference System Models for Electricity Consumption Prediction during COVID-19. Energies. 2022; 15(21):7863. https://doi.org/10.3390/en15217863
Chicago/Turabian StyleOladipo, Stephen, Yanxia Sun, and Abraham Amole. 2022. "Performance Evaluation of the Impact of Clustering Methods and Parameters on Adaptive Neuro-Fuzzy Inference System Models for Electricity Consumption Prediction during COVID-19" Energies 15, no. 21: 7863. https://doi.org/10.3390/en15217863
APA StyleOladipo, S., Sun, Y., & Amole, A. (2022). Performance Evaluation of the Impact of Clustering Methods and Parameters on Adaptive Neuro-Fuzzy Inference System Models for Electricity Consumption Prediction during COVID-19. Energies, 15(21), 7863. https://doi.org/10.3390/en15217863