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Abstract: Increasing economic and population growth has led to a rise in electricity consumption.
Consequently, electrical utility firms must have a proper energy management strategy in place to
improve citizens’ quality of life and ensure an organization’s seamless operation, particularly amid
unanticipated circumstances such as coronavirus disease (COVID-19). There is a growing interest
in the application of artificial intelligence models to electricity prediction during the COVID-19
pandemic, but the impacts of clustering methods and parameter selection have not been explored.
Consequently, this study investigates the impacts of clustering techniques and different significant
parameters of the adaptive neuro-fuzzy inference systems (ANFIS) model for predicting electricity
consumption during the COVID-19 pandemic using districts of Lagos, Nigeria as a case study.
The energy prediction of the dataset was examined in relation to three clustering techniques: grid
partitioning (GP), subtractive clustering (SC), fuzzy c-means (FCM), and other key parameters such
as clustering radius (CR), input and output membership functions, and the number of clusters. Using
renowned statistical metrics, the best sub-models for each clustering technique were selected. The
outcome showed that the ANFIS-based FCM technique produced the best results with five clusters,
with the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Variation
(RCoV), Coefficient of Variation of the Root Mean Square Error (CVRMSE), and Mean Absolute
Percentage Error (MAPE) being 1137.6024, 898.5070, 0.0586, 11.5727, and 9.3122, respectively. The
FCM clustering technique is recommended for usage in ANFIS models that employ similar time
series data due to its accuracy and speed.

Keywords: adaptive neuro-fuzzy inference systems; fuzzy c-means; grid-partitioning; subtractive-
clustering; artificial neural networks

1. Introduction

Electricity is essential for improving one’s quality of life as well as maintaining the
efficient running of an organization. The primary responsibility of electric utility companies
is to ensure that consumers have uninterrupted access to electricity through the process of
generation, transmission, and distribution [1,2]. Hence, understanding energy production
and consumption are critical for budgeting production costs, planning for the future, and
establishing a production–consumption balance. For instance, the advent of the novel
coronavirus disease (COVID-19 or SARS-COV-2) which broke out in China in 2020, has
pushed humanity in the direction of a new norm, and adjustment to it is inevitable. In an
effort to curb the spread of COVID-19, lockdowns were implemented, social distancing
was established, and public meetings were either limited to a small number of individuals
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or outright forbidden. In response, the lockdowns greatly impacted traveling, social
interaction, working, schooling, tourism, and health care and reduced commercial and
industrial operations. The effects of these adjustments on everyday life have affected where,
when, and how power is utilized, both in areas recovering from the pandemic and during
its height [3]. As epidemic prevention and control strategies changed frequently, load
forecasting became more imperative [4]. In the wake of the pandemic, Nigeria, like many
developing countries, also saw a lockdown. Nigeria, home to more than 200 million people,
confirmed its first case of COVID-19 in Lagos State on 27 February 2020 [5]. Due to a variety
of factors, Lagos State is prone to the COVID-19 pandemic spreading quickly. These include
its substantial population, overburdened infrastructure, and role as a key regional transit
hub for air, land, and sea travel [6]. Combining the effects of the pandemic and poor energy
conditions adds new hurdles to those already present. Poor access to energy contributes
to the high level of poverty in developing countries [7]. For the energy supply to remain
stable and for end customers to have improved operations, a realistic energy forecast is
essential. As stated in [8], putting policies in place that will accelerate the development
of systems that can foresee demand is vital to ensuring energy stability. Taking a closer
look at how the COVID-19 pandemic has impacted electricity consumption could provide
insight into society’s response to upcoming shocks and extreme events in the future [3].

According to earlier research, developing artificial intelligence technologies based
on statistical and mathematical methods has demonstrated possible answers in estimat-
ing and forecasting power consumption. There are two basic classifications of prediction
methods [4]. The first is the classic approach, which may be exemplified by regression
analysis [9], and the time series approach [10]. The second category includes artificial
intelligence techniques such as artificial neural networks (ANN) [11], support vector ma-
chines (SVM) [12], and gray models (GM) [13]. That said, forecasting methodologies have
advanced significantly over time. Non-linear forecasting has garnered greater attention
compared to traditional linear models. This is because real-world problems are nonlinear,
and only nonlinear forecasting approaches can produce forecasting models that are accurate
and dependable [14]. Nonlinear forecasting has the benefit of being robust and able to
handle perturbations, which is one of its major advantages. In addition, the use of soft
computing techniques has played major roles in different spheres of life [15–17].

1.1. Related Work

ANN is a typical example of a nonlinear forecasting model. ANN is a commonly
used machine learning (ML) technology that can replicate synaptic behavior between
brain neurons by combining many nonlinear parallel processors to perform the learning
function [18]. Previous studies have explored the ANN in forecasting the electricity con-
sumption of buildings, university campuses, residences, etc. For instance, an intelligent
technique for forecasting the electricity consumption of buildings was performed by Amber
et al. [19]. An analysis of five distinct intelligent methodologies was carried out using the
historical power consumption of a building, as well as the associated weather data. As
stated by the authors, the ANN model performed at its best when compared to other ap-
proaches while using the fewest statistical indicators. In [20], an ML model was developed
for heating, ventilation, and air conditioning (HVAC) electricity consumption. A feed-
forward back-propagation ANN was shown to perform better than a random forest (RF)
model, according to the authors. To understand how a residential electricity customer’s
power consumption behavior is affected by the price of electricity, a model was developed
in [21], using a multi-layer perceptron, and a recurrent model based on a long–short-term
memory (LSTM) network.

For enhancing the prediction of energy consumption in residential constructions
during the early design phases, Elbeltagi and Wefki [22] developed a system based on
ANNs. The authors suggest that the proposed approach reduces technical impediments by
integrating and automating commonly available commercial technologies. Chen et al. [23]
investigated the forecasting of office building power usage using ANN while partitioning
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the time horizon for diverse occupancy rates. The proposed ANN model produced a
reliable outcome.

Moon et al. [24] conducted a comparative study using diverse combinations of hy-
perparameters (activation function and number of hidden layers) of neural networks to
identify the most efficient parameters for ANN-based energy consumption. The authors
reported the optimal performance of the proposed model with five hidden layers and
a scaled exponential linear unit (SELU) activation function. Yuan et al. [25] offered an
ANN-based prediction model for seasonal hourly electricity consumption for three areas of
a university campus using Japan as a case study. For testing, the proposed model generated
optimal results with correlation coefficients between 0.95 and 0.99 using feed-forward
ANNs trained with Levenberg–Marquardt (LM) back-propagation algorithms.

ANFIS is another modeling technique which amalgamates the ANN with a fuzzy infer-
ence system (FIS) to improve the speed, fault tolerance, and addictiveness of the modeling
system [26]. In this way, ANFIS has become an accepted tool in forecasting time series and
analyzing problems. Numerous fields such as smart grid [27], wind energy [28], agricul-
ture [29], petroleum engineering [30], stock-market [31], and biogas [32], etc. have utilized
the ANFIS for forecasting. As compared to other methods, its effectiveness is demonstrated
by its superior performance. This is attributable to its special features of harnessing both
ANN and FIS. Chen and Lee [33] presented the efficacy of ANFIS in the prediction of power
consumption for buildings utilizing multiple ANFIS models with gray relational analysis.
An ANFIS-based short-term predictive model for an educational building was carried out
in [34]. The suggested model produced accurate prediction under some statistical metrics
using a data split of 80%, 10%, and 10% for training, testing, and validation, respectively.
Using ANN and ANFIS techniques, Kaysal et al. [35] designed a short-term load forecast-
ing (STLF) model for a small region. The proposed ANFIS model demonstrated the best
performance under the RMSE and MAPE statistical metrics. Klimenko et al. [36] worked
on the forecasting of electric energy consumption of urban systems using autoregressive
integrated moving average (ARIMA), ANN, and ANFIS models. The suggested ANFIS
strategy was found to be the most successful in the investigation as a short-term and
operational forecasting technique that also uses meteorological parameters. Table 1 shows
the summary table of the previous works as discussed and their various contributions.

Table 1. Summary of the contributions of previous studies.

Reference Work Performed/Contributions

Amber et al. [19]
• Investigation of the performance ANN for forecasting electricity consumption of buildings.
• Comparison of the proposed ANN with Multiple Regression (MR), Deep Neural Network

(DNN), Genetic Programming (GP), and SVM.

Ahmad et al. [20]

• An evaluation of the performance of RF and feed-forward back-propagation ANN for
high-resolution prediction of building energy usage.

• Recommendation of the proposed model to energy managers and building owners in order to
make informed decisions.

Nakabi and Toivanen [21]

• Development of an ML-based model for individual residential users.
• Application of an LSTM model for learning the consumption patterns of an individual

residential electricity customer.
• Optimization of the structures of the ANN and LSTM networks using a genetic algorithm (GA).

Elbeltagi and Wefki [22]

• ANN-based parametric modeling for predicting energy usage in residential buildings.

• Development of a user-friendly interface for predicting energy usage without prior familiarity
with modeling and simulation tools.

Chen et al. [23]

• ANN prediction of an office building energy use by partitioning the time horizon for different
occupancy rates.

• Recommendations for prospective research are given.
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Table 1. Cont.

Reference Work Performed/Contributions

Moon et al. [24]
• Development of an ANN-based short-term load forecasting (STLF)

• Evaluation of the effect of different activation functions on the proposed ANN model.

Yuan et al. [25]
• An ANN-based feed-forward model with LM back-propagation algorithms was presented for

estimating seasonal hourly power usage on a university campus.

Chen and Lee [33]

• Gray relational analysis and multiple ANFIS models were employed to estimate electricity
usage for buildings.

• Solving a binary problem using the ANFIS model.

Ghenai et al. [34]
• Development of an STLF model using the ANFIS model for an educational building.

• Future work was presented.

Kaysal et al. [35] • Evaluation of the accuracy of ANN and ANFIS models in predicting load demand for an STLF

Klimenko et al. [36]
• An investigation between ARIMA, ANN, and ANFIS models for predicting the electrical energy

consumption of an urban system.
• The ANFIS model was recommended due to its best performance.

Sharma et al. [37]

• Development of an ML approach for the prediction and optimization of combustion and
exhaust emission characteristics of a variable compression dual-fuel combustion engine.

• Using a multi-layer perceptron network, a three-layer ANN model was successfully developed.
• Presentation of future scope.

Present study

• Investigates the impacts of clustering techniques and other key parameters of the ANFIS model
for predicting electricity consumption during the COVID-19 pandemic.

• Development and performance comparison of different sub-models under renowned statistical
metrics.

• Provide future scope.

However, even though ANFIS has been widely employed in the prediction of electric-
ity consumption, earlier research failed to address the impact of clustering techniques and
other key parameters that are critical to the operation of the ANFIS model. The choice of
clustering techniques must be carried out carefully since clustering strategies have a signifi-
cant influence on the precision of the model when approximating an output function [38].
Optimal performance and excellent prediction accuracy need carefully chosen clustering
approaches and other critical parameters. Failure to select the best clustering approaches
and parameters will eventually diminish the model’s accuracy. The performance of ANFIS
is hinged on the appropriate parameter selection. In response, this study is aimed at inves-
tigating the effect of ANFIS clustering techniques, such as subtractive clustering (SC), grid
partitioning (GP), and fuzzy c-means (FCM) in predicting electricity consumption during
COVID-19 using Lagos, Nigeria as a case study.

1.2. Contribution and Paper Organization

The main contributions of this study are as follows:

1. develop three ANFIS models by employing subtractive clustering, grid partitioning,
and fuzzy c-means techniques, respectively.

2. develop multiple sub-models by varying different parameters such as the input MF-
type, output MF-type, cluster radius, and number of clusters.

3. extensively compare overall prediction performances using five prominent perfor-
mance metrics and computational time.

The remainder of this study is described as follows. Section 2 offers the material and
method used. Section 3 discusses the experimental findings. Section 4 concludes and
presents the future direction.
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2. Materials and Methods
2.1. ANFIS Model

Adaptive Neuro-Fuzzy Inference System (ANFIS) was presented by Jang [26] in 1993.
It is a unique hybrid model which employs the paired features of neural networks and
fuzzy logic in its design. In other words, being an adaptive hybrid multi-layer feedforward
network ANFIS harnesses the duo learning capabilities of artificial neural networks (ANN)
with fuzzy inference systems (FIS) to mimic the process through which humans make
knowledgeable decisions [39]. The ANFIS modeling technique is derived from the Takagi–
Sugeno fuzzy system, which consists of antecedents and consequences [40]. The five levels
of the ANFIS architectural framework are the fuzzy, product, normalization, defuzzification,
and summation layers, which are arranged from layer 1 to layer 5 [26,41]. ANFIS is a hybrid
learning methodology that uses back-propagation gradient descent with least squares
techniques for optimizing model parameters. The basic ANFIS model uses five layers and
fuzzy IF-THEN rules to produce a nonlinear map between input and output, as illustrated
in Figure 1. In the first layer, two inputs are received, x and y, and each node’s output is
determined by the generalized Gaussian membership function (µ). These steps are depicted
in Equations (1)–(3) [26].

O1i = µAi (x), i = 1, 2, (1)

O1i = µBi−2(y), i = 3, 4, (2)

µ(x)= e−(
x – ρi

αi
)

2
, (3)

where membership values of µ are designated as Ai and Bi; the premise parameter sets are
ρi and αi.

The output of each node in the second layer (the firing strength of a rule) is calculated
in the next phase of ANFIS using Equation (4) [26]:

O2i = µAi (x)×µBi−2(y) (4)

The output of the third layer node is described in Equation (8), which is also known as
the normalized firing strength [26]:

O3i =wi =
ωi

∑2
(i=1) ωi

, (5)

The output is computed by the adaptive nodes at Layer 4 using Equation (6) [26]:

O4,i= wi fi= wi(pix + qiy + ri) (6)

where pi, qi, and ri are the consequent parameters of the node i. The ANFIS model’s final
layer contains just one node, and its output is calculated as follows [26]:

O5 = ∑i wi fi (7)

The clustering approach is critical to the ANFIS model’s viability and tractability [41].
The choice of clustering algorithms must be considered carefully since the type of clustering
utilized for ANIFS has a significant influence on the model’s accuracy when approximating
an output function [38]. Hence, the next session discusses the different types of clustering
techniques used in this study. Figure 2 shows the flowchart of the proposed ANFIS model.

2.2. Clustering Technique

Organizing data sets into groups and placing them in clusters in such a way that each
cluster contains unique objects is known as clustering, and it is a crucial task in data mining
and statistical analysis [42]. Clustering is one of the key phenomena in the development of
the ANFIS model. In order to allocate MFs and produce the FIS structure from the data,
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the ANFIS uses clustering algorithms to organize data into comparable fuzzy clusters [40].
The three most widely used clustering techniques are subtractive clustering (SC), grid
partitioning (GP), and fuzzy c-means (FCM). Each one of these clustering techniques is
explored in this present study to predict energy usage.

Energies 2022, 15, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 1. ANFIS model architecture. 

The clustering approach is critical to the ANFIS model’s viability and tractability [41]. 
The choice of clustering algorithms must be considered carefully since the type of cluster-
ing utilized for ANIFS has a significant influence on the model’s accuracy when approxi-
mating an output function [38]. Hence, the next session discusses the different types of 
clustering techniques used in this study. Figure 2 shows the flowchart of the proposed 
ANFIS model. 

Start

Load training data 

Define input 
and output

Define the initial 
parameters, MFs, and 

generate the FIS 

End

No

Yes

Termination criteria 
reached?

• Select the Clustering technique 
(SC/GP/FCM) 

• Specify the parameters of the selected 
clustering technique

Train the ANFIS 
network

Divide the total data (70% 
for training, 15% for testing

 and 15% for validation

Test the ANFIS 
model

Compare the observed 
value with the 

predicted value

 
Figure 2. Flowchart of the proposed ANFIS model. 

Figure 1. ANFIS model architecture.

Energies 2022, 15, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 1. ANFIS model architecture. 

The clustering approach is critical to the ANFIS model’s viability and tractability [41]. 
The choice of clustering algorithms must be considered carefully since the type of cluster-
ing utilized for ANIFS has a significant influence on the model’s accuracy when approxi-
mating an output function [38]. Hence, the next session discusses the different types of 
clustering techniques used in this study. Figure 2 shows the flowchart of the proposed 
ANFIS model. 

Start

Load training data 

Define input 
and output

Define the initial 
parameters, MFs, and 

generate the FIS 

End

No

Yes

Termination criteria 
reached?

• Select the Clustering technique 
(SC/GP/FCM) 

• Specify the parameters of the selected 
clustering technique

Train the ANFIS 
network

Divide the total data (70% 
for training, 15% for testing

 and 15% for validation

Test the ANFIS 
model

Compare the observed 
value with the 

predicted value

 
Figure 2. Flowchart of the proposed ANFIS model. Figure 2. Flowchart of the proposed ANFIS model.

2.2.1. Subtractive Clustering (SC)

The SC approach is used when it is unclear how many data distribution centers will
be needed. ANFIS-SC is a merger of the ANFIS and SC techniques. This method calculates
the likelihood that each data point will develop a cluster center based on the density of
the nearby data points and operates under the premise that each data point is a potential
cluster center [42]. Suppose that there are n data points in an M dimensional space and
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that the data points have been normalized in each dimension, then Equation (8) gives the
potential Pi of data point xi.

Pi =
n

∑
j=1

e−α‖xi – xj‖2
(8)

where α is the Euclidean distance and is given as
(

2
ro

)2
, ro can be expressed as a positive

constant which is a radius which determines the neighboring data point. Hence, the
potential of a data point depends on its proximity to other data points [42]. In clustering
data spaces, the radius must be selected carefully because its size determines the number
of clusters.

2.2.2. Grid Partitioning (GP)

One of the most important steps is to decide on the ideal amount and types of fuzzy
rules [43]. Subtractive clustering is one of several automated techniques available for this
purpose. Clustering is achieved by dividing the input space into rectangular subspaces by
axis-parallel partition based on a predefined number of MFs and their types per dimension.
The number of fuzzy rules and the input have an exponential connection, signifying that
the number of fuzzy rules in a system with n inputs and m MFs for each variable will be
mn [44]. In response, massive computer memory is needed. This is a significant drawback
of the GP approach, and this restriction is known as “curse dimensionality [45]”. The
performance of the system is influenced by the size of the input, hence an adaptive GP can
be employed to optimize the size and location of the fuzzy grid areas [46].

2.2.3. Fuzzy c-Means Clustering (FCM)

The FCM clustering method is a fuzzed variation of the k-means algorithm, which was
derived from the traditional Euclidean distance function and incorporates hyperspherical
clusters [47]. An estimate of the cluster center serves as the algorithm’s first step. This
methodology provides a membership degree to each data point and leads the data centers
by regularly updating the centers and the membership of each data point, in contrast
to hard clustering methodologies, in which each observation could only directly relate
to a single and only one cluster [40,48,49]. In addition to its speed-boosting capability,
the FCM offers the advantage that it does not restrict cluster boundaries, which allows
objects to belong to more than one group rather than to a single group exclusively [50]. The
expression in Equation (9) is utilized to minimize the distance center to each datum for
each fuzzy group n and vector xi, i = 1, 2 . . . n.

E =
N

∑
i=1

n

∑
k=0

Um
ij ‖xi − c2

j ‖ (9)

where Um
ij is the degree of membership, Um

ij ∈ (0, 1), m is the weighting exponent, which
is any number concerning (1 ≤ m ≤ ∞), xi is the data points, cj is the centroid of clusters,
and C is the number of clusters. Equation (10) indicates the Uij of the data point in the j
cluster at any iteration.

Uij=

∑C
k=1

(
‖xi − cj‖
‖xi − cj‖

) 2
m−1
−1

(10)

2.3. Case Study

Lagos State is the commercial center of Nigeria due to its fast urbanization and
population growth. Lagos is the most populated metropolis in Africa, with an estimated
20 million residents spread over 3577 km2 [5]. It also has Nigeria’s greatest population
density. Geographically, Lagos is located in Southwestern Nigeria (see Figure 3). Located in
the south of the Atlantic Ocean, it is bordered by the Atlantic Ocean on the north and east
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as well as the Ogun State of Nigeria on the west [51]. It is located on latitude 6◦27′55.5192′′

N and longitude 3◦24′23.2128′′ E, respectively. There are 20 local government areas (LGA)
in it, and 16 of them compose the high-density metropolitan region [52]. The state has two
seasons: a rainy season from April to October and a dry season from November to March.
This is due to the interaction between the warm, humid marine tropical air mass and the
hot, dry continental air mass from the interior [53]. Year-round, the air is quite humid,
with monthly maximum average temperatures ranging from 28.6 ◦C in July/August to
33.7 ◦C in March [54]. The level of temperature and humidity during the different seasons
alters people’s lifestyles and inevitably their energy consumption. The same is true during
the pandemic. Consequently, this study utilizes electricity consumption data (during the
COVID-19 pandemic) from ten key districts in Lagos (see Figure 3) for model development.

2.4. Data Collection

This paper investigates the impact of clustering techniques and other essential param-
eters for estimating the power usage of ten Lagos districts (see Figure 3). The forecasting
model was developed using the historical energy data of ten districts in Lagos, which were
obtained from Eko Electricity Distribution Company (EKEDC) for the period between 1
January 2019 and 31 December 2020. Similarly, corresponding essential meteorological
data for the same period was obtained from the nearby weather stations reported by Visual
Crossing Weather Data. The meteorological inputs are maximum temperature, minimum
temperature, humidity, and wind speed, respectively. The output of the model is electricity
consumption (MWh). The total number of data obtained was divided into training (70%),
testing (15%), and validation (15%) for the development of the model. The architectural
design of the model is presented in Figure 4. Owing to the fact clustering plays an important
role in the operation of ANFIS, a comprehensive comparative study is conducted between
the three key clustering techniques while at the same time considering key parameter
variations, yielding several sub-models. As depicted in Figure 4, the meteorological data
are inputted into each of the models, namely, ANFIS-GP, ANFIS-SC, and ANFIS-FCM,
respectively. The output of the model is electricity consumption. In the end, the optimal
model is selected.

2.5. Performance Evaluation

The proposed models utilized a dataset division of 70% for training and 30% for
testing. Generally, developed models are often evaluated by applying statistical metrics
to determine their accuracy. The developed models were implemented under five perfor-
mance measures to reveal the models’ correctness between the actual electricity usage and
the predicted values. The test data were analyzed according to the same and renowned
statistical metrics for a fair comparison and testing of model reliability. Among the perfor-
mance metrics used are the Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Coefficient of variation (RCoV). In addition, the coefficient of variation of the root
mean square error (CVRMSE) and Mean Absolute Percentage Error (MAPE) are also used
to compare the performance of the developed models. The reason for this is that they are
more understandable than other performance metrics, such as RMSE or MSE because they
represent accuracy in per cent terms [24]. We also evaluated the models’ performance
based on their computational time (CT). As presented in Table 2, the more closely they
approach zero, the more trustworthy the model is, while a negative value denotes an
underestimation tendency of the model [1,55–57]. The descriptions of the performance
metrics are as follows:

Root mean square error:

RMSE =

√√√√ 1
Ns

Ns

∑
i=1

(yk − ŷk)
2 (11)
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Coefficient of variation of the root mean square error:

CVRMSE =
100
Y

√
∑N

k=1(yk − ŷk)
2

N
(12)

Mean absolute percentage error:

MAPE =
1
N

N

∑
k=1

|yk − ŷk|
yk

× 100% (13)

Mean absolute deviation:

MAE =
1
N

N

∑
k=1
|yk − ŷk| (14)

Coefficient of variation:

RCoV =
median|ŷk − ŷk_median|

ŷk_median
(15)

where k is the sample index and yk and ŷk are the actual and predicted values, respectively;
Y is the average of the actual values.
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Table 2. Performance evaluation acceptability criteria.

Metrics Value Range Description

MAPE [1,57] MAPE ≤ 10% High prediction accuracy
10% < MAPE ≤ 20% Good prediction
20% < MAPE ≤ 50% Reasonable prediction

MAPE > 50% Inaccurate prediction
RMSE, CVRMSE, MAE, and RCoV _ The lower, the better

3. Results and Discussion

An overview of the experimental and statistical results is presented and discussed in
this section. The models are executed on a Microsoft Windows 10 operating system with an
Intel (R) CPU @3.20 GHz and 16 GB of RAM. For a fair comparison, all the sub-models have
been implemented using the same platform. Table 3 shows the parameters of the developed
models, which include ANFIS-SC, ANFIS-GP, and ANFIS-FCM. The performance analysis
of the training and testing phases for the ANFIS-GP model is described in Table 4. In the
same vein, Table 5 consists of the results for the ANFIS-SC models while Table 6 is for
ANFIS-FCM. The bold fonts in the tables indicate the best results.

Table 3. Parameter settings for the ANFIS models.

Clustering Techniques Parameters Values

ANFIS-SC
Cluster radius 0.2–0.4

Maximum iteration 100

ANFIS-GP
Input MF-type pi, gbell, tri, gauss, gauss2, dsig,

trap, and psig
Maximum iteration 100

Output MF-type Linear and constant

ANFIS-FCM

Number of clusters 3–10
Number of exponents for

partitioning matrix 2

Minimum improvement 1 × 10−5

Maximum iteration 100
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Table 4. Performance analysis for ANFIS-GP models.

Sub-Models
Input

MF-Type
Output

MF-Type
Performance Metrics

MAPE (%) MAE RCoV CVRMSE RMSE CT

ANFIS-GP1 gauss-MF linear
Training 5.0138 472.8122 0.0700 7.0274 687.40497

30.0878Testing 84.1609 7.3954 × 103 0.1225 346.2284 32,611.3971

ANFIS-GP2 gauss2-MF constant
Training 9.4504 814.5582 0.0460 11.7296 1123.9006

27.7249Testing 12.5516 1.1631 × 103 0.0482 19.2452 1902.3109

ANFIS GP3 psig-MF constant
Training 9.1262 801.4651 0.0356 11.5814 1122.0374

29.6727Testing 13.6967 1.2211 × 103 0.0405 20.1592 1942.6808

ANFIS-GP4 dsig-MF constant
Training 9.3543 815.7195 0.0268 11.7613 1137.9259

24.2021Testing 11.8197 1.0390 × 103 0.0309 14.8571 1436.2819

ANFIS-GP5 gbell-MF linear
Training 5.1877 486.7460 0.0552 7.6887 751.8639

39.4217Testing 61.5922 5.7619 × 103 0.1146 222.4340 20,966.8652

ANFIS-GP6 gbell-MF constant
Training 8.8232 779.5360 0.0449 11.0775 1069.8740

27.0600Testing 13.1720 1.1779 × 103 0.0452 18.6001 1805.5231

ANFIS-GP7 pi-MF constant
Training 10.3207 882.4454 0.0288 12.6490 1208.959654 46.1492
Testing 12.1423 1.1783 × 103 0.0310 16.8299 1672.9600

ANFIS-GP8 trap-MF constant
Training 9.1756 823.4156 0.0332 11.6138 1130.8751

29.3157Testing 13.5419 1.0960 × 103 0.0429 15.7328 1498.1607

Table 5. Performance analysis for ANFIS-SC models.

Sub-Models CR MAPE (%) MAE RCoV CVRMSE RMSE CT

ANFIS-SC1 0.20
Training 2.0576 201.0070 0.0728 2.9255 283.939928

39.0700Testing 60.6256 5.7020 × 103 0.1853 131.5269 12,621.8789

ANFIS-SC2 0.25
Training 7.7495 691.5490 0.0626 9.7370 944.158461

15.2957Testing 13.0112 1.1325 × 103 0.0660 15.7447 1514.2368

ANFIS-SC3 0.30
Training 8.5915 756.0585 0.0631 10.5997 1024.873313

16.7884Testing 13.2075 1.2014 × 103 0.0695 18.0500 1747.5688

ANFIS-SC4 0.35
Training 9.2934 822.7136 0.0609 11.2543 1088.581692

13.0126Testing 11.6966 1.0468 × 103 0.0553 14.4775 1400.4314

ANFIS-SC5 0.40
Training 9.7865 864.8082 0.0306 12.1638 1181.081709

13.0404Testing 10.1282 858.7494 0.0357 12.3323 1182.2446

Table 6. Performance analysis for ANFIS-FCM models.

Sub-Models Number of
Clusters

Performance Metrics

MAPE (%) MAE RCoV CVRMSE RMSE CT

ANFIS-FCM1 3
Training 8.8971 807.7366 0.0486 11.1069 1084.3716

12.3577Testing 12.7277 1.0389 × 103 0.0526 14.9356 1413.3285

ANFIS-FCM2 4
Training 9.1943 804.2966 0.0522 11.6728 1119.8581

12.1095Testing 11.2632 1.0641 × 103 0.0522 14.9091 1469.540

ANFIS-FCM3 5
Training 9.5025 825.5622 0.0631 11.6820 1122.0839

12.6918Testing 9.3122 898.5070 0.0586 11.5727 1137.6024

ANFIS-FCM4 6
Training 7.8826 714.3356 0.0491 9.9487 961.4013

12.1603Testing 12.5762 1.1284 × 103 0.0449 15.2612 1479.4627

ANFIS-FCM5 7
Training 7.9179 704.8515 0.0643 10.0507 972.3543

14.4743Testing 11.8698 1.0346 × 103 0.0716 14.0547 1358.9270

ANFIS-FCM6 8
Training 7.5298 689.9388 0.0623 9.4583 917.2727

12.0877Testing 17.2638 1.4172 × 103 0.0709 31.8057 3057.7771

ANFIS-FCN7 9
Training 7.2745 661.4251 0.0646 9.1091 885.1362

12.9587Testing 13.2125 1.1575 × 103 0.0516 18.1648 1738.3412

ANFIS-FCN8 10
Training 7.1858 660.2679 0.0653 9.2931 905.1756

11.7112Testing 12.9859 1.1093 × 103 0.0777 16.2063 1542.1511

The membership function (MF) used in the design of the FIS for a GP-based ANFIS is
key to its optimal operation [42]. An MF in fuzzy set theory describes the degree of truth
(“partial truth instead of TRUE or FALSE, 0 or 1”) of a crisp value in the range 0 to 1 [58].
This assists in the design of practical scenarios that contain ambiguity or have ill-defined
issues. In response, multiple MF-types were used to build the ANFIS-GP, featuring five
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distinct previously defined statistical measures (namely, MAPE, MAE, RCoV, and RMSE)
culminating in eight sub-models. Based on the testing phase of the sub-models as depicted
in Table 4, the dsig-MF outclassed the other sub-models with the highest accuracy (88.2%),
followed by the other sub-models in decreasing order: pi-MF (87.9%), gauss2-MF (87.4%),
gbell-MF (linear) (86.9%), trap-MF (86.4581), psig-MF (86.4581%), gbell-MF (constant)
(33.8%), and gauss-MF (15.8%). A further point to be noted, as depicted in Table 4, is that
linear MF-type output sub-models performed more poorly than constant MF-type output
sub-models for the Sugeno-type FIS.

In terms of the MAE under the testing phase, the best performance was obtained from
the ANFIS-GP4 by having the minimum MAEdsig–MF (1.0390 × 103) in comparison to other
sub-models. However, as depicted in Table 4, the maximum values for the MAE were
obtained from ANFIS-GP1 (MAEgauss–MF = 7.3954 × 103) and ANFIS-GP5 (MAEgbell–MF

= 5.7619 × 103). Similarly, the ANFIS-GP4 maintained its superior performance with the
minimum RCoVdsig–MF (0.0309), CVRMSEdsig–MF(14.8571), and RMSEdsig–MF(1436.2819),
respectively. A computational time (CT) evaluation is important for GP due to the com-
putational intensity associated with the large rule base that results in curse dimension-
ality [42,45]. As presented in Table 4, the maximum CT was delivered by ANFIS-GP7
(CTpi−MF = 46.1492), while the sub-model with the best CT belongs to the ANFIS-GP4
(CTdsig−MF = 24.2021). Performance analysis of ANFIS-GP sub-models revealed that ANFIS-
GP4 with input MF-type “dsig-MF” and output MF-type “constant” delivered the best
overall results.

One common technique for clustering data is the SC algorithm. However, a cru-
cial component that impacts the effectiveness of the clustering results is each cluster’s
radius [59,60]. As a result, the impact of the clustering radius (CR) was examined for the
ANFIS-SC varying the CR in the range of 0.2–0.4 for different sub-models. The results of
the different sub-models with diverse CR values are reported in Table 5. Considering the
testing phase, the best sub-model accuracy is demonstrated by ANFIS-SC5 with an accuracy
of 89.9%, followed by ANFIS-SC4 (88.3%), ANFIS-SC2 (87%), ANFIS-SC3 (86.8%), and
ANFIS-SC1 (39.37%). Additionally, the best performance for the MAE and RCoV statistical
metrics was exhibited by the ANFIS-SC5 (MAE = 858.7494; RCoV = 0.0357) compared to
the other sub-models. ANFIS-SC5 performed similarly, with the lowest error values for
the CVRMSE (12.3323) and RMSE (1182.2446), surpassing other approaches. Nonetheless,
ANFIS-SC4 performed somewhat better in terms of CT (13.0126 s) than ANFIS-SC5, which
had a CT value of 13.0304 s.

The number of clusters in the FCM plays a key role in its performance. An ANFIS-
based FCM model has the challenging task of determining the number of clusters, so
determining the number of clusters takes a variety of experiments. In response, a different
number of clusters are examined and tested under the five statistical metrics and the CT
for the ANFIS-FCM models. ANFIS-FCM3 outperformed other sub-models in terms of
accuracy throughout the testing phase (Table 6), achieving an accuracy of 90.7% while
using five clusters. Furthermore, the minimal error for the MAE (898.5070) was provided
by the ANFIS-FCM3 compared to other sub-models. The ANFIS-FCM3 maintained its
ideal performance under the error performance CVRMSE and the RMSE, with 11.5727 and
1137.6024, respectively. However, the ANFIS-FC3 delivered a better performance in terms
of CT. The observation of Table 6 suggests that the number of clusters is not necessarily a
determining factor for optimal performance. This finding is consistent with that of Wiharto
and Suryani [61], who found that increasing the number of clusters may not always result
in the best performance and that several experiments may be necessary to determine the
number that is best for a proposed model.

Comparison between Optimal Sub-Models

This session evaluates the performance of the optimal sub-models in the three pre-
viously stated scenarios. Table 7 displays the comparison of the three best sub-models
obtained from earlier analysis. The comparison of the three sub-models is shown in
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Figure 5a,b. The graph between the actual and predicted electricity consumption for the
three optimum sub-models is also shown in Figures 6–8, along with the error graphs. Taking
the testing phase into account, the results from Table 7 show that the three models pro-
vided good results in the prediction of electricity consumption; however, the ANFIS-FCM3,
with five clusters, delivered the best model prediction accuracy of 90.7% compared to
ANFIS-SC5 (CR = 0.40) with 89.9% and ANFIS-GP4 (dsigMF, constant) with 88.2%. ANFIS-
FCM3 (with five clusters) again produced the smallest values for the RMSE (1137.6024) and
CVRMSE (11.5727) when compared with the other sub-models. Nevertheless, as shown in
Table 7 and Figure 5b, the ANFIS-SC5 (with CR = 0.40) surpassed the other two sub-optimal
models in terms of the MAE. Additionally, the ANGIS-GP4 (with dsigMF, constant) demon-
strated better results in terms of the RCoV statistical metrics. That said, the ANFIS-FCM3
(with five clusters), maintained its best performance for the CT with the smallest value of
12.6918 s (Figure 5a).

Table 7. Optimal sub-models comparison.

Sub-Models Parameters
Performance Metrics

MAPE (%) MAE RCoV CVRMSE RMSE CT

ANFIS-GP4 dsigMF, constant 11.8197 1.0390 × 103 0.0309 14.8571 1436.2819 24.2021
ANFIS-SC5 CR = 0.40 10.1282 858.7494 0.0357 12.3323 1182.2446 13.0404

ANFIS-FCM3 Number of clusters = 5 9.3122 898.5070 0.0586 11.5727 1137.6024 12.6918

According to the results, the ANFIS-FCM3 (with five clusters) provided the best
performance among the three sub-optimal models. This is similar to the findings that
identified the FCM as a recognized clustering approach due to its benefit of resilience
to ambiguity and ability to retain significantly more data than any other hard clustering
method [62,63]. Table 8 presents the comparison of the best sub-optimal model with related
works on electricity consumption prediction. As seen in Table 8, the comparison of the
ANFIS-FCM3 is encouraging with a better MAPE, RMSE, and CVRMSE. The present study
is also notable for its use of several performance metrics, which provide a good means of
estimating model performance.
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Figure 6. Optimal ANFIS-GP4 sub-model.
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Figure 7. Optimal ANFIS-SC5 sub-model.
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Table 8. Comparison of the sub-optimal model with previous works, involving energy usage prediction.

Reference Model Case Study
Performance Metrics

MAPE (%) MAE RCoV CVRMSE RMSE CT

Adedeji et al. [41] ANFIS South Africa 20.3900 - - - 5,485,068.99 1.0900
Moon et al. [24] ANN South Korea 9.7600 - - 15.0000 - -
Cao et al. [64] RF China 9.6400 - - 12.5700 - -

Cao et al. [64] Support Vector
Regression China 10.6700 - - 13.6800 - -

Present study ANFIS Nigeria 9.3122 898.5070 0.0586 11.5727 1137.6024 12.6918

4. Conclusions and Future Work

Energy consumption forecasting is crucial for operational and strategic planning.
This is particularly vital in the event of unanticipated occurrences. This study examined
the performance of clustering techniques and the ANFIS model parameters in predicting
energy consumption during the COVID-19 pandemic, using Lagos Nigeria as a case study.
We studied the effects of prominent clustering techniques, such as GP, SC, and FCM, as
well as other key parameters, including clustering radius (CR), input and output MFs,
and numbers of clusters. The experimental data used comprised five meteorological input
variables and electricity consumption as the output. A number of sub-models were obtained
after several simulations were performed. The performance evaluation was carried out
using well-known statistical metrics: MAPE, MAE, RCoV, CVRMSE, and RMSE. The sub-
models with the best performance in each of the stages of the comparative study were
ANFIS-GP4, ANFIS-SC5, and ANFIS-FCM3, respectively. Further comparison between the
aforementioned sub-models showed that the ANFIS-FCM3 outscored its counterparts with
the minimal values of the MAPE (9.3122%), CVRMSE (11.5727), and RMSE (1137.6024). In
the same vein, the ANFIS-FCM3 demonstrated the best computation time (CT) with the
smallest value of 12.6918 s. The following are some major inferences drawn from this study:

• In comparison to other sub-models, the ANFIS-FCM (with five clusters) is more
efficient, with minimal prediction errors and exhibiting an adequate improvement
in prediction. Based on the results, it can be concluded that the FCM is found to be
a better clustering technique for the ANFIS to model electricity consumption. This
is congruent with the findings of Abdulshahed et al. [50], which indicated that, in
addition to its speed-boosting capability, the FCM clustering approach has the benefit
of not restricting cluster borders, allowing objects to belong to more than one group
rather than just one.

• Our study also revealed that the type of the data clustering technique selected as well
as other significant parameters have a substantial impact on the accuracy of ANFIS
modeling.

• Furthermore, it may not always be the case with ANFIS-FCM that adding more clusters
improve performance; hence, it may be essential to conduct multiple experiments to
determine the optimal number of clusters for a given model.

• Making strategic energy plans and planning for the future requires knowing how
much energy is produced and consumed. The present study will help to provide a
reliable energy forecast in ensuring energy supply stability and better operations for
end-users, especially during unforeseen eventualities.

The present study considered a medium-term forecast (MTF) based on the data ob-
tained. However, future studies may consider increasing the experimental data and input
variables for a more robust model. Although the number of datasets used in this work is
not much less than those of other researchers, working with more data would produce
more precise results. Further studies may consider enhancing the accuracy of forecasts by
using new-generation metaheuristic algorithms.
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Abbreviations
The following abbreviations are used this manuscript.

ANFIS Adaptive neuro-fuzzy inference systems
ANN Artificial neural networks
GP Grid partitioning
SC Subtractive clustering
FCM Fuzzy c-means
CR Clustering radius
RMSE Root Mean Square Error
MR Multiple Regression
DNN Deep Neural Network
GP Genetic Programing
SVM Support Vector Machine
MAE Mean Absolute Error
RCoV Coefficient of Variation
CVRMSE Coefficient of Variation of the Root Mean Square Error
STLF Short term load forcasting
MAPE Mean Absolute Percentage Error
ML Machine Learning
FIS Fuzzy inference systems
SELU Scaled exponential linear unit
LGA Local government areas
GM Gray models
HVAC Heating, ventilation, and air conditioning
LM Levenberg–Marquardt
MF Membership Function
CT Computational time
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