Selected Characteristics of Municipalities as Determinants of Enactment in Municipal Spatial Plans for Renewable Energy Sources—The Case of Poland
Abstract
:1. Introduction
2. Literature Review
2.1. Renewable Energy Sources in Spatial Planning Systems
- The implementation of integrated development planning is an opportunity to take into account different perspectives in spatial planning, including investment and implementation of renewable energy sources;
- The compatibility between strategic spatial planning and regulatory spatial planning is very important;
- The inclusion of investments in renewable energy sources in spatial plans should be oriented towards two main objectives:
- (a)
- Developing renewable energy sources on a national scale;
- (b)
- Reducing potential spatial conflicts and reconciling differing perspectives and points of view.
- Poland has a severe shortage of renewable energy sources. At the same time, Polish settlements are dispersed, creating a unique basis for implementing micro-installations of renewable energy sources [7].
- In the Polish spatial planning system, spatial plans at the local level are optional. Their enactment is, therefore, at the discretion of the municipalities;
- Studies of spatial planning conditions and directions, i.e., strategic spatial planning acts. They must be enacted in every municipality. However, they do not contain legally binding guidelines addressed to investors and property owners. Instead, they are binding when drawing up local spatial plans [10,32];
- Local spatial plans—municipalities are not obliged to adopt them. However, if they adopt a spatial plan for a particular area, it will be a binding basis for realising the investment. At the local level, there is one type of spatial plan (unlike in other countries). If a spatial plan is not enacted in a particular area, some investments can be carried out based on a location decision.
2.2. Characteristics of the Polish Spatial Planning System
3. Research Methods
4. Date and Results
4.1. Data
- The number of spatial plans for wind power investments as of 2015;
- The number of spatial plans for wind power investments from 2016 to 2020 (adopted by the indicated deadline);
- The number of spatial plans allocating the possibility of locating micro-installations of renewable energy sources as of 2015;
- The number of spatial plans allocating renewable energy micro-installations by 2020.
4.2. Linear Regression Model
4.3. Aggregate Models—Amplified Classification Trees
4.4. Models without a Teacher—Association Rules
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nadin, V.; Fernández Maldonado, A.M.; Zonneveld, W.; Stead, D.; Dąbrowski, M.; Piskorek, K.; Sarkar, A.; Schmitt, P.; Smas, L.; Cotella, G. COMPASS–Comparative Analysis of Territorial Governance and Spatial Planning Systems in Europe: Applied Research 2016–2018; ESPON & TU Delft: Luxembourg, 2018; Available online: https://research.tudelft.nl/en/publications/compass-comparative-analysis-of-territorial-governance-and-spatia (accessed on 2 September 2022).
- Nadin, V.; Stead, D.; Dąbrowski, M.; Fernandez-Maldonado, A.M. Integrated, adaptive and participatory spatial planning: Trends across Europe. Reg. Stud. 2020, 55, 791–803. [Google Scholar] [CrossRef]
- Wiehe, J.; Von Haaren, C.; Walter, A. How to achieve the climate targets? Spatial planning in the context of the German energy transition. Energy Sustain. Soc. 2020, 10, 10. [Google Scholar] [CrossRef]
- Blaszke, M.; Nowak, M.; Śleszyński, P.; Mickiewicz, B. Investments in Renewable Energy Sources in the Concepts of Local Spatial Policy: The Case of Poland. Energies 2021, 14, 7902. [Google Scholar] [CrossRef]
- Foryś, I.; Nowak, M. The malfunction of public authorities in the spatial planning system. Argum. Oeconomica 2022, 2022, 265–289. [Google Scholar] [CrossRef]
- Forys, I.; Blaszke, M. The Role of Administrative Courts in Shaping the Content of Local Spatial Development Plans in Poland. Eur. Res. Stud. J. 2021, 3, 220–232. [Google Scholar] [CrossRef]
- Śleszyński, P.; Nowak, M.; Brelik, A.; Mickiewicz, B.; Oleszczyk, N. Planning and Settlement Conditions for the Development of Renewable Energy Sources in Poland: Conclusions for Local and Regional Policy. Energies 2021, 14, 1935. [Google Scholar] [CrossRef]
- Myszczyszyn, J.; Suproń, B. Relationship among Economic Growth (GDP), Energy Consumption and Carbon Dioxide Emission: Evidence from V4 Countries. Energies 2021, 14, 7734. [Google Scholar] [CrossRef]
- Dacko, M.; Paluch, L.; Mickiewicz, B.; Mickiewicz, P.; Nowak, M. Energy Production and Consumption in the European Union—Assessment of Changes in the Aspects of Sustainability and the Energy Self-Sufficiency. Eur. Res. Stud. J. 2020, 1, 1100–1112. [Google Scholar] [CrossRef]
- Nowak, M.J.; Śleszyński, P.; Legutko-Kobus, P. Spatial Planning in Poland: Law, Property Market and Planning Practice; SpringerBriefs in Geography; Springer International Publishing: Cham, Germany, 2022; ISBN 978-3-030-96938-7. [Google Scholar]
- Davoudi, S. Climate Change and the Role of Spatial Planning in England. In Climate Change Governance; Knieling, J., Leal Filho, W., Eds.; Climate Change Management; Springer: Berlin/Heidelberg, Germany, 2013; pp. 153–169. ISBN 978-3-642-29830-1. [Google Scholar]
- Yiannakou, A.; Salata, K.-D. Adaptation to Climate Change through Spatial Planning in Compact Urban Areas: A Case Study in the City of Thessaloniki. Sustainability 2017, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Becker, D.; Greiving, S. Climate and Demographic Change: The Need for an Integrative Approach to Spatial Planning in Germany. 2018. Available online: https://metropolitics.org/Climate-and-Demographic-Change-The-Need-for-an-Integrative-Approach-to-Spatial.html (accessed on 2 September 2022).
- Asarpota, K.; Nadin, V. Energy Strategies, the Urban Dimension, and Spatial Planning. Energies 2020, 13, 3642. [Google Scholar] [CrossRef]
- Calvert, K.; Smit, E.; Wassmansdorf, D.; Smithers, J. Energy Transition, Rural Transformation and Local Land-Use Planning: Insights from Ontario, Canada. Environ. Plan. E Nat. Space 2021, 5, 1035–1055. [Google Scholar] [CrossRef]
- Geissler, S.; Arevalo-Arizaga, A.; Radlbauer, D.; Wallisch, P. Linking the National Energy and Climate Plan with Municipal Spatial Planning and Supporting Sustainable Investment in Renewable Energy Sources in Austria. Energies 2022, 15, 645. [Google Scholar] [CrossRef]
- Osorio-Aravena, J.; Frolova, M.; Terrados-Cepeda, J.; Muñoz-Cerón, E. Spatial Energy Planning: A Review. Energies 2020, 13, 5379. [Google Scholar] [CrossRef]
- Stoeglehner, G. Integrated Spatial and Energy Planning: A Means to Reach Sustainable Development Goals. Evol. Inst. Econ Rev. 2020, 17, 473–486. [Google Scholar] [CrossRef] [Green Version]
- Teschner, N.; Alterman, R. Preparing the Ground: Regulatory Challenges in Siting Small-Scale Wind Turbines in Urban Areas. Renew. Sustain. Energy Rev. 2018, 81, 1660–1668. [Google Scholar] [CrossRef]
- Klepinger, M.R. Michigan Land Use Guidelines for Siting Wind Energy Systems; Michigan State University: East Lansing, MI, USA, 2007. [Google Scholar]
- Gross, S. Renewables, Land Use, and Local Opposition in the United States; Brookings Institution: Washington, WA, USA, 2020. [Google Scholar]
- Komunikat Komisji do Parlamentu Europejskiego, Rady Europejskiej, Rady, Europejskiego Komitetu Ekonomiczno-Społecznego i Komitetu Regionów. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:fc930f14-d7ae-11ec-a95f-01aa75ed71a1.0010.02/DOC_1&format=PDF (accessed on 2 September 2022).
- Alterman, R. Takings International: A Cross-National. In Takings International. In A Comparative Perspective on Land Use Regulations and Compensation Rights; Alterman, R., Ed.; American Bar Association: Chicago, IL, USA, 2010; pp. 1–75. ISBN 978-1-60442-550-5. [Google Scholar]
- Buitelaar, E. The Fraught Relationship between Planning and Regulation. Land Use Plans and the Conflicts in Dealing with Uncertainty. In Planning by Law and Property Rights Reconsidered; Routledge: London, UK, 2012; pp. 207–218. [Google Scholar]
- Gielen, D.M.; Tasan-Kok, T. Flexibility in Planning and the Consequences for Public-Value Capturing in UK, Spain and the Netherlands. Eur. Plan. Stud. 2010, 18, 1097–1131. [Google Scholar] [CrossRef] [Green Version]
- Thornley, A.; Newman, P. International Competition, Urban Governance and Planning Projects: Malmö, Birmingham and Lille. Eur. Plan. Stud. 1996, 4, 579–593. [Google Scholar] [CrossRef]
- Getimis, P. Comparing Spatial Planning Systems and Planning Cultures in Europe. The Need for a Multi-Scalar Approach. Plan. Pract. Res. 2012, 27, 25–40. [Google Scholar] [CrossRef]
- Ondrejička, V.; Ladzianska, Z.; Finka, M.; Baloga, M.; Husár, M. Spatial Planning Tools as a Key Element for Implementation of the Strategy for an Integrated Governance System of Historical Built Areas within the Central Europe Region. IOP Conf. Ser. Mater. Sci. Eng. 2020, 960, 022088. [Google Scholar] [CrossRef]
- Tosics, I. Urban Machinery: Inside Modern European Cities Edited by Mikael Hard and Thomas J. Misa. J. Urban Aff. 2010, 32, 393–394. [Google Scholar] [CrossRef]
- Cotella, G. Spatial Planning in Poland between European Influences and Dominant Market Forces. In Spatial Planning Systems and Practices in Europe. A Comparative Perspective on Continuity and Change; Routledge: London, UK, 2014; pp. 255–277. [Google Scholar]
- Sołtys, J. Strategic Aspects in Spatial Planning-Theory and Practice in Largest Cities of Poland. In Proceedings of the 5th International Multidisciplinary Scientific Conference on Social Sciences and Arts SGEM, Albena, Bulgaria, 26 August–1 September 2018; pp. 503–510. [Google Scholar]
- Wagner, M. Evading Spatial Planning Law—Case Study of Poland. Land Use Policy 2016, 57, 396–404. [Google Scholar] [CrossRef]
- Solarek, K.; Kubasińska, M. Local Spatial Plans as Determinants of Household Investment in Renewable Energy: Case Studies from Selected Polish and European Communes. Energies 2021, 15, 126. [Google Scholar] [CrossRef]
- Szyba, M. Spatial planning and the development of renewable energy sources in Poland. Acta Innov. 2021, 39, 5–14. [Google Scholar] [CrossRef]
- Ciepiela, A.; Łasocha, M. Urban sprawl and spatial planning documents: The case of the municipality of Biecz, Poland. Przestrz. I Forma 2020, 2020, 231–248. [Google Scholar] [CrossRef]
- Andrzejewska, A.K. Challenges of Spatial Planning in Poland in the Context of Global Climate Change—Selected Issues. Buildings 2021, 11, 596. [Google Scholar] [CrossRef]
- Gorzym-Wilkowski, W.A.; Trykacz, K. Public Interest in Spatial Planning Systems in Poland and Portugal. Land 2022, 11, 73. [Google Scholar] [CrossRef]
- Śleszyński, P.; Kowalewski, A.; Markowski, T.; Legutko-Kobus, P.; Nowak, M. The Contemporary Economic Costs of Spatial Chaos: Evidence from Poland. Land 2020, 9, 214. [Google Scholar] [CrossRef]
- Lityński, P.; Hołuj, A. Urban Sprawl Risk Delimitation: The Concept for Spatial Planning Policy in Poland. Sustainability 2020, 12, 2637. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wang, L.; Wu, C.; Xu, Z.; Zhuo, Y.; Shen, X. Spatial Planning Implementation Effectiveness: Review and Research Prospects. Land 2022, 11, 1279. [Google Scholar] [CrossRef]
- He, J. Evaluation of Plan Implementation: Peri-Urban Development and the Shanghai Master Plan 1999–2020; TU Delft: Delft, The Netherlands, 2015; ISBN 94-6186-398-5. [Google Scholar]
- Loh, C.G. Assessing and Interpreting Non-Conformance in Land-Use Planning Implementation. Plan. Pract. Res. 2011, 26, 271–287. [Google Scholar] [CrossRef]
- Dawkins, C.J. Transaction Costs and the Land Use Planning Process. J. Plan. Lit. 2000, 14, 507–518. [Google Scholar] [CrossRef]
- Shahab, S.; Clinch, J.P.; O’Neill, E. Accounting for Transaction Costs in Planning Policy Evaluation. Land Use Policy 2018, 70, 263–272. [Google Scholar] [CrossRef]
- Silva, E.A.; Healey, P.; Harris, N.; Van den Broeck, P. The Routledge Handbook of Planning Research Methods; Routledge: London, UK, 2015; ISBN 0-415-72795-2. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: New York, NY, USA; London, UK, 2017; ISBN 978-1-315-13947-0. [Google Scholar]
- Gotnar, E. Nieparametryczna Metoda Dyskryminacji i Regresji; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2001; ISBN 83-01-13369-4. [Google Scholar]
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Morgan Kaufmann Publisher: Burlington, MA, USA, 2011; ISBN 978-0-12-374856-0. [Google Scholar]
- Han, J.; Kamber, M. Data Mining: Concepts and Techniques, 3rd ed.; Elsevier: Burlington, MA, USA, 2012; ISBN 978-0-12-381479-1. [Google Scholar]
- Reimer, M.; Getimis, P.; Blotevogel, H. Spatial Planning Systems and Practices in Europe: A Comparative Perspective on Continuity and Changes; Routledge: London, UK, 2014; ISBN 1-317-91910-6. [Google Scholar]
- Nowak, M.J. Planowanie i Zagospodarowanie Przestrzenne: Komentarz Do Ustawy i Przepisów Powiązanych; Wydawnictwo CH Beck: Munich, Germany, 2020; ISBN 83-8198-044-5. [Google Scholar]
- Nowak, M.; Petrisor, A.-I.; Mitrea, A.; Kovács, K.F.; Lukstina, G.; Jürgenson, E.; Ladzianska, Z.; Simeonova, V.; Lozynskyy, R.; Rezac, V.; et al. The Role of Spatial Plans Adopted at the Local Level in the Spatial Planning Systems of Central and Eastern European Countries. Land 2022, 11, 1599. [Google Scholar] [CrossRef]
Variable Symbol | Variable Description | Comments |
---|---|---|
Municipality | Municipality | N = 2477 |
Voivodship | Voivodship | N = 16 |
NMP | Number of Spatial Plans | |
NMA | Area of Municipal | |
NSP_1 | Number of Spatial Plans | until 2015 |
NSP_2 | Number of Spatial Plans | from 2016 |
NSP | Number of Spatial Plans | |
ASP_1 | Area of Spatial Plans | until 2015 |
ASP_2 | Area of Spatial Plans | from 2016 |
ASP | Area of Spatial Plans | |
NSP_WT_1 | Number of Wind Turbines Spatial Plans | until 2015 |
NSP_WT_2 | Number of Wind Turbines Spatial Plans | from 2016 |
NSP_MIP_1 | Number of Micro-Installation Provisions Spatial Plans | until 2015 |
NSP_MIP_2 | Number of Micro-Installation Provisions Spatial Plans | from 2016 |
NSP_MIPM_1 | Number of Housing Micro-Installation Provisions Spatial Plans | until 2015 |
NSP_MIPM_2 | Number of Housing Micro-Installation Provisions Spatial Plans | from 2016 |
TOTAL_OZE_1 | Number of OZE Spatial Plans | until 2015 |
TOTAL_OZE_2 | Number of OZE Spatial Plans | until 2015 |
TOTAL_OZE | Number of OZE Spatial Plans |
TOTAL_OZE | NMP | NMA | NSP | ASP | |
---|---|---|---|---|---|
Average | 4.58 | 15,448.13 | 12,624.35 | 42.28 | 7715.60 |
Median | 1.00 | 7505.00 | 11,190.00 | 21.00 | 2776.00 |
Total | 11,338 | 38,265,013 | 31,270,525 | 104,720 | 19,111,529 |
Minimum | 0.000 | 1290.000 | 332.000 | 0.000 | 0.000 |
Maximum | 129 | 1,794,166 | 63,370 | 1314 | 99,740 |
Lower quartile | 0.000 | 4882.000 | 7679.000 | 6.000 | 454.000 |
Upper quartile | 5.00 | 13,204.00 | 15,963.00 | 50.00 | 10,978.00 |
Standard deviation | 9.70 | 51,145.37 | 7875.48 | 69.68 | 11,111.61 |
Coefficient of variation | 211.85 | 331.08 | 62.38 | 164.82 | 144.02 |
Skewness | 5.53 | 21.45 | 1.45 | 5.83 | 2.48 |
Kurtosis | 45.73 | 640.57 | 3.47 | 64.73 | 9.05 |
b | Standard Error | t (2472) | p | |
---|---|---|---|---|
Constant | 1.822336 | 0.312207 | 5.83696 | 0.000000 |
NMP | 0.000035 | 0.000004 | 9.83296 | 0.000000 |
NMA | −0.000097 | 0.000021 | −4.61673 | 0.000004 |
NSP | 0.061794 | 0.002613 | 23.64519 | 0.000000 |
ASP | 0.000108 | 0.000015 | 7.26390 | 0.000000 |
R2 = 0.325 |
b | Standard Error | t (164) | p | R2 | ||
---|---|---|---|---|---|---|
Constant | Mazowieckie | 3.985538 | 1.000084 | 3.98520 | 0.000084 | 0.75 |
NMP | 0.000005 | 0.000005 | 0.85754 | 0.391813 | ||
NMA | −0.000056 | 0.000081 | −0.68809 | 0.491915 | ||
NSP | 0.214879 | 0.009204 | 23.34599 | 0.000000 | ||
ASP | 0.000078 | 0.000041 | 1.89497 | 0.059030 | ||
Constant | Opolskie | −1.93657 | 1.266709 | −1.52882 | 0.131088 | 0.67 |
NMP | 0.00020 | 0.000041 | 4.98500 | 0.000005 | ||
NMA | 0.00004 | 0.000093 | 0.39908 | 0.691121 | ||
NSP | 0.07943 | 0.022460 | 3.53662 | 0.000747 | ||
ASP | 0.00003 | 0.000045 | 0.68569 | 0.495308 | ||
Constant | Wielkopolskie | 2.259691 | 1.216309 | 1.85783 | 0.064524 | 0.62 |
NMP | −0.000050 | 0.000016 | −3.00253 | 0.002986 | ||
NMA | −0.000104 | 0.000085 | −1.22854 | 0.220552 | ||
NSP | 0.078537 | 0.006851 | 11.46278 | 0.000000 | ||
ASP | 0.000012 | 0.000061 | 0.19214 | 0.847806 | ||
Constant | Zachodniopomorskie | −0.627914 | 0.773372 | −0.81192 | 0.418625 | 0.85 |
NMP | 0.000192 | 0.000016 | 11.88476 | 0.000000 | ||
NMA | −0.000013 | 0.000034 | −0.37712 | 0.706827 | ||
NSP | 0.023581 | 0.010998 | 2.14416 | 0.034263 | ||
ASP | −0.000005 | 0.000025 | −0.18674 | 0.852211 |
Antecedent | Consequent | Support (%) | Confidence (%) | Increment | |
---|---|---|---|---|---|
1 | TOTAL_OZE/NSP = 1 | ASP/NMP = 1, NMA/NMP = 0 | 23.86 | 40.87 | 1.31 |
2 | TOTAL_OZE/NSP = 1 | ASP/NMP = 1, NMA/NMP = 0, NSP/NMP = 1 | 23.86 | 40.87 | 1.31 |
3 | TOTAL_OZE/NSP = 1 | NMA/NMP = 0, NSP/NMP = 1 | 23.86 | 40.87 | 1.31 |
4 | TOTAL_OZE/NSP = 1 | NMA/NMP = 0 | 24.06 | 41.22 | 1.30 |
5 | TOTAL_OZE/NSP = 0 | ASP/NMP = 1 | 37.99 | 91.27 | 0.96 |
6 | TOTAL_OZE/NSP = 0 | ASP/NMP = 1, NSP/NMP = 1 | 37.99 | 91.27 | 0.96 |
7 | TOTAL_OZE/NSP = 0 | NSP/NMP = 1 | 37.99 | 91.27 | 0.96 |
8 | TOTAL_OZE/NSP = 1 | ASP/NMP = 1 | 56.60 | 96.96 | 1.03 |
9 | TOTAL_OZE/NSP = 1 | ASP/NMP = 1, NSP/NMP = 1 | 56.60 | 96.96 | 1.03 |
10 | TOTAL_OZE/NSP = 1 | NSP/NMP = 1 | 56.60 | 96.96 | 1.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaszke, M.; Foryś, I.; Nowak, M.J.; Mickiewicz, B. Selected Characteristics of Municipalities as Determinants of Enactment in Municipal Spatial Plans for Renewable Energy Sources—The Case of Poland. Energies 2022, 15, 7274. https://doi.org/10.3390/en15197274
Blaszke M, Foryś I, Nowak MJ, Mickiewicz B. Selected Characteristics of Municipalities as Determinants of Enactment in Municipal Spatial Plans for Renewable Energy Sources—The Case of Poland. Energies. 2022; 15(19):7274. https://doi.org/10.3390/en15197274
Chicago/Turabian StyleBlaszke, Małgorzata, Iwona Foryś, Maciej J. Nowak, and Bartosz Mickiewicz. 2022. "Selected Characteristics of Municipalities as Determinants of Enactment in Municipal Spatial Plans for Renewable Energy Sources—The Case of Poland" Energies 15, no. 19: 7274. https://doi.org/10.3390/en15197274
APA StyleBlaszke, M., Foryś, I., Nowak, M. J., & Mickiewicz, B. (2022). Selected Characteristics of Municipalities as Determinants of Enactment in Municipal Spatial Plans for Renewable Energy Sources—The Case of Poland. Energies, 15(19), 7274. https://doi.org/10.3390/en15197274