Verification of Tilt Effect on the Performance and Wake of a Vertical Axis Wind Turbine by Lifting Line Theory Simulation
Abstract
:1. Introduction
2. Simulation Methods and Turbine Models
3. Results
3.1. Validation of Simulation Conditions
3.2. Tilt Effect on the Performance of VAWT
3.2.1. Power and Thrust Coefficient of Tilted VAWT
3.2.2. The Wake Field of the Tilted VAWT
3.2.3. Ground Effect
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
power coefficient | |
lift coefficient | |
drag coefficient | |
thrust coefficient | |
D | rotor diameter [m] |
cross-sectional area [m2] | |
sectional lift force [N] | |
line element vector [m] | |
sectional circulation [m2/s] | |
H | rotor height [m] |
air density [kg/m3] | |
rotor radius [m] | |
relative position vector [m] | |
induced velocity from vortex line element [m/s] | |
relative velocity [m/s] | |
free-stream velocity [m/s] | |
attack angle [deg] |
References
- International Energy Agency. Offshore Wind Outlook. 2019. Available online: https://www.iea.org/reports/offshore-wind-outlook-2019 (accessed on 8 April 2022).
- Global Wind Energy Council. Global Offshore Wind Report. 2021. Available online: https://gwec.net/global-offshore-wind-report-2021/ (accessed on 8 April 2022).
- Pope, K.; Dincer, I.; Naterer, G.F. Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines. Renew. Energy 2010, 35, 2102–2113. [Google Scholar] [CrossRef]
- Mendoza, V.; Chaudhari, A.; Goude, A. Performance and wake comparison of horizontal and vertical axis wind turbines under varying surface roughness conditions. Wind. Energy 2019, 22, 458–472. [Google Scholar] [CrossRef]
- Johnston, S.F., Jr. Proceedings of the Vertical Axis Wind Turbine (VAWT) Design Technology Seminar for Industry; SANDIA REPORT, SAND80-0984; Sandia National Laboratories: Albuquerque, NM, USA, 1982. [Google Scholar]
- Sutherland, H.J.; Berg, D.E.; Ashwill, T.D. A Retrospective of VAWT Technology; SANDIA REPORT, SAND2012-0304; Sandia National Laboratories: Albuquerque, NM, USA, 2012. [Google Scholar]
- Daegyoum, K.; Morteza, G. Efficiency improvement of straight-bladed vertical–axis wind turbines with an upstream deflector. J. Wind Eng. Ind. Aerodyn. 2013, 115, 48–52. [Google Scholar] [CrossRef]
- Watanabe, K.; Takahashi, S.; Ohya, Y. Application of a diffuser structure to vertical-axis wind turbines. Energies 2016, 9, 406. [Google Scholar] [CrossRef]
- Hou, L.; Shen, S.; Wang, Y. Numerical study on aerodynamic performance of different forms of adaptive blades for vertical axis wind turbines. Energies 2021, 14, 880. [Google Scholar] [CrossRef]
- Hara, Y.; Horita, N.; Yoshida, S.; Akimoto, H.; Sumi, T. Numerical analysis of effects of arms with different cross-sections on straight-bladed vertical axis wind turbine. Energies 2019, 12, 2106. [Google Scholar] [CrossRef]
- Aihara, A.; Mendoza, V.; Goude, A.; Bernhoff, H. Comparison of three-dimensional numerical methods for modeling of strut effect on the performance of a vertical axis wind turbine. Energies 2022, 15, 2361. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Z.; Song, Q.; Zhang, Y.; Li, Q. Effect of blade pitch angle on the aerodynamic characteristics of a straight-bladed vertical axis wind turbine based on experiments and simulations. Energies 2018, 11, 1514. [Google Scholar] [CrossRef]
- Horb, S.; Fuchs, R.; Immas, A.; Silvert, F.; Deglaire, P. Variable pitch control for vertical-axis wind turbines. Wind Eng. 2018, 42, 128–135. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Sahin, A.Z.; Ouakad, H.M. Numerical investigation of a vertical axis wind turbine performance characterization using new variable pitch control scheme. J. Energy Resour. Technol. 2020, 142, 031302. [Google Scholar] [CrossRef]
- Akimoto, H.; Tanaka, K.; Uzawa, K. Floating axis wind turbines for offshore power generation-a conceptual study. Environ. Res. Lett. 2011, 6, 044017. [Google Scholar] [CrossRef]
- Blusseau, P.; Patel, M.H. Gyroscopic effects on a large vertical axis wind turbine mounted on a floating structure. Renew. Energy 2012, 46, 31–42. [Google Scholar] [CrossRef]
- Ishie, J.; Wang, K.; Ong, M.C. Structural dynamic analysis of semi-submersible floating vertical axis wind turbines. Energies 2016, 9, 1047. [Google Scholar] [CrossRef]
- Paulsen, U.S.; Borg, M.; Madsen, H.A.; Pedersen, T.F.; Hattel, J.; Ritchie, E.; Ferreira, C.S.; Svendsen, H.; Berthelsen, P.A.; Smadja, C. Outcomes of the DeepWind conceptual design. Energy Procedia 2015, 80, 329–341. [Google Scholar] [CrossRef]
- Wen, T.R.; Wang, K.; Cheng, Z.; Ong, M.C. Spar-type vertical-axis wind turbines in moderate water depth: A feasibility study. Energies 2018, 11, 555. [Google Scholar] [CrossRef]
- Lignarolo, L.E.M.; Ragni, D.; Krishnaswami, C.; Chen, Q.; Ferreira, C.J.S.; Bussel, G.J.W. Experimental analysis of the wake of a horizontal-axis wind-turbine model. Renew. Energy 2014, 70, 31–46. [Google Scholar] [CrossRef]
- Rezaeiha, A.; Micallef, D. Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model. Renew. Energy 2021, 179, 859–876. [Google Scholar] [CrossRef]
- Tescione, G.; Ragni, D.; He, C.; Ferreira, C.J.S.; Bussel, G.J.W. Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renew. Energy 2014, 70, 47–61. [Google Scholar] [CrossRef]
- Yuan, Z.; Jiang, J.; Zang, J.; Sheng, Q.; Sun, K.; Zhang, X.; Ji, R. A fast two-dimensional numerical method for the wake simulation of a vertical axis wind turbine. Energies 2021, 14, 49. [Google Scholar] [CrossRef]
- Guo, J.; Lei, L. Flow characteristics of a straight-bladed vertical axis wind turbine with inclined pitch axes. Energies 2020, 13, 6281. [Google Scholar] [CrossRef]
- Marten, D. QBLADE v0.95 Guidelines for Lifting Line Free Vortex Wake Simulations; Technical University Berlin: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- Van Garrel, A. Development of a Wind Turbine Aerodynamics Simulation Module; Technical Report ECN-C-03-079; ECN Wind Energy: Petten, The Netherlands, 2003. [Google Scholar]
- Marten, D.; Lennie, M.; Pechlivanoglou, G.; Nayeri, C.N.; Paschereit, C.O. Implementation, Optimization, and Validation of a Nonlinear Lifting Line-Free Vortex Wake Module Within the Wind Turbine Simulation Code QBLADE. J. Eng. Gas Turbines Power 2016, 138, 072601. [Google Scholar] [CrossRef]
- Senga, H.; Akimoto, H.; Fukai, K. Power Coefficient Estimation of Floating Axis Wind Turbine by Lifting Line Theory. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1051, 012057. [Google Scholar] [CrossRef]
- Battisti, L.; Benini, E.; Brighenti, A.; Castelli, M.R.; Dell’Anna, S.; Dossena, V.; Persico, G.; Paulsen, U.S.; Pedersen, T.F. Wind tunnel testing of the DeepWind demonstrator in design and tilted operating conditions. Energy 2016, 111, 484–497. [Google Scholar] [CrossRef]
- Tavernier, D.D.; Sakib, M.; Griffith, T.; Pirrung, G.; Paulsen, U.; Madsen, H.; Keijer, W.; Ferreira, C. Comparison of 3D aerodynamic models for vertical-axis wind turbines: H-rotor and Φ-rotor. Int. J. Phys. Conf. Ser. 2020, 1618, 052041. [Google Scholar] [CrossRef]
- Madsen, H.A. On the Ideal and Real Energy Conversion in a Straight Bladed Vertical Axis Wind Turbine. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 1983. [Google Scholar]
- Beddoes, T.S. A near wake dynamic model. In Proceedings of the AHS National Specialist Meeting on Aerodynamics and Aeroacoustics, Arlington, TX, USA, 25–27 February 1987. [Google Scholar]
- Murray, J.C.; Barone, M. The development of CACTUS, a wind and marine turbine performance simulation code. In Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011; AIAA 2011–147. AIAA: Reston, VA, USA, 2011. [Google Scholar]
- Bachant, P.; Goude, A.; Wosnik, M. Turbines Foam/Turbinesforam: v0.0.8, Zenodo. 2018. Available online: https://doi.org/10.5281/zenodo.1210366 (accessed on 8 April 2022).
- Balduzzi, F.; Bianchini, A.; Carnevale, E.A.; Ferrari, L.; Magnani, S. Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building. Appl. Energy 2012, 97, 921–929. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Solidity | 0.085 |
Tip Speed Ratio | 3 |
Radius of Rotor [m] | 2.5 |
Aspect Ratio | 0.5, 1, 2, 5 |
Number of Blades | 3 |
Blade Profile | NACA0018 |
Property | Value |
---|---|
Tilt angle of rotor [deg] | 0:5:40 |
Solidity | 0.085 |
Tip Speed Ratio | 3 |
Radius of Rotor [m] | 2.5 |
Aspect Ratio | 1, 2 |
Number of Blades | 3 |
Blade Profile | NACA0018 |
Method | ||
---|---|---|
AC2D | 0.510 | 0.653 |
HAWC2-NW | 0.400 | 0.570 |
CACTUS, fixed-wake | 0.509 | 0.647 |
CACTUS, free-wake | 0.486 | 0.643 |
TurbineFoam | 0.522 | 0.660 |
TurbineFoam, end effects | 0.469 | 0.578 |
QBlade (this study) | 0.503 | 0.665 |
Aspect Ratio | 1.0 | 2.0 | ||
---|---|---|---|---|
Tilt Angle [deg] | ||||
0 | 0.503 | 0.665 | 0.500 | 0.662 |
5 | 0.504 | 0.667 | 0.497 | 0.660 |
10 | 0.505 | 0.667 | 0.489 | 0.655 |
15 | 0.498 | 0.662 | 0.476 | 0.647 |
20 | 0.483 | 0.652 | 0.455 | 0.632 |
25 | 0.462 | 0.638 | 0.431 | 0.614 |
30 | 0.431 | 0.618 | 0.394 | 0.588 |
35 | 0.394 | 0.592 | 0.356 | 0.559 |
40 | 0.350 | 0.559 | 0.313 | 0.524 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senga, H.; Umemoto, H.; Akimoto, H. Verification of Tilt Effect on the Performance and Wake of a Vertical Axis Wind Turbine by Lifting Line Theory Simulation. Energies 2022, 15, 6939. https://doi.org/10.3390/en15196939
Senga H, Umemoto H, Akimoto H. Verification of Tilt Effect on the Performance and Wake of a Vertical Axis Wind Turbine by Lifting Line Theory Simulation. Energies. 2022; 15(19):6939. https://doi.org/10.3390/en15196939
Chicago/Turabian StyleSenga, Hidetaka, Hiroki Umemoto, and Hiromichi Akimoto. 2022. "Verification of Tilt Effect on the Performance and Wake of a Vertical Axis Wind Turbine by Lifting Line Theory Simulation" Energies 15, no. 19: 6939. https://doi.org/10.3390/en15196939
APA StyleSenga, H., Umemoto, H., & Akimoto, H. (2022). Verification of Tilt Effect on the Performance and Wake of a Vertical Axis Wind Turbine by Lifting Line Theory Simulation. Energies, 15(19), 6939. https://doi.org/10.3390/en15196939