Implementation of the Results of Experimental Studies with the Use of the Sclerometric Method of Plane Elements in Wooden Buildings
Abstract
:1. Introduction
- Quality assessment of wooden structural elements, consisting of the propagation of acoustic waves, which should be performed at a specific humidity, density, and assessment of wood defects, as these factors have a significant impact on the speed of wave propagation. However, it is useful for many elements made of wood of a similar anatomy, species, and shape. The method should not be considered as reliable without verifying the results using other methods [1,34],
- Wood structure by means of X-ray examination (X-ray chamber), which allows for volumetric examination with real-time imaging. Elements of variable thickness and shape are ideal for tests using this method, which allows for the examining of critical zones with a significant intensity of defects, impurities, or fibre thinning. An image processing system can indicate various defects in the wood structure. In order for wooden elements to be examined with an X-ray chamber, their dimensions must not exceed 700 × 1200 mm [34],
- Assessment of the quality and mechanical properties of wooden structural elements using the sclerometric method with a Schmidt hammer (WoodPecker by DRC). The test is easy to perform, however, the instruction informs that it should be carried out from the front of the beam with a specific spacing of test points and the results should be referred to the parameters given in the correlation of the needle penetration depth and elasto-mechanical properties [24,35].
2. Materials and Methods
2.1. Determination of Moisture Content in Wood
2.2. Wood Density
- mw—mass of the sample before drying with moisture content W [g],
- aw, bw, lw—linear dimensions of the cross-section and the length of the sample with moisture content W [mm],
- Vw—volume of the sample with moisture content W.
2.3. Determination of Static Bending Strength
- Fmax—maximum load [N],
- l—span of the sample measured between supports [mm],
- b—width of the sample [mm], h—height of the sample [mm].
2.4. Testing with a Light Schmidt Hammer
3. Results
- −
- For pine wood—mean density ρmean = 432 kg/m3, variation coefficient 8.9%, standard deviation 39.44, and the 5% density quantile of the test was 362.38 kg/m3,
- −
- For spruce wood—mean density ρmean = 427.46 kg/m3, variation coefficient 9.2%, standard deviation 29.44, and the 5% density quantile of the test was 378.88 kg/m3.
- —squares of differences between ranks of corresponding values xi i yi,
- n—number of data pairs.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nowak, T. Analiza Pracy Statycznej Zginanych Belek Drewnianych Wzmacnianych Przy Użyciu CFRP [Analysis of Static Work of Bent Wooden Beams Reinforced with CFRP]; PRE Report no. 4/07; PRE: Wrocław, Poland, 2007. [Google Scholar]
- Nowogońska, B. Intensity of damage in the aging process of buildings. Arch. Civ. Eng. 2020, 66, 19–31. [Google Scholar] [CrossRef]
- Szymczak-Graczyk, A.; Walczak, Z.; Ksit, B.; Szyguła, Z. Multi-criteria diagnostics of historic buildings with the use of 3D laser scanning (a case study). Bull. Pol. Acad. Sci. Tech. Sci. 2022, 70, e140373. [Google Scholar] [CrossRef]
- Ksit, B.; Szymczak-Graczyk, A.; Nazarewicz, B. Diagnostics and renovation of moisture affected historic buildings. Civ. Environ. Eng. Rep. 2022, 1, 59–73. [Google Scholar] [CrossRef]
- Dinwoodie, J.M. Timber—A review of the structure—mechanical property relationship. J. Microsc. 1975, 104, 3–33. [Google Scholar] [CrossRef]
- Kollman, F.P. Verformung Und Bruchgeschehen Bei Holz Als Einen Anisotropen, Inhomogenen, Porigen Festkörper; VDJ 520; VDJ: Berlin, Germany, 1967. [Google Scholar]
- Miller, R.B. Wood Handbook—Wood as an Engineering Material. Forest Products Laboratory, Forest Service U.S. Department of Agriculture: Madison, WI, USA, 1999. [Google Scholar] [CrossRef]
- Thibaut, B.; Gril, J.; Fournier, M. Mechanics of wood and trees: Some new highlights for an old story. Comptes Rendus De L’academie Des. Sci. Ser. IIB Mech. 2001, 329, 701–716. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Qing, H. Micromechanical modeling of mechanical behavior and strength of wood: State of the art review. Comput. Mater. Sci. 2008, 44, 363–370. [Google Scholar] [CrossRef]
- Walczak, A.; Pieniak, D.; Oszust, M.; Blukacz, M.; Ogrodnik, P. Comparative study of the effect of scale in the modified wood compression test. Inst. Nauk. Wydawniczy SPATIUM 2014, 15, 122–126. [Google Scholar]
- Noskowiak, A.; Pajchrowski, G.; Szumiński, G.; Jabłoński, L. Strength and modulus of elasticity of pine structural round timber. For. Wood Technol. 2015, 92, 300–306. [Google Scholar]
- Krzysik, F. Nauka o Drewnie [Science about Wood]; PWN: Warsaw, Poland, 1974. [Google Scholar]
- Turrini, G.; Piazza, M. Investigations in situ for the determination of the mechanical characteristics of the wooden structures. In Proceedings of the CIAS Seminar on the Topic Actuality of the Testing for the Storage of Materials and Structures, Bolzano, Italy, 24–25 May 1991; pp. 183–198. [Google Scholar]
- Fojutowski, A.; Noskowiak, A.; Kot, M.; Kropacz, A.; Stangierska, A. The assessment of mechanical properties of wood treated with ionic liquids. Drew. Pr. Nauk. Doniesienia Komun. 2010, 53, 21–37. [Google Scholar]
- Rosa, R.J. Wood Handbook: Wood as an Engineering Material. Forest Products Laboratory, Forest Service U.S. Department of Agriculture: Madison, WI, USA, 2010. [Google Scholar] [CrossRef]
- Sobolev, J.S. Drevesina Kak Konstrukcionnyj Material, Izd; Lesnaja Promyšlennost: Moskva, Russia, 1979. [Google Scholar]
- Kopač, J.; Šali, S. Wood an important material in manufacturing technology. J. Mater. Process. Technol. 2013, 133, 133–142. [Google Scholar] [CrossRef]
- Malaga-Toboła, U.; Łapka, M.; Kurek, M.; Łukasiewicz, M.; Kocira, S. Wood modification methods. Przemysł Chem. 2017, 7, 1563–1566. [Google Scholar] [CrossRef]
- Goodman, J.R.; Bodig, J. Orthotropic elastic properties of wood. J. Struct. Div. 1970, 96, 2301–2319. [Google Scholar] [CrossRef]
- Madsen, B. Structural Behaviour of Timber; Timber Engineering Ltd: North Vancouver, BC, Canada, 1992. [Google Scholar]
- Sobolev, J.S. Zavisimost’ predela pročnosti materiala kleenych derevjannych konstrukcji ot absoljutnych razmerov obrazcow pri izgibe. Mech. Obrab. Drev. 1975, 5, 5. [Google Scholar]
- Beljankin, F.P.; Jacenko, W.F. Deformativnost’ I Soprotivljaemost’ Drevesiny Kak Uprugo—Vjazko—Plastičeskogo Tela, Izd; Akademii Nauk USSR: Kiev, Ukraine, 1957. [Google Scholar]
- Nielsen, L.F. Wood as a Cracked Viscoelastic Material; Forintek, Western Forest Products Laboratory: Vancouver, BC, Canada, 1985. [Google Scholar]
- Menditto, G.; Bufarini, S.; D’Aria, V.; Massaccesi, M. Experimental results of an extensive series of tests to trace the correlation curves for the wood sclerometer. In Proceedings of the 11th National Conference on Non Destructive Testing Monitoring Diagnostics, Milan, Italy, 13–15 October 2005. [Google Scholar]
- Żaboklicki, A. Rehabilitacja drewnianych konstrukcji w zabytkowych obiektach architektury i budownictwa [Rehabilitation of wooden structures in historic buildings and architecture]. In Proceedings of the Konferencja Naukowo-Techniczna, Konserwacja, Wzmacnianie i Modernizacja Budowlanych Obiektów Historycznych i Współczesnych [Science and Technology Conference, Conservation, Reinforcement, and Modernization of Historical and Contemporary Construction Facilities], Kielce, Poland, 22–23 November 2001; pp. 163–179. [Google Scholar]
- Bodig, J.; Jayne, B. Mechanics of Wood and Wood Composites; Van Nostrand Reinhold Company: New York, NY, USA; Cincinnati, OH, USA; Toronto, ON, Canada; London, UK; Melbourne, Australia, 1982. [Google Scholar]
- Dzbeński, W.; Kozakiewicz, P.; Krzosek, S. Wytrzymałościowe Sortowanie Tarcicy Budowlano—Konstrukcyjnej [Strength Sorting of Construction Sawn Timber]; Wydawnictwo SGGW: Warsaw, Poland, 2005. [Google Scholar]
- Farruggia, F.; Perre, P. Microscopic tensile test in the transverse plane of earlywood and latewood parts of spruce. Wood Sci. Technol. 2000, 34, 65–82. [Google Scholar] [CrossRef]
- Gustafsson, P.J. Crack propagation in wood and wood products. In Proceedings of the Second International Conference of the ESWM, Stockholm, Szwecja, 8–10 December 2003. [Google Scholar]
- Jayne, B.A. Theory and Design of Wood and Fiber Composite Materials; Orthotropic Elasticity; Syracuse University Press: Syracuse, NY, USA, 1972. [Google Scholar]
- Bucur, V. Nondestructive Characterization and Imaging of Wood; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Kokociński, W. Nieniszcząca Metoda Badania Jakości Drewna W Konstrukcjach Budowlanych [Non-Destructive Method of Wood Quality Testing in Building Structures]; Zeszyty Problemowe, Badania nieniszczące: Warsaw, Poland, 2001; pp. 231–236. [Google Scholar]
- Malaga-Toboła, U.; Łapka, M.; Tabor, S.; Niesłony, A.; Findura, P. Influence of wood anisotropy on its mechanical properties in relation to the scale effect. Int. Agrophys. 2019, 33, 337–345. [Google Scholar] [CrossRef]
- Linan, C.R.; de Hita, P.R.; de Cozar, J.C.G. Application of ultrasonic techniques, as a non destructive method, for the evaluation of timber structures. In Proceedings of the 5th World Conference on Timber Engineering, Montreux, Switzerland, 17–20 August 1998; pp. 806–807. [Google Scholar]
- DRC. Manual Woodpecker 16; Instrukcja użytkowania Młotka Schmidta do Drewna Firmy DRC [DRC Company’s Schmidt Wood Hammer User Manual]; DRC: Warsaw, Poland, 2016. [Google Scholar]
- PN-EN 384:2011; Drewno Konstrukcyjne Oznaczanie Wartości Charakterystycznych Właściwości Mechanicznych I Gęstości [Structural timber—Determination of Characteristic Values of Mechanical Properties and Density]. Polski Komitet Normalizacyjny; Polish Committee for Standardization: Warsaw, Poland, 2011.
- PN-EN 13183-1:2004; Moisture Content of a Piece of Sawn Timber. Part 1: Determination by Oven Dry Method. Polski Komitet Normalizacyjny; Polish Committee for Standardization: Warsaw, Poland, 2004.
- PN-EN 408+A1:2012; Timber Structures. Structural Timber and Glued Laminated Timber. Determination of Some Physical and Mechanical Properties. Polski Komitet Normalizacyjny; Polish Committee for Standardization: Warsaw, Poland, 2012.
- PN-D-04103:1977; Drewno. Oznaczanie Wytrzymałości Na Zginanie Statyczne [Determination of Static Bending Strength]. Polski Komitet Normalizacyjny; Polish Committee for Standardization: Warsaw, Poland, 1977.
- Rahman, N.A. A Course in Theoretical Statistics; Charles Griffin and Company: New York, NY, USA, 1968. [Google Scholar]
- Kozakiewicz, P.; Jankowska, A.; Mamiński, M.; Marciszewska, K.; Ciurzycki, W.; Tulik, M. The Wood of Scots Pine (Pinus sylvestris L.) from Post-Agricultural Lands Has Suitable Properties for the Timber Industry. Forests 2020, 11, 1033. [Google Scholar] [CrossRef]
- Delegou, E.T.; Mourgi, G.; Tsilimantou, E.; Ioannidis, C.; Moropoulou, A. A multidisciplinary approach for historic buildings diagnosis: The case study of the Kaisariani monastery. Heritage 2019, 2, 1211–1232. [Google Scholar] [CrossRef]
- Ascione, F.; Ceroni, F.; De Masi, R.F.; de’Rossi, F.; Pecce, M.R. Historical buildings: Multidisciplinary approach to structural/energy diagnosis and performance assessment. Appl. Energy. 2019, 185, 1517–1528. [Google Scholar] [CrossRef]
- Fais, S.; Casula, G.; Cuccuru, F.; Ligas, P.; Bianchi, M.G. An innovative methodology for the non-destructive diagnosis of architectural elements of ancient historical buildings. Sci. Rep. 2018, 8, 4334. [Google Scholar] [CrossRef]
- Lourenço, P.B. Computations on historic masonry structures. Prog. Struct. Eng. Mater. 2002, 4, 301–319. [Google Scholar] [CrossRef]
- Iringová, A.; Idunk, R. Solution of fire protection in historic buildings. Civ. Environ. Eng. 2016, 12, 84–93. [Google Scholar] [CrossRef]
- Gołdyn, M.; Urban, T. Failures of the Cast-Iron Columns of Historic Buildings—Case Studies. Infrastructures 2020, 5, 71. [Google Scholar] [CrossRef]
- MasciaI, M.T.; Lahr, F.A.R. Remarks on orthotropic elastic models applied to wood. Mater. Res. 2006, 9, 301–310. [Google Scholar] [CrossRef]
- PN-D-04102:1979; Drewno—Oznaczanie Wytrzymałości Na Ściskanie Wzdłuż Włókien [Wood—Determination of Compressive Strength along Fibers]. Polski Komitet Normalizacyjny; Polish Committee for Standardization: Warsaw, Poland.
- Martín-Garín, A.; Millán-García, J.A.; Terés-Zubiaga, J.; Oregi, X.; Rodríguez-Vidal, I.; Baïri, A. Improving Energy Performance of Historic Buildings through Hygrothermal Assessment of the Envelope. Buildings 2021, 11, 410. [Google Scholar] [CrossRef]
- Szymczak-Graczyk, A.; Gajewska, G.; Laks, I.; Kostrzewski, W. Influence of Variable Moisture Conditions on the Value of the Thermal Conductivity of Selected Insulation Materials Used in Passive Buildings. Energies 2022, 15, 2626. [Google Scholar] [CrossRef]
- Kyzioł, L.; Czech, M. Influence of the content of the polymer for anisotropy of the wood strength for tensile. Acta Mech. Autom. 2011, 5, 17–24. [Google Scholar]
- Giefing, D.F. Pruning Trees in the Forest; Publishing house Agricultural University August Cieszkowski: Poznań, Poland, 1999. [Google Scholar]
- Taffe, W. Gütebewertung des Fichtenholzes Verschiedener Standorte Und Ertagsklassen in Rheinland-Pfalz; Hann: Münden, Germany, 1955. [Google Scholar]
- Heydari, H.; Jafari, A.; Mobli, H.; Rafee, S.; Portahmasi, K. Physical properties of walnut limbs. Int. Agrophys. 2011, 25, 197–199. [Google Scholar]
- Pazdrowski, W.; Spława-Neyman, S. Research on selected properties of Scots pine (Pinus silvestris L.) wood against the background of biological classes in the stand. Folia For. Pol. 1993, 13, 133–145. [Google Scholar]
- Giefing, D.F.; Pazdrowski, W. Deforestation and Classification of Roundwood; Publisher of the University of Life Sciences: Poznań, Poland, 2012; Volume 130. [Google Scholar]
- Obidziński, S. Pelletization process of postproduction plant waste. Int. Agrophys. 2012, 26, 279–284. [Google Scholar] [CrossRef]
- Szyszlak-Bargłowicz, J.; Zając, G.; Piekarski, W. Energy biomass characteristics of chosen plants. Int. Agrophys. 2012, 26, 175–179. [Google Scholar] [CrossRef]
- Manrique, E.; Belenguer, T.; Dotta, G.; Montoro, T. Measurement of wood structural features by optical techniques. Int. Agrophys. 1994, 8, 653–660. [Google Scholar]
- Gancarz, M.; Konstankiewicz, K.; Zgórska, K. Cell orientation in potato tuber parenchyma tissue. Int. Agrophys. 2014, 28, 15–22. [Google Scholar] [CrossRef]
- Szymczak-Graczyk, A.; Laks, I.; Ksit, B.; Ratajczak, M. Analysis of the Impact of Omitted Accidental Actions and the Method of Land Use on the Number of Construction Disasters (a Case Study of Poland). Sustainability 2021, 13, 618. [Google Scholar] [CrossRef]
- Available online: http://www.tyble.pl/index.php/porady/188-wlasciwosci-fizyczne-i-mechaniczne-majace-wplyw-na-zastosowanie-drewna-jako-materialu-budowlanego.html (accessed on 20 August 2022).
- Rescalvo, F.J.; Timbolmas, C.; Bravo, R.; Gallego, A. Experimental and Numerical Analysis of Mixed I-214 Poplar/Pinus Sylvestris Laminated Timber Subjected to Bending Loadings. Materials 2020, 13, 3134. [Google Scholar] [CrossRef]
- Mirski, R.; Dziurka, D.; Chuda-Kowalska, M.; Kawalerczyk, J.; Kuliński, M.; Łabęda, K. The Usefulness of Pine Timber (Pinus sylvestris L.) for the Production of Structural Elements. Part II: Strength Properties of Glued Laminated Timber. Materials 2020, 13, 4029. [Google Scholar] [CrossRef]
- Kucharska, M.; Jaskowska-Lemańska, J. Active Thermography in Diagnostics of Timber Elements Covered with Polychrome. Materials 2021, 14, 1134. [Google Scholar] [CrossRef]
- Parliament of the Republic of Poland. The Building Law Act of July 7, 1994 (As Amended); Parliament of the Republic of Poland: Warsaw, Poland, 1994.
- Parliament of the Republic of Poland. Ordinance of the Minister of Infrastructure of April 12, 2002 on Technical Conditions to be Met by Buildings and Their Location (As Amended); Parliament of the Republic of Poland: Warsaw, Poland, 2002.
- ICOMOS. International charter for the conservation and restoration of monuments and sites (the Venice Charter 1964). In Proceedings of the 2nd International Congress of Architecs and Technicians of Historical Monuments, Venice, Italy, 5–31 May 1964. [Google Scholar]
- Tejedor, B.; Lucchi, E.; Bienvenido-Huertas, D.; Nardi, I. Non-destructive techniques (NDT) for the diagnosis of heritage buildings: Traditional procedures and futures perspectives. Energy Build. 2022, 263, 112029. [Google Scholar] [CrossRef]
- Brząkała, W. Probabilistyczny model dyskretnych imperfekcji materiałowych. In Zastosowanie Mechaniki W Budownictwie Lądowym I Wodnym [Probabilistic Model of Discrete Material Imperfections. The Use of Mechanics in Civil Engineering]; Kazimierz, J., Wyd, S., Eds.; IBW PAN: Gdańsk, Poland, 2001; pp. 27–34. [Google Scholar]
Maximum Bending Force (kN) | Bending Stress at Maximum Bending Force (N/mm2) | Elongation During Bending at Maximum Bending Force (mm) | |
---|---|---|---|
Mean | 1.890 | 85.042 | 8.590 |
Standard Deviation | 0.211 | 9.498 | 2.085 |
Minimum | 1.482 | 66.698 | 4.191 |
Maximum | 2.284 | 102.785 | 11.64 |
Scope | 0.802 | 36.087 | 7.449 |
Number | Edge | Average Result [mm] | Standard Deviation | Head/Side Ratio | Bending Strength [MPa] |
---|---|---|---|---|---|
1 | Head | 31.75 | 2.31 | 0.66 | 75.925 |
Side | 21.00 | 1.24 | |||
2 | Head | 34.79 | 2.84 | 0.64 | 84.698 |
Side | 22.18 | 2.07 | |||
3 | Head | 34.09 | 1.59 | 0.65 | 78.967 |
Side | 22.15 | 2.04 | |||
4 | Head | 36.28 | 1.29 | 0.73 | 73.878 |
Side | 26.53 | 2.55 | |||
5 | Head | 35.96 | 1.94 | 0.73 | 75.025 |
Side | 26.32 | 3.04 | |||
6 | Head | 36.74 | 0.69 | 0.76 | 74.386 |
Side | 27.98 | 1.00 | |||
7 | Head | 31.56 | 1.24 | 0.67 | 66.698 |
Side | 21.15 | 2.03 | |||
8 | Head | 33.46 | 2.01 | 0.67 | 79.199 |
Side | 22.42 | 1.26 | |||
9 | Head | 31.95 | 2.58 | 0.73 | 78.680 |
Side | 23.32 | 1.99 | |||
10 | Head | 35.88 | 0.96 | 0.71 | 97.459 |
Side | 25.48 | 1.01 |
Number | Edge | Average Result [mm] | Standard Deviation | Head/Side Ratio | Bending Strength [MPa] |
---|---|---|---|---|---|
1 | Head | 35.53 | 1.80 | 0.74 | 40.39 |
Side | 26.40 | 1.62 | |||
2 | Head | 35.93 | 1.93 | 0.67 | 48.49 |
Side | 24.21 | 0.27 | |||
3 | Head | 33.35 | 2.77 | 0.69 | 43.47 |
Side | 23.03 | 0.85 | |||
4 | Head | 36.17 | 1.74 | 0.70 | 29.10 |
Side | 25.38 | 1.55 | |||
5 | Head | 37.25 | 0.80 | 0.66 | 36.20 |
Side | 24.77 | 0.79 | |||
6 | Head | 35.98 | 1.18 | 0.69 | 31.43 |
Side | 25.00 | 0.44 | |||
7 | Head | 35.95 | 2.10 | 0.77 | 37.74 |
Side | 27.59 | 1.24 | |||
8 | Head | 34.70 | 1.76 | 0.78 | 40.82 |
Side | 26.91 | 1.17 | |||
9 | Head | 33.28 | 2.38 | 0.66 | 67.50 |
Side | 21.90 | 0.67 | |||
10 | Head | 34.42 | 2.71 | 0.84 | 31.83 |
Side | 28.83 | 0.20 |
Pearson | ||||
---|---|---|---|---|
Series | r | t | p-Value | Alternative Hypothesis |
Pine wood | −0.6651106 | −2.5192 | 0.03585 | true correlation is greater than 0 |
Spruce wood | −0.1789348 | −0.51441 | 0.6209 | true correlation is greater than 0 |
Spearman | ||||
Series | rho | S | p-value | alternative hypothesis |
Pine wood | −0.5393939 | 254 | 0.1133 | true rho is greater than 0 |
Spruce wood | −0.2727273 | 210 | 0.4483 | true rho is greater than 0 |
Wood | Tangent Bending | Radial Bending | ||
---|---|---|---|---|
Strength [MPa] | Decrease [%] | Strength [MPa] | Decrease [%] | |
Pine | ||||
Knot-free | 55.2 | - | 50.2 | - |
With knots | 35.6 | 35.5 | 42 | 16.3 |
Spruce | ||||
Knot-free | 56.6 | - | 53 | - |
With knots | 43.2 | 23.7 | 46.4 | 12.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ksit, B.; Szymczak-Graczyk, A.; Thomas, M.; Pilch, R. Implementation of the Results of Experimental Studies with the Use of the Sclerometric Method of Plane Elements in Wooden Buildings. Energies 2022, 15, 6660. https://doi.org/10.3390/en15186660
Ksit B, Szymczak-Graczyk A, Thomas M, Pilch R. Implementation of the Results of Experimental Studies with the Use of the Sclerometric Method of Plane Elements in Wooden Buildings. Energies. 2022; 15(18):6660. https://doi.org/10.3390/en15186660
Chicago/Turabian StyleKsit, Barbara, Anna Szymczak-Graczyk, Marta Thomas, and Roman Pilch. 2022. "Implementation of the Results of Experimental Studies with the Use of the Sclerometric Method of Plane Elements in Wooden Buildings" Energies 15, no. 18: 6660. https://doi.org/10.3390/en15186660
APA StyleKsit, B., Szymczak-Graczyk, A., Thomas, M., & Pilch, R. (2022). Implementation of the Results of Experimental Studies with the Use of the Sclerometric Method of Plane Elements in Wooden Buildings. Energies, 15(18), 6660. https://doi.org/10.3390/en15186660