CO2 Emissions in Buildings: A Synopsis of Current Studies
Abstract
:1. Introduction
1.1. Overview
1.2. Aim of the Research
2. Classification
3. Airport Facilities
4. University Centers
5. Hotel Facilities
6. Public Buildings
7. Residential Buildings
7.1. Rural Residential Buildings
7.2. Urban Residential Buildings
7.3. Rural and Urban Residential Buildings
7.4. Direct and Indirect Residential Emissions
7.5. Emissions in the Residential Construction Sector
7.6. Life Cycle Emissions of Residential Buildings
7.7. Simulation of Emissions in Households
8. Residential and Commercial Buildings
9. Reviews
10. Summary
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- United Nations, Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 13 May 2020).
- International Energy Agency. 2018 Global Status Report: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; United Nations Environment Programme: Nairobi, Kenya, 2018. [Google Scholar]
- International Energy Agency. 2021 Global Status Report for Buildings and Construction: Towards a Zero-Emissions, Efficient and Resilient Buildings and Construction Sector; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Shahrokni, H.; Levihn, F.; Brandt, N. Big meter data analysis of the energy efficiency potential in Stockholm’s building stock. Energy Build. 2014, 78, 153–164. [Google Scholar] [CrossRef]
- European Parliament News. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20180301STO98928/greenhouse-gas-emissions-bycountry-and-sector-infographic (accessed on 17 July 2020).
- Publications Office of the Europen Union. EU Missions: Climate-Neutral and Smart Cities; European Union: Luxembourg, 2021. [Google Scholar]
- COM(2019) 640 Final. In The European Green Deal; European Commission: Brussels, Belgium, 2019.
- COM(2021) 609 Final. In European Missions; European Commission: Brussels, Belgium, 2021.
- Zhang, W.; Jiang, L.; Cui, Y.; Xu, Y.; Wang, C.; Yu, J.; Streets, D.G.; Lin, B. Effects of urbanization on airport CO2 emissions: A geographically weighted approach using nighttime data in China. Resour. Conserv. Recycl. 2019, 150, 104454. [Google Scholar] [CrossRef]
- Amber, K.P.; Aslam, M.W.; Mahmood, A.; Kousar, A.; Younis, M.Y.; Akbar, B.; Chaudhary, G.Q.; Hussain, S.K. Energy consumption forecasting for university sector buildings. Energies 2017, 10, 1579. [Google Scholar] [CrossRef]
- Bianco, V.; Righi, D.; Scarpa, F.; Tagliafico, L.A. Modeling energy consumption and efficiency measures in the Italian hotel sector. Energy Build. 2017, 149, 329–338. [Google Scholar] [CrossRef]
- Oluseyi, P.O.; Babatunde, O.M.; Babatunde, O.A. Assessment of energy consumption and carbon footprint from the hotel sector within Lagos, Nigeria. Energy Build. 2016, 118, 106–113. [Google Scholar] [CrossRef]
- Chan, W.W.; Lam, J.C. Prediction of pollutant emission through electricity consumption by the hotel industry in Hong Kong. Hosp. Manag. 2002, 21, 381–391. [Google Scholar] [CrossRef]
- Taylor, S.; Peacok, A.; Banfill, P.; Shao, L. Reduction of greenhouse gas emissions from UK hotels in 2030. Build. Environ. 2010, 45, 1389–1400. [Google Scholar] [CrossRef]
- Xuchao, W.; Priyadarsini, R.; Eang, L.S. Benchmarking energy use greenhouse gas emissions in Singapore´s hotel industry. Energy Policy 2010, 38, 4520–4527. [Google Scholar] [CrossRef]
- Rosselló-Batle, B.; Moià, A.; Cladera, A.; Martínez, V. Energy use, CO2 emissions and waste throughout the life cycle of a sample of hotels in the Balearic Islands. Energy Build. 2010, 42, 547–558. [Google Scholar] [CrossRef]
- Ma, H.; Du, N.; Yu, S.; Lu, W.; Zhang, Z.; Deng, N.; Li, C. Analysis of typical public building energy consumption in northern China. Energy Build. 2017, 136, 139–150. [Google Scholar] [CrossRef]
- IEA. Transition to Sustainable Buildings: Strategies and Opportunities to 2050; International Energy Agency: Paris, France, 2013. [Google Scholar]
- Shen, G.; Chen, Y.; Xue, C.; Lin, N.; Huang, Y.; Shen, H.; Wang, Y.; Li, T.; Zhang, Y.; Su, S.; et al. Pollutant emissions from improved coal- and wood-fuelled cookstoves in rural households. Environ. Sci. Technol. 2015, 49, 6590–6598. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Zeng, J.; Li, Y.; Wang, Q.; Maraseni, T.; Zhang, L.; Zhang, Z.; Clarke-Sather, A. Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China. Energy Policy 2013, 57, 133–140. [Google Scholar] [CrossRef]
- Saner, D.; Heeren, N.; Jäggin, B.; Waraich, R.A.; Hellweg, S. Housing and mobility demands of individual households and their life cycle assessment. Environ. Sci. Technol. 2013, 47, 5968–5997. [Google Scholar] [CrossRef] [PubMed]
- Huo, T.; Cao, R.; Du, H.; Zhang, J.; Cai, W.; Liu, B. Nonlinear influence of urbanization on China’s urban residential building carbon emissions: New evidence from panel threshold model. Sci. Total Environ. 2021, 772, 145058. [Google Scholar] [CrossRef] [PubMed]
- Golley, J.; Meng, X. Income inequality and carbon dioxide emissions: The case of Chinese urban households. Energy Econ. 2012, 34, 1864–1872. [Google Scholar] [CrossRef]
- Han, L.; Xu, X.; Han, L. Applying quantile regression and Shapley decomposition to analyzing the determinants of household embedded carbon emissions: Evidence from urban China. J. Clean Prod. 2015, 103, 219–230. [Google Scholar] [CrossRef]
- Liang, Y.; Cai, W.; Ma, M. Carbon dioxide intensity and income level in the Chinese megacities’ residential building sector: Decomposition and decoupling analyses. Sci. Total Environ. 2019, 677, 315–327. [Google Scholar] [CrossRef]
- Sohail, A.; Baiocchi, G.; Creutzig, F. CO2 emissions from direct energy use of urban households in India. Environ. Sci. Technol. 2015, 49, 11312–11320. [Google Scholar] [CrossRef]
- Houri, A.; Ibrahim-Korfali, S. Residential energy consumption patterns: The case of Lebanon. Int. J. Energy Res. 2005, 29, 755–766. [Google Scholar] [CrossRef]
- Stokes, D.; Lindsay, A.; Marinopoulos, J.; Treloar, A.; Wescott, G. Household carbon dioxide production in relation to the greenhouse effect. J. Environ. Manag. 1994, 40, 197–211. [Google Scholar] [CrossRef]
- Long, Y.; Yoshida, Y.; Meng, J.; Guan, D.; Yao, L.; Zhang, H. Unequal age-based household emission and its monthly variation embodied in energy consumption—A cases study of Tokyo, Japan. Appl. Energy 2019, 247, 350–362. [Google Scholar] [CrossRef]
- Qin, B.; Han, S.S. Planning parameters and household carbon emission: Evidence from high- and low-carbon neighborhoods in Beijing. Habitat. Int. 2013, 37, 52–60. [Google Scholar] [CrossRef]
- Salat, S. Energy loads, CO2 emissions and building stocks: Morphologies, typologies, energy systems and behaviour. Build. Res. Inf. 2009, 37, 5–6. [Google Scholar] [CrossRef]
- Bourdic, L.; Salat, S. Building energy models and assessment systems at the district and city scales: A review. Build. Res. Inf. 2012, 40, 518–526. [Google Scholar] [CrossRef]
- Chancel, L. Are younger generations higher carbon emitters than their elders? Inequalities, generations and CO2 emissions in France and in the USA. Ecol. Econ. 2014, 100, 195–207. [Google Scholar] [CrossRef]
- Duarte, R.; Mainar, A.; Sánchez-Chóliz, J. Social groups and CO2 emissions in Spanish households. Energy Policy 2012, 44, 441–450. [Google Scholar] [CrossRef]
- Li, J.; Zhang, D.; Su, B. The impact of social awareness and lifestyles on household carbon emissions in China. Ecol. Econ. 2019, 160, 145–155. [Google Scholar] [CrossRef]
- Büchs, M.; Schnepf, S.V. Who emits most? Associations between socio-economic factors and UK households’ home energy, transport, indirect and total CO2 emissions. Ecol. Econ. 2013, 90, 114–123. [Google Scholar] [CrossRef]
- Druckman, A.; Jackson, T. Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model. Energy Policy 2008, 36, 3177–3192. [Google Scholar] [CrossRef]
- Donglan, Z.; Dequn, Z.; Peng, Z. Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis. Energy Policy 2010, 38, 3377–3383. [Google Scholar] [CrossRef]
- Xing, R.; Hanaoka, T.; Kanamori, Y.; Masui, T. Greenhouse gas and air pollutant emissions of China’s residential sector: The importance of considering energy transition. Sustainability 2017, 9, 614. [Google Scholar] [CrossRef]
- Kerkhof, A.C.; Benders, R.M.J.; Moll, H.C. Determinants of variation in household CO2 emissions between and within countries. Energy Policy 2009, 37, 1509–1517. [Google Scholar] [CrossRef]
- Izquierdo, M.; Moreno-Rodríguez, A.; González-Gil, A.; García-Hernando, N. Air conditioning in the region of Madrid, Spain: An approach to electricity consumption, economics and CO2 emissions. Energy 2011, 36, 1630–1639. [Google Scholar] [CrossRef]
- Fan, J.; Liao, H.; Liang, Q.; Tatano, H.; Liu, C.; Wei, Y. Residential carbon emission evolutions in urban-rural divided China: An end-use and behavior analysis. Appl. Energy 2013, 101, 323–332. [Google Scholar] [CrossRef]
- Firth, S.K.; Lomas, K.J.; Wright, A.J. Targeting household energy-efficiency measures using sensitivity analysis. Build. Res. Inf. 2010, 38, 25–41. [Google Scholar] [CrossRef]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries. Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Chitnis, M.; Sorrell, S.; Druckman, A.; Firth, S.K.; Jackson, T. Turning lights into flights: Estimating direct and indirect rebound effects for UK households. Energy Policy 2013, 55, 234–250. [Google Scholar] [CrossRef]
- Streimikiene, D.; Volochovic, A. The impact of household behavioral changes on GHG emission reduction in Lithuania. Renew. Sustain. Energy Rev. 2011, 5, 4118–4124. [Google Scholar] [CrossRef]
- Kadian, R.; Dahiya, R.P.; Garg, H.P. Energy-related emissions and mitigation opportunities from the household sector in Delhi. Energy Policy 2007, 35, 6195–6211. [Google Scholar] [CrossRef]
- Yan, Y.; Pan, A.; Wu, C.; Gui, S. Factors influencing indirect carbon emission of residential consumption in China: A case of Liaoning province. Sustainability 2019, 11, 4414. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wu, G.; Wang, J.; Wei, Y. China’s carbon emissions from urban and rural households during 1992–2007. J. Clean Prod. 2011, 19, 1754–1762. [Google Scholar] [CrossRef]
- Bin, S.; Dowlatabadi, H. Consumer lifestyle approach to US energy use and the related CO2 emissions. Energy Policy 2005, 33, 197–208. [Google Scholar] [CrossRef]
- Hirano, Y.; Ihara, T.; Hara, M.; Honjo, K. Estimation of direct and indirect household CO2 emissions in 49 Japanese cities with consideration of regional conditions. Sustainability 2020, 12, 4678. [Google Scholar] [CrossRef]
- Yin, L.; Liang, D.; Yoshikuni, Y.; Zhaoling, L. Evaluation of energy-related household carbon footprints in metropolitan areas of Japan. J. Ecol. Model. 2018, 377, 16–25. [Google Scholar] [CrossRef]
- Fan, J.; Guo, X.; Marinova, D.; Wu, Y.; Zhao, D. Embedded carbon footprint of Chinese urban households: Structure and changes. J. Clean Prod. 2012, 33, 50–59. [Google Scholar] [CrossRef]
- Lina, L.; Jiansheng, Q.; Zhiqiang, Z.; Jingjing, Z.; Jinping, W.; Liping, D.; Huijuan, P.; Qin, L. Assessment and determinantsof per capita household CO2 emissions (PHCEs) based on capital city level in China. J. Geogr. Sci. 2018, 28, 1467–1484. [Google Scholar] [CrossRef]
- Duarte, R.; Mainar, A.; Sánchez-Chóliz, J. The impact of household consumption patterns on emissions in Spain. Energy Econ. 2010, 32, 176–185. [Google Scholar] [CrossRef]
- Weber, C.L.; Matthews, H.S. Quantifying the global and distributional aspects of American household carbon footprint. Ecol. Econ. 2008, 66, 379–391. [Google Scholar] [CrossRef]
- Lyons, S.; Pentecost, A.; Tol, R.S.J. Socioeconomic distribution of emissions and resource use in Ireland. J. Environ. Manag. 2012, 112, 186–198. [Google Scholar] [CrossRef]
- Wier, M.; Lenzen, M.; Munksgaard, J.; Smed, S. Effects of household consumption patterns on CO2 requirements. Econ. Syst. Res. Inf. 2001, 13, 259–274. [Google Scholar] [CrossRef]
- Munksgaard, J.; Pedersen, K.A.; Wien, M. Impact of household consumption on CO2 emissions. Energy Econ. 2000, 22, 423–440. [Google Scholar] [CrossRef]
- Jin, X.; Li, Y.; Sun, D.; Zhang, J.; Zheng, J. Factors controlling urban and rural indirect carbon dioxide emissions in household consumption: A case study in Beijing. Sustainability 2019, 11, 6563. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, R.; Liu, T.; Zhao, J. Does urbanization lead to more direct and indirect household carbon dioxide emissions? Evidence from China during 1996-2012. J. Clean Prod. 2015, 102, 103–114. [Google Scholar] [CrossRef]
- Feng, Z.; Zou, L.; Wei, Y. The impact of household consumption on energy use and CO2 emissions in China. Energy 2011, 36, 656–670. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, L.; Fan, Y.; Wu, G. The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China’s residents. Energy Policy 2007, 35, 247–257. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, S.; Liu, C. Comparing urban and rural household CO2 emissions-Case from China’s four megacities: Beijing, Tianjin, Shanghai, and Chongqing. Energies 2018, 11, 1257. [Google Scholar] [CrossRef]
- Peters, G.P.; Weber, C.L.; Guan, D.; Klaus, H. China’s growing CO2 emissions—A race between increasing consumption and efficiency gains. Environ. Sci. Technol. 2007, 41, 5939–5944. [Google Scholar] [CrossRef]
- Ali, K.A.; Ahmad, M.I.; Yusup, Y. Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability 2020, 12, 7427. [Google Scholar] [CrossRef]
- Adams, M.; Burrows, V.; Richardson, S.; Drinkwater, J.; Gamboa, C.; Collin, C.; Den, X.L.; Riemann, L.O.; Porteron, S.; Secher, A.Q. Bringing Embodied Carbon Upfront. Coordinated Action for the Building and Construction Sector to Tackle Embodied Carbon; Green Building Council: London, UK, 2019. [Google Scholar]
- Sandberg, N.H.; Bergsdal, H.; Bratteno, H. Historical energy analysis of the Norwegian dwelling stock. Build. Res. Inf. 2011, 39, 1–15. [Google Scholar] [CrossRef]
- Sandberg, N.H.; Bratteno, H. Analysis of energy and carbon flows in the future Norwegian dwelling stock. Build. Res. Inf. 2012, 40, 123–139. [Google Scholar] [CrossRef]
- Gangolells, M.; Casals, M.; Macarulla, M.; Forcada, N. Exploring the potential of a gamified approach to reduce energy use and carbon emissions in the household sector. Sustainability 2021, 13, 3380. [Google Scholar] [CrossRef]
- Zarco-Periñán, P.J.; Zarco-Soto, I.M.; Zarco-Soto, F.J. Influence of population density on CO2 emissions eliminating the influence of climate. Atmosphere 2021, 12, 1193. [Google Scholar] [CrossRef]
- Zarco-Soto, F.J.; Zarco-Soto, I.M.; Zarco-Periñán, P.J. Influence of population income and climate on air pollution in cities due to buildings: The case of Spain. Atmosphere 2021, 12, 1051. [Google Scholar] [CrossRef]
- Zarco-Soto, I.M.; Zarco-Soto, F.J.; Zaro-Periñán, P.J. Influence of population in come on energy consumption and CO2 emissions in buildings of cities. Sustainability 2021, 13, 10230. [Google Scholar] [CrossRef]
- Zarco-Periñán, P.J.; Zarco-Soto, I.M.; Zarco-Soto, F.J.; Sánchez-Durán, R. Influence of population income on energy consumption for heating and its CO2 emissions in cities. Energies 2021, 14, 4531. [Google Scholar] [CrossRef]
- Zarco-Soto, I.M.; Zarco-Periñán, P.J.; Sánchez-Durán, R. Influence of cities population size on their energy consumption and CO2 emissions: The case of Spain. Environ. Sci. Pollut. Res. 2021, 28, 28146–28167. [Google Scholar] [CrossRef]
- Zarco-Soto, I.M.; Zarco-Periñán, P.J.; Sánchez-Durán, R. Influence of climate on energy consumption and CO2 emissions: The case of Spain. Environ. Sci. Pollut. Res. 2020, 27, 15645–15662. [Google Scholar] [CrossRef]
- Isaac, M.; Vuuren, D.P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 2009, 37, 507–521. [Google Scholar] [CrossRef]
- Tian, C.; Feng, G.; Li, S.; Xu, F. Scenario analysis on energy consumption and CO2 emissions reduction potential in building heating sector at community level. Sustainability 2019, 11, 5392. [Google Scholar] [CrossRef]
- Zhao, S.; Song, Q.; Duan, H.; Wen, Z.; Wang, C. Uncovering the lifecycle GHG emissions and its reduction opportunities from the urban buildings: A case study of Macau. Resour. Conserv. Recycl. 2019, 147, 214–226. [Google Scholar] [CrossRef]
- Geng, Y.; Chen, W.; Liu, Z.; Chiu, A.S.F.; Han, W.; Liu, Z.; Zhong, S.; Qian, Y.; You, W.; Cui, X. A bibliometric review: Energy consumption and greenhouse gas emissions in the residential sector. J. Clean Prod. 2017, 159, 301–316. [Google Scholar] [CrossRef]
- Liu, L.; Qu, J.; Maraseni, T.N.; Niu, Y.; Zeng, J.; Zhang, L.; Xu, L. Household CO2 emissions Current status and future perspectives. Int. J. Environ. Res. Public Health 2020, 17, 7077. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Luo, L.; Skitmore, M. Household carbon emission research: An analytical review of measurement, influencing factors and mitigation prospects. J. Clean Prod. 2015, 103, 873–883. [Google Scholar] [CrossRef] [Green Version]
Group | Paper |
---|---|
Airport facilities | [10] |
University centers | [11] |
Hotel facilities | [12,13,14,15,16,17] |
Public buildings | [18] |
Residential buildings | |
Rural | [20,21,22] |
Urban | [23,24,25,26,27,28,29,30,31,32,33] |
Rural and urban | [34,35,36,37,38,39,40,41,42,43,44,45,46,47,48] |
Direct and indirect emissions | [49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66] |
Construction sector | [67] |
Life cycle | [69,70] |
Emissions simulation | [71] |
Residential and commercial buildings | [72,73,74,75,76,77,78,79,80] |
Reviews | [81,82,83] |
Group | Paper |
---|---|
Air conditioning | [10,13,16,18,33,42,43,45,47,67,78,80] |
Heating | [10,13,16,22,33,43,44,45,47,49,65,67,78,80] |
Ventilation | [10,13,22,45,47,67] |
Illumination | [10,16,18,33,44,47,49,65,67] |
Home appliances | [43,44,47,49,66] |
Power motors | [10,15] |
Group | Paper |
---|---|
Wall insulation | [12,15,18,44,45,67,71] |
Substitutions of windows | [12,15,18,33,45,71,79] |
Efficiency improvements in lighting | [12,14,15,18,44,67,71] |
Efficient electrical appliances | [15,43,44,45,47,48,71] |
Installation of condensing boilers | [12,15,33,44,45,67,79] |
Installation of heat pumps | [12,14,45,48,79] |
Installation of efficient motors | [14,15,48] |
Water heating using solar thermal collectors | [14,15,45,48,67,79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarco-Periñán, P.J.; Zarco-Soto, F.J.; Zarco-Soto, I.M.; Martínez-Ramos, J.L.; Sánchez-Durán, R. CO2 Emissions in Buildings: A Synopsis of Current Studies. Energies 2022, 15, 6635. https://doi.org/10.3390/en15186635
Zarco-Periñán PJ, Zarco-Soto FJ, Zarco-Soto IM, Martínez-Ramos JL, Sánchez-Durán R. CO2 Emissions in Buildings: A Synopsis of Current Studies. Energies. 2022; 15(18):6635. https://doi.org/10.3390/en15186635
Chicago/Turabian StyleZarco-Periñán, Pedro J., Fco Javier Zarco-Soto, Irene M. Zarco-Soto, José L. Martínez-Ramos, and Rafael Sánchez-Durán. 2022. "CO2 Emissions in Buildings: A Synopsis of Current Studies" Energies 15, no. 18: 6635. https://doi.org/10.3390/en15186635
APA StyleZarco-Periñán, P. J., Zarco-Soto, F. J., Zarco-Soto, I. M., Martínez-Ramos, J. L., & Sánchez-Durán, R. (2022). CO2 Emissions in Buildings: A Synopsis of Current Studies. Energies, 15(18), 6635. https://doi.org/10.3390/en15186635