# On the Development of Overcurrent Relay Optimization Problem for Active Distribution Networks

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Examples of More Complex Objective Functions and Constraints Used in Previous Research

## 3. The Impact of Distributed Generation Units on Distribution Networks’ Operation and Protection Philosophy

_{sum}. Almost the same case occurs on Feeder 2 of the same figure, where a DG located on Feeder 1 feeds the short-circuit (Fault 2) located on its 2nd section. All the CBs through which both contributing fault currents flow are denoted as CBs

_{um}. Both the upstream network fault and the DG fault current are displayed, with a dotted line for Fault 2, in order to differentiate it from the case of Fault 1 on Feeder 1.

## 4. Meshed Distribution Network Operation

^{2}and has a carrying capacity of 345 A [66]. Its per unit reactance is 0.2 Ω/km (resistance will be neglected for this assumption), and its total length is 10 km. This aforementioned carrying capacity equals approx. 12 MVA of apparent power on 20 kV voltage, according to the well-known equation $S=\sqrt{3}\xb7U\xb7I$. In addition, let us presume that the total load is equal to 10 MVA (including line and MV/LV transformer losses). At first, the feeder is operating radially. A disconnector switch is opened in a RMU of the MV/LV substation in the middle of the feeder and the load is equally divided amongst the feeding substations (5 MVA each). Since voltages ${U}_{S1}$ and ${U}_{S2}$ will be now much more aligned than in part (c) of Figure 14 (due to the same windings’ connection), we will next presume that the aforementioned disconnector switch is closed and the network transitions to mesh operation. If the phase difference between voltages ${U}_{S1}$ and ${U}_{S2}$ is only 2°, this will cause the additional active and reactive power flows between 20 kV secondary busbars of both feeding substations, according to the following expressions:

^{2}cable line being reached. It is important to distinguish that the feeder is not fully loaded since its total load and losses amount to 10 MVA. In the case that the feeder was loaded more (cable carrying capacity of 12 MVA being the limit), meshed operation under these circumstances would definitely cause the tripping of I > protection.

## 5. The Concept and Possible Application of Adaptive Protection in Distribution Networks

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Conflicts of Interest

## Abbreviations

## References

- Rojnić, M.; Prenc, R.; Bulat, H.; Franković, D. A Comprehensive Assessment of Fundamental Overcurrent Relay Operation Optimization Function and Its Constraints. Energies
**2022**, 15, 1271. [Google Scholar] [CrossRef] - Alipour, M.; Teimourzadeh, S.; Seyedi, H. Improved group search optimization algorithm for coordination of directional overcurrent relays. Swarm Evol. Comput.
**2015**, 23, 40–49. [Google Scholar] [CrossRef] - Huchel, Ł.; Zeineldin, H.H. Planning the coordination of directional overcurrent relays for distribution systems considering DG. IEEE Trans. Smart Grid
**2015**, 7, 1642–1649. [Google Scholar] [CrossRef] - Noghabi, A.S.; Mashhadi, H.R.; Sadeh, J. Optimal coordination of directional overcurrent relays considering different network topologies using interval linear programming. IEEE Trans. Power Deliv.
**2010**, 25, 1348–1354. [Google Scholar] [CrossRef] - Sivanandam, S.N.; Deepa, S.N. Genetic Algorithm Optimization Problems. In Introduction to Genetic Algorithms; Springer: Berlin/Heidelberg, Germany, 2008; pp. 165–209. [Google Scholar]
- Urdaneta, A.J.; Nadira, R.; Jimenez, L.P. Optimal coordination of directional overcurrent relays in interconnected power systems. IEEE Trans. Power Deliv.
**1988**, 3, 903–911. [Google Scholar] [CrossRef] - Alipour, A.; Pacis, M. Optimal coordination of directional overcurrent relays (DOCR) in a ring distribution network with distributed generation (DG) using genetic algorithm. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–26 November 2016; pp. 3109–3112. [Google Scholar]
- Singh, M.; Panigrahi, B.K.; Abhyankar, A.R. Optimal overcurrent relay coordination in distribution system. In Proceedings of the 2011 International Conference on Energy, Automation and Signal, Bhubaneswar, India, 28–30 December 2011; pp. 1–6. [Google Scholar]
- El-Khattam, W.; Sidhu, T.S. Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter. IEEE Trans. Power Deliv.
**2008**, 23, 576–585. [Google Scholar] [CrossRef] - Chung, J.L.; Lu, Y.; Kao, W.S.; Chou, C.J. Study of solving the coordination curve intersection of inverse-time overcurrent relays in subtransmission systems. IEEE Trans. Power Deliv.
**2008**, 23, 1780–1788. [Google Scholar] [CrossRef] - Benmouyal, G.; Meisinger, M.; Burnworth, J.; Elmore, W.A.; Freirich, K.; Kotos, P.A.; Leblanc, P.R.; Lerley, P.J.; McConnell, J.E.; Mizener, J.; et al. IEEE standard inverse-time characteristic equations for overcurrent relays. IEEE Trans. Power Deliv.
**1999**, 14, 868–872. [Google Scholar] [CrossRef] - Ojaghi, M.; Ghahremani, R. Piece–wise linear characteristic for coordinating numerical overcurrent relays. IEEE Trans. Power Deliv.
**2016**, 32, 145–151. [Google Scholar] [CrossRef] - Karegar, H.K.; Abyaneh, H.A.; Ohis, V.; Meshkin, M. Pre-processing of the optimal coordination of overcurrent relays. Electr. Power Syst. Res.
**2005**, 75, 134–141. [Google Scholar] [CrossRef] - Mansour, M.M.; Mekhamer, S.F.; El-Kharbawe, N. A modified particle swarm optimizer for the coordination of directional overcurrent relays. IEEE Trans. Power Deliv.
**2007**, 22, 1400–1410. [Google Scholar] [CrossRef] - Purwar, E.; Vishwakarma, D.N.; Singh, S.P. Optimal relay coordination for grid connected variable size DG. In Proceedings of the 2016 IEEE 6th International Conference on Power Systems (ICPS), New Delhi, India, 4–6 March 2016; pp. 1–5. [Google Scholar]
- Kasztenny, B.; Rostron, J. Circuit breaker ratings—A primer for protection engineers. In Proceedings of the 2018 71st Annual Conference for Protective Relay Engineers (CPRE), College Station, TX, USA, 26–29 March 2018; pp. 1–13. [Google Scholar]
- Stephen, B.; Strachan, S.M.; McArthur, S.D.J.; McDonald, J.R.; Hamilton, K. Design of trip current monitoring system for circuit breaker condition assessment. IET Gener. Transm. Distrib.
**2007**, 1, 89–95. [Google Scholar] [CrossRef] - So, C.W.; Li, K.K. Overcurrent relay coordination by evolutionary programming. Electr. Power Syst. Res.
**2000**, 53, 83–90. [Google Scholar] [CrossRef] - So, C.W.; Li, K.K.; Lai, K.T.; Fung, K.Y. Application of genetic algorithm for overcurrent relay coordination. In Proceedings of the 1997 IEEE 6th International Conference in Power System Protection, Nottingham, UK, 11–14 November 1997; pp. 1–5. [Google Scholar]
- Askarian, H.; Mohammadi, R.; Razavi, F.; Khoddami, M.; Torkaman, H. A new genetic algorithm method for overcurrent relays and fuses coordination. In Proceedings of the IEEE Powertech 2007, Laussane, Switzerland, 1–5 July 2007; pp. 1–7. [Google Scholar]
- Rezaei, N.; Uddin, M.N.; Amin, I.K.; Othman, M.L.; Marsadek, M. Genetic algorithm-based optimization of overcurrent relay coordination for improved protection of DFIG operated wind farms. IEEE Trans. Ind. Appl.
**2019**, 55, 5727–5736. [Google Scholar] [CrossRef] - Mohammadi, R.; Abyaneh, H.A.; Rudsari, H.M.; Fathi, S.H.; Rastegar, H. Overcurrent relays coordination considering the priority of constraints. IEEE Trans. Power Deliv.
**2011**, 26, 1927–1938. [Google Scholar] [CrossRef] - Thangalakshmi, S. Planning and coordination of relays in distribution system. Indian J. Sci. Technol.
**2016**, 9, 1–7. [Google Scholar] [CrossRef] - Lee, D.S.; Lithgow, B.J.; Morrison, R.E. New fault diagnosis of circuit breakers. IEEE Trans. Power Deliv.
**2003**, 18, 454–459. [Google Scholar] [CrossRef] - Liu, X.; Shahidehpour, M.; Cao, Y.; Li, Z.; Tian, W. Risk assessment in extreme events considering the reliability of protection systems. IEEE Trans. Smart Grid
**2015**, 6, 1073–1081. [Google Scholar] [CrossRef] - Etemadi, A.H.; Fotuhi-Firuzabad, M. New considerations in modern protection system quantitative reliability assessment. IEEE Trans. Power Deliv.
**2010**, 25, 2213–2222. [Google Scholar] [CrossRef] - Schröder, T.; Kuckshinrichs, W. Value of lost load: An efficient economic indicator for power supply security? A literature review. Front. Energy Res.
**2015**, 3, 55. [Google Scholar] [CrossRef] - Razavi, F.; Abyaneh, H.A.; Al-Dabbagh, M.; Mohammadi, R.; Torkaman, H. A new comprehensive genetic algorithm method for optimal overcurrent relays coordination. Electr. Power Syst. Res.
**2008**, 78, 713–720. [Google Scholar] [CrossRef] - Chabanloo, R.M.; Abyaneh, H.A.; Kamangar, S.S.H.; Razavi, F. Optimal combined overcurrent and distance relays coordination incorporating intelligent overcurrent relays characteristic selection. IEEE Trans. Power Deliv.
**2011**, 26, 1381–1391. [Google Scholar] [CrossRef] - Mousavi Motlagh, S.H.; Mazlumi, K. Optimal overcurrent relay coordination using optimized objective function. Int. Sch. Res. Not.
**2014**, 2014, 1–10. [Google Scholar] [CrossRef] - Asadi, M.R.; Abyaneh, H.A.; Mahmoodan, M.; Naghizadeh, R.A.; Koochaki, A. Optimal overcurrent relays coordination using genetic algorithm. In Proceedings of the 2008 11th International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, 22–24 May 2008; pp. 197–202. [Google Scholar]
- Masereka, E.B.; Kitagawa, W.; Takeshita, T. Optimal Coordination of Directional Overcurrent Relays Considering a Modified Objective Function Using Genetic Algorithm. In Proceedings of the 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), New Delhi, India, 10–14 December 2019; pp. 1–6. [Google Scholar]
- Adelnia, F.; Moravej, Z.; Farzinfar, M. A new formulation for coordination of directional overcurrent relays in interconnected networks. Int. Trans. Electr. Energy Syst.
**2015**, 25, 120–137. [Google Scholar] [CrossRef] - Moravej, Z.; Adelnia, F.; Abbasi, F. Optimal coordination of directional overcurrent relays using NSGA-II. Electr. Power Syst. Res.
**2015**, 119, 228–236. [Google Scholar] [CrossRef] - Rajput, V.N.; Adelnia, F.; Pandya, K.S. Optimal coordination of directional overcurrent relays using improved mathematical formulation. IET Gener. Transm. Distrib.
**2018**, 12, 2086–2094. [Google Scholar] [CrossRef] - Bell, K.; Gill, S. Delivering a highly distributed electricity system: Technical, regulatory and policy challenges. Energy Policy
**2018**, 113, 765–777. [Google Scholar] [CrossRef] - Foote, C.E.T.; Ault, G.W.; Burt, G.M.; McDonald, J.R.; Silvestro, F. Information requirements and methods for characterising distributed generation. In Proceedings of the CIRED 2005-18th International Conference and Exhibition on Electricity Distribution, Turin, Italy, 6–9 June 2005; pp. 1–5. [Google Scholar]
- Davarzani, S.; Pisica, I.; Taylor, G.A.; Munisami, K.J. Residential demand response strategies and applications in active distribution network management. Renew. Sustain. Energy Rev.
**2021**, 138, 110567. [Google Scholar] [CrossRef] - Pilo, F.G.L.; Ghiani, E.; Mocci, S.; Celli, G.; Pisano, G.; Soma, G.G. From passive to active distribution networks: Methods and models for planning network transition and development. In Cigre General Session 2008; CIGRE: Paris, France, 2008. [Google Scholar]
- Bayod-Rújula, A.A. Future development of the electricity systems with distributed generation. Energy
**2009**, 34, 377–383. [Google Scholar] [CrossRef] - El Bakari, K.; Kling, W.L. Virtual power plants: An answer to increasing distributed generation. In Proceedings of the 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Gothenburg, Sweden, 11–13 October 2010; pp. 1–6. [Google Scholar]
- Plancke, G.; De Vos, K.; Belmans, R.; Delnooz, A. Virtual power plants: Definition, applications and barriers to the implementation in the distribution system. In Proceedings of the 2015 12th International Conference on the European Energy Market (EEM), Lisbon, Portugal, 19–22 May 2015; pp. 1–5. [Google Scholar]
- Khan, R.; Islam, N.; Das, S.K.; Muyeen, S.M.; Moyeen, S.I.; Ali, M.F.; Tasneem, Z.; Islam, M.R.; Saha, D.K.; Badal, M.F.R.; et al. Energy Sustainability–Survey on Technology and Control of Microgrid, Smart Grid and Virtual Power Plant. IEEE Access
**2021**, 9, 104663–104694. [Google Scholar] [CrossRef] - Ackermann, T.; Andersson, G.; Söder, L. Distributed generation: A definition. Electr. Power Syst. Res.
**2001**, 57, 195–204. [Google Scholar] [CrossRef] - Adefarati, T.; Bansal, R.C. Integration of renewable distributed generators into the distribution system: A review. IET Renew. Power Gener.
**2016**, 10, 873–884. [Google Scholar] [CrossRef] - Siano, P.; Ochoa, L.F.; Harrison, G.P.; Piccolo, A. Assessing the strategic benefits of distributed generation ownership for DNOs. IET Gener. Transm. Distrib.
**2009**, 3, 225–236. [Google Scholar] [CrossRef] - DSouza, K.; Halbe, S.; Thomas, M.; Baran, M.; Chowdhury, B.; Schwarz, P.; Proudlove, A. A comprehensive methodology for assessing the costs and benefits of renewable generation on utility operations. Renew. Energy
**2021**, 177, 723–731. [Google Scholar] [CrossRef] - Paiva, S.C.; Sanca, H.S.; Costa, F.B.; Souza, B.A. Reviewing of anti-islanding protection. In Proceedings of the 2014 11th IEEE/IAS International Conference on Industry Applications, Juiz de Fora, Brazil, 7–10 December 2014; pp. 1–8. [Google Scholar]
- Shang, W.; Redfern, M.A. A new control scheme for a distributed generator providing network voltage support. In Proceedings of the 2011 International Conference on Advanced Power System Automation and Protection, Beijing, China, 16–20 October 2011; pp. 1–5. [Google Scholar]
- Schaefer, R.C. Art of generator synchronizing. IEEE Trans. Ind. Appl.
**2016**, 53, 751–757. [Google Scholar] [CrossRef] - Aguila-Camacho, N.; Duarte-Mermoud, M.A. Fractional adaptive control for an automatic voltage regulator. ISA Trans.
**2013**, 52, 807–815. [Google Scholar] [CrossRef] [PubMed] - Thentral, T.T.; Palanisamy, R.; Usha, S.; Geetha, A.; Reagan, A.; Ramanathan, T.R.B. Implementation of protection circuit for over voltage and under voltage protection. Mater. Today Proc.
**2021**, 45, 2460–2464. [Google Scholar] [CrossRef] - Etherden, N.; Bollen, M.H. Overload and overvoltage in low-voltage and medium-voltage networks due to renewable energy–some illustrative case studies. Electr. Power Syst. Res.
**2014**, 114, 39–48. [Google Scholar] [CrossRef] - Garg, N.; Sinha, A. Effect of previously install circuit breaker due to the upcoming new generating station. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016; pp. 1–4. [Google Scholar]
- Li, B.; Li, F. Impact to use of circuit breaker charges from different fault current growth rates. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–5. [Google Scholar]
- Kaur, K.; Singh, S. Calculation and Comparison of Circuit Breaker Parameter in Power World Simulator. Int. J. Eng. Res. Appl. IJERA
**2016**, 6, 31–34. [Google Scholar] - Ferruccio, A.; Brandt, A. The Importance of Analysis and Simulation for Generator Circuit Breaker Applications: Technical Background, Dual Logo Standard Prescription, Helpful Models and Tools and Definitive Benefit for the Users. In Proceedings of the 2019 Petroleum and Chemical Industry Conference Europe (PCIC EUROPE), Paris, France, 7–9 May 2019; pp. 1–7. [Google Scholar]
- Mehta, P.; Makwana, V.H. Radial feeder protection by definite time overcurrent relay. In Proceedings of the International Conference on Intelligent Systems and Signal Processing; Springer: Singapore, 2018; pp. 185–198. [Google Scholar]
- Mahindara, V.R.; Rodriguez, D.F.C.; Pujiantara, M.; Priyadi, A.; Purnomo, M.H.; Muljadi, E. Practical challenges of inverse and definite-time overcurrent protection coordination in modern industrial and commercial power distribution system. IEEE Trans. Ind. Appl.
**2020**, 57, 187–197. [Google Scholar] [CrossRef] - Bajanek, T.; Orgasova, J. Instantaneous and Definite Time Overcurrent Protection Algorithms. In Proceedings of the 21st Conference STUDENT EEICT, Brno, Czech Republic, 2015; Available online: https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2015_sbornik.pdf (accessed on 11 August 2022).
- Kauhaniemi, K.; Kumpulainen, L. Impact of distributed generation on the protection of distribution networks. In Proceedings of the 2004 Eighth IEE International Conference on Developments in Power System Protection, Amsterdam, The Netherlands, 5–8 April 2004; pp. 315–318. [Google Scholar]
- Maki, K.; Kulmala, A.; Repo, S.; Jarventausta, P. Problems related to islanding protection of distributed generation in distribution network. In Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 467–472. [Google Scholar]
- Mulhausen, J.; Schaefer, J.; Mynam, M.; Guzmán, A.; Donolo, M. Anti-islanding today, successful islanding in the future. In Proceedings of the 2010 63rd Annual Conference for Protective Relay Engineers, College Station, TX, USA, 29 March–1 April 2010; pp. 1–8. [Google Scholar]
- Schellekens, H.; Biasse, J.M.; Fulchiron, D.; Yang, Y.; Garavelli, J. Is overvoltage protection useful in MV distribution equipment? In Proceedings of the 2014 China International Conference on Electricity Distribution (CICED), Shenzhen, China, 23–26 September 2014; pp. 1711–1715. [Google Scholar]
- Li, B.; Wei, J.; Liang, Y.; Chen, B. Optimal placement of fault indicator and sectionalizing switch in distribution networks. IEEE Access
**2020**, 8, 17619–17631. [Google Scholar] [CrossRef] - Medium Voltage Power Cables for Rated Voltage Up to 36 kV—Elka d.o.o. (n.d.). Medium Voltage Power Cables for Rated Voltage up to 36 kV. Available online: https://elka.hr/en/category/proizvodi/energetski-srednjenaponski-kabeli-za-napone-do-36-kv/ (accessed on 11 May 2022).
- Momesso, A.E.; Bernardes, W.M.S.; Asada, E.N. Adaptive directional overcurrent protection considering stability constraint. Electr. Power Syst. Res.
**2020**, 181, 106190. [Google Scholar] [CrossRef] - Distribution Automation: Results from the Smart Grid Investment Grant Program, US Department of Energy—Office of Electricity Delivery and Energy Reliability. Available online: https://www.energy.gov/sites/prod/files/2016/11/f34/Distribution%20Automation%20Summary%20Report_09-29-16.pdf (accessed on 7 May 2022).
- Nascimento, J.P.; Brito, N.S.; Souza, B.A. An adaptive overcurrent protection system applied to distribution systems. Comput. Electr. Eng.
**2020**, 81, 106545. [Google Scholar] [CrossRef] - Lidhade, P.R.; Vaidya, A.P. Adaptive Settings of Directional Overcurrent Relay. In Proceedings of the 2020 International Conference on Electrical Engineering (ICEE), Istanbul, Turkey, 25–27 September 2020; pp. 1–4. [Google Scholar]
- Ataei, M.A.; Gitizadeh, M. A distributed adaptive protection scheme based on multi-agent system for distribution networks in the presence of distributed generations. IET Gener. Transm. Distrib.
**2021**, 16, 1521–1540. [Google Scholar] [CrossRef] - Orazgaliyev, D.; Tleubayev, A.; Zholdaskhan, B.; Nunna, H.K.; Dadlani, A.; Doolla, S. Adaptive coordination mechanism of overcurrent relays using evolutionary optimization algorithms for distribution systems with DGs. In Proceedings of the 2019 International Conference on Smart Energy Systems and Technologies (SEST), Porto, Portugal, 9–11 September 2019; pp. 1–6. [Google Scholar]

**Figure 4.**On the minimization of relay operating times at the beginning and the end of the primary protection zone.

**Figure 7.**Oscillogram displaying a general waveform of a short-circuit current, with separate: (

**a**) AC component, (

**b**) DC offset component and (

**c**) combined AC and DC components.

**Figure 10.**An example of a partially meshed distribution network with an updated protection philosophy.

**Figure 14.**Equalizing current caused by different winding connections of feeding transformers: (

**a**) secondary voltage of substation 1, (

**b**) secondary voltage of substation 2, and (

**c**) voltage difference causing the equalizing current.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Prenc, R.; Rojnić, M.; Franković, D.; Vlahinić, S. On the Development of Overcurrent Relay Optimization Problem for Active Distribution Networks. *Energies* **2022**, *15*, 6528.
https://doi.org/10.3390/en15186528

**AMA Style**

Prenc R, Rojnić M, Franković D, Vlahinić S. On the Development of Overcurrent Relay Optimization Problem for Active Distribution Networks. *Energies*. 2022; 15(18):6528.
https://doi.org/10.3390/en15186528

**Chicago/Turabian Style**

Prenc, Rene, Michele Rojnić, Dubravko Franković, and Saša Vlahinić. 2022. "On the Development of Overcurrent Relay Optimization Problem for Active Distribution Networks" *Energies* 15, no. 18: 6528.
https://doi.org/10.3390/en15186528