Effective Fault Detection and Diagnosis for Power Converters in Wind Turbine Systems Using KPCA-Based BiLSTM
Abstract
:1. Introduction
2. Model
2.1. Bidirectional LSTM Description
2.2. Kernel Principal Component Analysis
2.2.1. KPCA-Based Feature Extraction
2.2.2. KPCA-Based Features Selection
3. Proposed Approach and Case Study Experiment
3.1. Proposed Approach
Algorithm 1 KPCA-based BiLSTM Algorithm |
|
3.2. System Description
3.3. Data Collection
- First scenario: This denotes simple faults that concern just one IGBT on the generator-side converter (SFGS);
- Second scenario: This denotes simple faults that concern just one IGBT on the grid-side converter (SFGrS);
- Third scenario, forth scenario: Practically, there can be more than one fault on the same converter side; in this paper, we consider multiple faults on the generator side (MFGS) and grid side (MFGrS) separately;
- Fifth scenario: In the real word, faults may happen on both the converter sides simultaneously; for that reason, we consider mixed faults (MxF);
- Sixth scenario: In order to monitor the system in all its states, we combine all the above scenarios.
4. Results and Discussions
4.1. Performance Metrics
4.2. Parameters Setting
4.3. Fault Classification Results
5. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FDD | Fault Detection and Diagnosis |
FES | Feature Extraction and Selection |
PCA | Principal Component Analysis |
KPCA | Kernel PCA |
LSTM | Long Short Term Memory |
BiLSTM | Bidirectional LSTM |
CNN | Convolutional Neural Network |
WEC | Wind Energy Conversion |
WECC | WEC Converters |
WT | Wind Turbine |
CPV | Cumulative Percentage of Variance |
CT | Computation Time |
CM | Confusion Matrix |
References
- Kouadri, A.; Hajji, M.; Harkat, M.F.; Abodayeh, K.; Mansouri, M.; Nounou, H.; Nounou, M. Hidden Markov model based principal component analysis for intelligent fault diagnosis of wind energy converter systems. Renew. Energy 2020, 150, 598–606. [Google Scholar] [CrossRef]
- Fezai, R.; Dhibi, K.; Mansouri, M.; Trabelsi, M.; Hajji, M.; Bouzrara, K.; Nounou, H.; Nounou, M. Effective Random Forest-Based Fault Detection and Diagnosis for Wind Energy Conversion Systems. IEEE Sens. J. 2020, 21, 6914–6921. [Google Scholar] [CrossRef]
- Faulstich, S.; Hahn, B.; Tavner, P.J. Wind turbine downtime and its importance for offshore deployment. Wind Energy 2011, 14, 327–337. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.; Liu, J.; Zhao, J.; Sun, P. An anomaly identification model for wind turbine state parameters. J. Clean. Prod. 2018, 195, 1214–1227. [Google Scholar] [CrossRef]
- Ravikumar, K.; Subbiah, R.; Ranganathan, N.; Bensingh, J.; Kader, A.; Nayak, S.K. A review on fatigue damages in the wind turbines: Challenges in determining and reducing fatigue failures in wind turbine blades. Wind Eng. 2020, 44, 434–451. [Google Scholar] [CrossRef]
- Mishnaevsky, L. Root Causes and Mechanisms of Failure of Wind Turbine Blades: Overview. Materials 2022, 15, 2959. [Google Scholar] [CrossRef]
- Singh, G.; Sundaram, K. Methods to improve wind turbine generator bearing temperature imbalance for onshore wind turbines. Wind Eng. 2021, 46, 0309524X211015292. [Google Scholar] [CrossRef]
- Xu, Y.; Nascimento, N.M.M.; de Sousa, P.H.F.; Nogueira, F.G.; Torrico, B.C.; Han, T.; Jia, C.; Rebouças Filho, P.P. Multi-sensor edge computing architecture for identification of failures short-circuits in wind turbine generators. Appl. Soft Comput. 2021, 101, 107053. [Google Scholar] [CrossRef]
- Xiao, C.; Liu, Z.; Zhang, T.; Zhang, X. Deep learning method for fault detection of wind turbine converter. Appl. Sci. 2021, 11, 1280. [Google Scholar] [CrossRef]
- López-Uruñuela, F.J.; Fernández-Díaz, B.; Pagano, F.; López-Ortega, A.; Pinedo, B.; Bayón, R.; Aguirrebeitia, J. Broad review of “White Etching Crack” failure in wind turbine gearbox bearings: Main factors and experimental investigations. Int. J. Fatigue 2021, 145, 106091. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Long, H.; Xu, J.; Liu, R. Wind turbine gearbox failure identification with deep neural networks. IEEE Trans. Ind. Inform. 2016, 13, 1360–1368. [Google Scholar] [CrossRef]
- Dao, P.B.; Staszewski, W.J.; Barszcz, T.; Uhl, T. Condition monitoring and fault detection in wind turbines based on cointegration analysis of SCADA data. Renew. Energy 2018, 116, 107–122. [Google Scholar] [CrossRef]
- Qiao, W.; Lu, D. A survey on wind turbine condition monitoring and fault diagnosis—Part I: Components and subsystems. IEEE Trans. Ind. Electron. 2015, 62, 6536–6545. [Google Scholar] [CrossRef]
- Mansouri, M.; Fezai, R.; Trabelsi, M.; Nounou, H.; Nounou, M.; Bouzrara, K. Reduced Gaussian process regression based random forest approach for fault diagnosis of wind energy conversion systems. IET Renew. Power Gener. 2021, 15, 3612–3621. [Google Scholar] [CrossRef]
- Kamel, T.; Biletskiy, Y.; Chang, L. Fault diagnoses for industrial grid-connected converters in the power distribution systems. IEEE Trans. Ind. Electron. 2015, 62, 6496–6507. [Google Scholar] [CrossRef]
- Kamel, T.; Biletskiy, Y.; Chang, L. Real-time diagnosis for open-circuited and unbalance faults in electronic converters connected to residential wind systems. IEEE Trans. Ind. Electron. 2015, 63, 1781–1792. [Google Scholar] [CrossRef]
- Jlassi, I.; Estima, J.O.; El Khil, S.K.; Bellaaj, N.M.; Cardoso, A.J.M. Multiple open-circuit faults diagnosis in back-to-back converters of PMSG drives for wind turbine systems. IEEE Trans. Power Electron. 2014, 30, 2689–2702. [Google Scholar] [CrossRef]
- Duan, P.; Xie, K.g.; Zhang, L.; Rong, X. Open-switch fault diagnosis and system reconfiguration of doubly fed wind power converter used in a microgrid. IEEE Trans. Power Electron. 2010, 26, 816–821. [Google Scholar] [CrossRef]
- Abid, A.; Khan, M.T.; Iqbal, J. A review on fault detection and diagnosis techniques: Basics and beyond. Artif. Intell. Rev. 2021, 54, 3639–3664. [Google Scholar] [CrossRef]
- Zeroual, A.; Harrou, F.; Sun, Y.; Messai, N. Integrating model-based observer and Kullback–Leibler metric for estimating and detecting road traffic congestion. IEEE Sens. J. 2018, 18, 8605–8616. [Google Scholar] [CrossRef] [Green Version]
- Nai-Zhi, G.; Ming-Ming, Z.; Bo, L. A data-driven analytical model for wind turbine wakes using machine learning method. Energy Convers. Manag. 2022, 252, 115130. [Google Scholar] [CrossRef]
- Simani, S.; Farsoni, S.; Castaldi, P. Data-driven techniques for the fault diagnosis of a wind turbine benchmark. Int. J. Appl. Math. Comput. Sci. 2018, 28, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Pashazadeh, V.; Salmasi, F.R.; Araabi, B.N. Data driven sensor and actuator fault detection and isolation in wind turbine using classifier fusion. Renew. Energy 2018, 116, 99–106. [Google Scholar] [CrossRef]
- Hsu, J.Y.; Wang, Y.F.; Lin, K.C.; Chen, M.Y.; Hsu, J.H.Y. Wind turbine fault diagnosis and predictive maintenance through statistical process control and machine learning. IEEE Access 2020, 8, 23427–23439. [Google Scholar] [CrossRef]
- Wu, Y.; Fu, Z.; Fei, J. Fault diagnosis for industrial robots based on a combined approach of manifold learning, treelet transform and Naive Bayes. Rev. Sci. Instrum. 2020, 91, 015116. [Google Scholar] [CrossRef]
- Tuerxun, W.; Chang, X.; Hongyu, G.; Zhijie, J.; Huajian, Z. Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm. IEEE Access 2021, 9, 69307–69315. [Google Scholar] [CrossRef]
- Lu, J.; Qian, W.; Li, S.; Cui, R. Enhanced K-nearest neighbor for intelligent fault diagnosis of rotating machinery. Appl. Sci. 2021, 11, 919. [Google Scholar] [CrossRef]
- Jalayer, M.; Orsenigo, C.; Vercellis, C. Fault detection and diagnosis for rotating machinery: A model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms. Comput. Ind. 2021, 125, 103378. [Google Scholar] [CrossRef]
- He, Z.; Shao, H.; Zhong, X.; Zhao, X. Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions. Knowl.-Based Syst. 2020, 207, 106396. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, P.; Yang, X.; Hu, A.; Su, H. Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism. Measurement 2021, 175, 109094. [Google Scholar] [CrossRef]
- Han, T.; Li, Y.F.; Qian, M. A hybrid generalization network for intelligent fault diagnosis of rotating machinery under unseen working conditions. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Mansouri, M.; Dhibi, K.; Hajji, M.; Bouzara, K.; Nounou, H.; Nounou, M. Interval-Valued Reduced RNN for Fault Detection and Diagnosis for Wind Energy Conversion Systems. IEEE Sens. J. 2022. [Google Scholar] [CrossRef]
- Mansouri, M.; Trabelsi, M.; Nounou, H.; Nounou, M. Deep learning based fault diagnosis of photovoltaic systems: A comprehensive review and enhancement prospects. IEEE Access 2021, 9, 126286–126306. [Google Scholar] [CrossRef]
- Lei, J.; Liu, C.; Jiang, D. Fault diagnosis of wind turbine based on Long Short-term memory networks. Renew. Energy 2019, 133, 422–432. [Google Scholar] [CrossRef]
- Lee, J.M.; Yoo, C.; Choi, S.W.; Vanrolleghem, P.A.; Lee, I.B. Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2004, 59, 223–234. [Google Scholar] [CrossRef]
- Zhang, Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chem. Eng. Sci. 2009, 64, 801–811. [Google Scholar] [CrossRef]
- Thara, D.; PremaSudha, B.; Xiong, F. Epileptic seizure detection and prediction using stacked bidirectional long short term memory. Pattern Recognit. Lett. 2019, 128, 529–535. [Google Scholar]
- Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors 2017, 17, 273. [Google Scholar] [CrossRef]
- Faust, O.; Shenfield, A.; Kareem, M.; San, T.R.; Fujita, H.; Acharya, U.R. Automated detection of atrial fibrillation using long short-term memory network with RR interval signals. Comput. Biol. Med. 2018, 102, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, H. Kernel PCA for novelty detection. Pattern Recognit. 2007, 40, 863–874. [Google Scholar] [CrossRef]
- Dhibi, K.; Mansouri, M.; Bouzrara, K.; Nounou, H.; Nounou, M. An Enhanced Ensemble Learning-Based Fault Detection and Diagnosis for Grid-Connected PV Systems. IEEE Access 2021, 9, 155622–155633. [Google Scholar] [CrossRef]
- Valle, S.; Li, W.; Qin, S.J. Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods. Ind. Eng. Chem. Res. 1999, 38, 4389–4401. [Google Scholar] [CrossRef]
- Yang, Z.; Chai, Y. A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems. Renew. Sustain. Energy Rev. 2016, 66, 345–359. [Google Scholar] [CrossRef]
- Hameed, Z.; Garcia-Zapirain, B. Sentiment classification using a single-layered BiLSTM model. IEEE Access 2020, 8, 73992–74001. [Google Scholar] [CrossRef]
- Aslan, M.F.; Unlersen, M.F.; Sabanci, K.; Durdu, A. CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection. Appl. Soft Comput. 2021, 98, 106912. [Google Scholar] [CrossRef]
- Xia, M.; Li, T.; Xu, L.; Liu, L.; De Silva, C.W. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. IEEE/ASME Trans. Mechatron. 2017, 23, 101–110. [Google Scholar] [CrossRef]
Parameters | Nomenclature | Values |
---|---|---|
Nominal power of turbine | 15 kW | |
Moment of inertia of turbine | 1000 | |
Stator resistance | 0.087 Ohm | |
Stator leakage inductance | 0.8 mH | |
Rotor resistance | 0.228 Ohm | |
Rotor resistance | 0.228 Ohm | |
Rotor leakage inductance | 0.8 mH | |
Magnetizing inductance | 34.7 mH | |
Number of poles | P | 4 |
Moment of inertia of generator | 0.2 |
Type of Fault | Symbol | Fault Scenario |
---|---|---|
Simple fault generator-side | SFGS | Case 1: Short circuit (SC-A1HG) (). |
Case 2: Open circuit (OC-A2LG) (). | ||
Case 3: Open circuit (OC-A3HG) (). | ||
Simple fault grid-side | SFGrS | Case 4: Open circuit (OC-A1LGr) (). |
Case 5: Short circuit (SC-A2HGr) (). | ||
Case 6: Short circuit (SC-A3LGr) (). | ||
Multiple faults generator-side | MFGS | Case 7: Short circuit (SC-A1LG) () and Open circuit (OC-A2LG) (). |
Case 8: Short circuit () and Open circuit (SC-A2LG and OC-A3HG) (). | ||
Case 9: Short circuit () and Short (SC-A2HG and SC-A2HG) (). | ||
Multiple faults grid-side | MFGrS | Case 10: Short circuit () and Open circuit (SC-A1LGr and OC-A2HGr) (). |
Case 11: Open circuit () and Short circuit (OC-A1LGr and SC-A2HGr) (). | ||
Case 12: Open circuit () and Open circuit (OC-A2LGr and OC-A3LGr) (). | ||
Mixed fault both sides | MxF | Case 13: Short circuit () and Open circuit (SC-A1LG and OC-A2HGr) (). |
Case 14: Open circuit (), Short circuit () and Short circuit (OC-A1HG, SC-A1LGr and SC-A2LG) (). | ||
Case 15: Short circuit (), Open circuit (), Short circuit () and Open circuit (SC_A3LG, OC-A3HGr, OC-A1HGr, SC-A2LGr) (). |
Hyperparameters | Values |
---|---|
Optimizer | Adam |
Loss function | Cross-entropy |
Dropout | 0.2 |
Learning rate | 0.001 |
Regularizer | L2 |
Maximum epochs | 20 |
Mini-batch size | 250 |
BiLSTM layer nodes | 50 |
Variables | Descriptions |
---|---|
: Mechanical torque | |
: Generator speed | |
: Generator current phase a | |
: Generator current phase b | |
: Generator current phase c | |
: Bus voltage | |
: Output power | |
: Grid current phase a | |
: Grid current phase b | |
: Grid current phase b |
Classes | Mode | Training Data | Testing Data |
---|---|---|---|
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 | ||
10,000 | 2500 |
Fault Side | Techniques | Global Performance | |||||
---|---|---|---|---|---|---|---|
Accuracy | Recall | Precision | F1 Score | CT (s) | PL | ||
SFGS | 72.26 | 71.87 | 64.82 | 68.6 | 0.21 | ** | |
SFGrS | 96.94 | 96.94 | 96.95 | 96.94 | 0.18 | *** | |
MFGS | NN | 87.41 | 88.22 | 88.54 | 88.38 | 0.20 | *** |
MFGrS | 97.16 | 97.39 | 97.88 | 97.63 | 0.21 | **** | |
MxF | 93.79 | 94.4 | 95.42 | 94.71 | 0.18 | *** | |
All faults | 59.62 | 58.53 | 59.87 | 59.19 | 0.35 | * | |
SFGS | 76.94 | 76.94 | 78.89 | 77.90 | 0.15 | ** | |
SFGrS | 87.89 | 87.89 | 89.74 | 88.80 | 0.18 | *** | |
MFGS | FFNN | 84.81 | 84.81 | 88.35 | 86.54 | 0.20 | *** |
MFGrS | 85.35 | 85.35 | 85.59 | 85.47 | 0.14 | *** | |
MxF | 95.14 | 95.14 | 95.93 | 95.53 | 0.15 | *** | |
All faults | 49.46 | 45.72 | 44.71 | 45.21 | 0.34 | * | |
SFGS | 75.11 | 75.11 | 75.3 | 75.20 | 0.18 | ** | |
SFGrS | 96.75 | 96.75 | 96.79 | 96.67 | 0.18 | *** | |
MFGS | CFNN | 90.46 | 90.46 | 91.32 | 90.88 | 0.14 | *** |
MFGrS | 87.78 | 87.78 | 87.81 | 87.79 | 0.24 | *** | |
MxF | 95.18 | 95.18 | 95.96 | 95.57 | 0.15 | *** | |
All faults | 59.87 | 59.56 | 56.75 | 58.12 | 0.18 | * | |
SFGS | 70.07 | 70.04 | 61.14 | 65.25 | 0.15 | **** | |
SFGrS | 95.73 | 95.73 | 95.73 | 95.73 | 0.17 | *** | |
MFGS | RNN | 80.56 | 80.56 | 75.86 | 78.14 | 0.17 | *** |
MFGrS | 86.23 | 86.23 | 87.82 | 87.2 | 0.14 | *** | |
MxF | 94.23 | 94.47 | 95.47 | 95.47 | 0.17 | *** | |
All faults | 47.50 | 47.55 | 40.43 | 43.65 | 0.34 | * |
Fault Side | Techniques | Global Performance | |||||
---|---|---|---|---|---|---|---|
Accuracy | Recall | Precision | F1 Score | CT (s) | PL | ||
SFGS | 41.16 | 40.33 | 60.43 | 48.37 | 0.95 | * | |
SFGrS | 44.06 | 44.06 | 62.01 | 51.52 | 0.74 | * | |
MFGS | CNN | 52.85 | 52.85 | 53.10 | 52.97 | 0.7 | * |
MFGrS | 38.18 | 38.18 | 38.74 | 38.46 | 0.77 | * | |
MxF | 42.55 | 42.55 | 44.89 | 43.68 | 0.95 | * | |
All faults | 16.43 | 14.39 | 11.98 | 13.07 | 1.29 | * | |
SFGS | 75.08 | 75.08 | 75.21 | 75.14 | 0.71 | ** | |
SFGrS | 86.90 | 86.9 | 88.96 | 87.92 | 0.55 | *** | |
MFGS | LSTM | 88.40 | 88.40 | 89.48 | 88.94 | 0.67 | *** |
MFGrS | 91.83 | 91.83 | 93.18 | 92.50 | 0.59 | *** | |
MxF | 100.0 | 100.0 | 100.0 | 100.0 | 0.81 | **** | |
All faults | 73.70 | 73.58 | 73.70 | 73.64 | 1.32 | ** | |
SFGS | 72.92 | 65.77 | 72.5 | 72.60 | 0.78 | ** | |
SFGrS | 95.71 | 95.71 | 95.72 | 88.24 | 0.7 | *** | |
MFGS | BiLSTM | 88.49 | 88.49 | 89.66 | 89.07 | 0.64 | *** |
MFGrS | 90.71 | 90.71 | 93.19 | 91.93 | 0.78 | *** | |
MxF | 100.0 | 100.0 | 100.0 | 100.0 | 0.75 | **** | |
All faults | 79.0 | 79.54 | 81.34 | 81.34 | 1.62 | ** |
Fault Side | Techniques | Global Performance | |||||
---|---|---|---|---|---|---|---|
Accuracy | Recall | Precision | F1 Score | CT (s) | PL | ||
All faults | BiLSTM | 79.0 | 79.54 | 81.34 | 80.43 | 1.62 | ** |
All faults | KPCA-BiLSTM | 97.20 | 97.20 | 97.30 | 97.25 | 2.56 | **** |
Predicted Classes | |||||||||||||||||
True Classes | Recall | ||||||||||||||||
2320 | 0 | 0 | 0 | 110 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 92.80 | |
23 | 2308 | 23 | 32 | 0 | 2 | 0 | 105 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 92.32 | |
0 | 0 | 2387 | 0 | 8 | 22 | 22 | 5 | 2 | 0 | 41 | 13 | 0 | 0 | 0 | 0 | 95.48 | |
9 | 4 | 0 | 2428 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 5 | 8 | 9 | 0 | 19 | 97.12 | |
129 | 0 | 0 | 0 | 2309 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 62 | 92.36 | |
0 | 0 | 0 | 0 | 0 | 2500 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.0 | |
3 | 0 | 0 | 0 | 0 | 0 | 2487 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 99.48 | |
213 | 0 | 0 | 0 | 14 | 1 | 0 | 2185 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 87 | 87.40 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2500 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.0 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2500 | 0 | 0 | 0 | 0 | 0 | 0 | 100.0 | |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2497 | 0 | 0 | 0 | 0 | 0 | 99.88 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2500 | 0 | 0 | 0 | 0 | 100.0 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2500 | 0 | 0 | 0 | 100.0 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2500 | 0 | 0 | 100.0 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2499 | 0 | 99.96 | |
29 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2500 | 100.0 | |
Precision | 85.10 | 99.69 | 99.04 | 98.69 | 94.16 | 98.30 | 99.12 | 95.20 | 99.92 | 99.72 | 98.38 | 99.28 | 99.64 | 99.64 | 100 | 93.35 | 97.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahyaoui, Z.; Hajji, M.; Mansouri, M.; Abodayeh, K.; Bouzrara, K.; Nounou, H. Effective Fault Detection and Diagnosis for Power Converters in Wind Turbine Systems Using KPCA-Based BiLSTM. Energies 2022, 15, 6127. https://doi.org/10.3390/en15176127
Yahyaoui Z, Hajji M, Mansouri M, Abodayeh K, Bouzrara K, Nounou H. Effective Fault Detection and Diagnosis for Power Converters in Wind Turbine Systems Using KPCA-Based BiLSTM. Energies. 2022; 15(17):6127. https://doi.org/10.3390/en15176127
Chicago/Turabian StyleYahyaoui, Zahra, Mansour Hajji, Majdi Mansouri, Kamaleldin Abodayeh, Kais Bouzrara, and Hazem Nounou. 2022. "Effective Fault Detection and Diagnosis for Power Converters in Wind Turbine Systems Using KPCA-Based BiLSTM" Energies 15, no. 17: 6127. https://doi.org/10.3390/en15176127
APA StyleYahyaoui, Z., Hajji, M., Mansouri, M., Abodayeh, K., Bouzrara, K., & Nounou, H. (2022). Effective Fault Detection and Diagnosis for Power Converters in Wind Turbine Systems Using KPCA-Based BiLSTM. Energies, 15(17), 6127. https://doi.org/10.3390/en15176127