Factors Determining the Development of Prosumer Photovoltaic Installations in Poland
Abstract
:1. Introduction
2. Factors in the Development of PV Systems
2.1. System Costs and Government Support Programs for the Development of Energy Production from PV Systems
2.2. Factors Influencing the Interest of Households in Investing in PV Installations
2.3. Barriers on the Development of Energy Production from PV Systems
3. ‘Moj Prad’ Program and PV Energy Production in Poland
4. Methodology
Research Design and Data Sources
5. Results
6. Discussion
7. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BESS | battery energy storage system |
FIT | feed-in-tariff |
GDP | Gross Domestic Product |
GNS | general nesting spatial model |
GW | gigawatt |
GWh | gigawatt hour |
kW | kilowatt |
kWp | kilowatt ‘peak’ power output of a system |
LCOE | levelized cost of energy |
MP | ‘Moj Prad’ program in Poland |
MP1 | first edition of ‘Moj Prad’ program in Poland |
MP2 | second edition of ‘Moj Prad’ program in Poland |
MWh | megawatt hour |
NUTS-2 | the second level of administrative divisions, a region in lower administrative level than the country—according to nomenclature of territorial units for statistics |
PV | photovoltaic |
RES | renewable energy sources |
SAC | Kelejian-Prucha model |
SAR | spatial autoregressive model |
SDEM | spatial Durbin error model |
SDM | spatial Durbin model |
SEM | spatial error model |
SLX | spatial lag of X model |
References
- IEA. World Energy Outlook 2021; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Jäger-Waldau, A. Snapshot of Photovoltaics—February 2018. EPJ Photovolt. 2018, 9, 6. [Google Scholar] [CrossRef]
- Abrell, J.; Kosch, M.; Rausch, S. Carbon Abatement with Renewables: Evaluating Wind and Solar Subsidies in Germany and Spain. J. Public Econ. 2019, 169, 172–202. [Google Scholar] [CrossRef]
- REN21. Renewables 2021 Global Status Report; Renewable Energy Policy Network for the 21st Century: Paris, France, 2021; ISBN 978-3-948393-03-8. [Google Scholar]
- European Parliament. The European Parliament and of the Council Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources; European Parliament: Strasbourg, France, 2018. [Google Scholar]
- Wicki, L. Development of Biofuels Production from Agricultural Raw Materials. In Proceedings of the 8th International Scientific Conference Rural Development, Kaunas, Lithuania, 23–24 November 2017; pp. 502–508. [Google Scholar] [CrossRef]
- Wicki, L. Food and Bioenergy—Evidence from Poland. In Proceedings of the 2017 International Conference “Economic Science for Rural Development”, Jelgava, Latvia, 27–28 April 2017; pp. 299–305. [Google Scholar]
- Kougias, I.; Taylor, N.; Kakoulaki, G.; Jäger-Waldau, A. The Role of Photovoltaics for the European Green Deal and the Recovery Plan. Renew. Sustain. Energy Rev. 2021, 144, 111017. [Google Scholar] [CrossRef]
- Karneyeva, Y.; Wüstenhagen, R. Solar Feed-in Tariffs in a Post-Grid Parity World: The Role of Risk, Investor Diversity and Business Models. Energy Policy 2017, 106, 445–456. [Google Scholar] [CrossRef]
- Spertino, F.; Di Leo, P.; Cocina, V. Which Are the Constraints to the Photovoltaic Grid-Parity in the Main European Markets? Sol. Energy 2014, 105, 390–400. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2020; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021; ISBN 978-92-9260-348-9. [Google Scholar]
- Giaccaria, S.; Longo, A.; Bouman, T.; Efthimiadis, T. Valuing (In) Security of Electricity Supply: A Discrete Choice Experiment for Estonia, the Netherlands and Portugal. In Proceedings of the 3rd AIEE Energy Symposium. Current and Future Challenges to Energy Security, Rome, Italy, 10–12 December 2018; pp. 44–46. [Google Scholar]
- Diaz-Rainey, I.; Tzavara, D. Financing the Decarbonized Energy System through Green Electricity Tariffs: A Diffusion Model of an Induced Consumer Environmental Market. Technol. Forecast. Soc. Chang. 2012, 79, 1693–1704. [Google Scholar] [CrossRef]
- Pelagatti, M.; Gianfreda, A.; Parisio, L. Trends and Long-Run Relations in Electricity Prices: Why Prefiltering Is Inevitable. In Proceedings of the 3rd AIEE Energy Symposium. Current and Future Challenges to Energy Security, Rome, Italy, 10–12 December 2018; pp. 39–40. [Google Scholar]
- Zhang, L.; Du, Q.; Zhou, D. Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties. Energies 2021, 14, 1814. [Google Scholar] [CrossRef]
- Olczak, P.; Żelazna, A.; Matuszewska, D.; Olek, M. The “My Electricity” Program as One of the Ways to Reduce CO2 Emissions in Poland. Energies 2021, 14, 7679. [Google Scholar] [CrossRef]
- Instytut Energetyki Odnawialnej Podsumowanie Aukcji OZE w 2021 Roku. Available online: https://www.ieo.pl/pl/aktualnosci/1547-podsumowanie-aukcji-oze-w-2021-roku (accessed on 27 July 2022).
- Dastrup, S.R.; Graff Zivin, J.; Costa, D.L.; Kahn, M.E. Understanding the Solar Home Price Premium: Electricity Generation and “Green” Social Status. Eur. Econ. Rev. 2012, 56, 961–973. [Google Scholar] [CrossRef]
- NFOSIGW Program Dofinansowania Mikroinstalacji Fotowoltaicznych. Available online: https://mojprad.gov.pl/ (accessed on 10 June 2022).
- Statistics Poland Platforma Analityczna SWAiD-Dziedzinowe Bazy Wiedzy. Available online: http://swaid.stat.gov.pl/SitePages/StronaGlownaDBW.aspx (accessed on 10 September 2021).
- UN FCCC. Adoption of the Paris Agreement. Proposal by the President; United Nations: Geneva, Switzerland, 2015. [Google Scholar]
- Wicki, L. Changes in Land Use for Production of Energy Crops in Poland. Ann. Agric. Econ. Rural Dev. 2017, 104, 37–47. [Google Scholar] [CrossRef]
- Iskandarova, M.; Dembek, A.; Fraaije, M.; Matthews, W.; Stasik, A.; Wittmayer, J.M.; Sovacool, B.K. Who Finances Renewable Energy in Europe? Examining Temporality, Authority and Contestation in Solar and Wind Subsidies in Poland, the Netherlands and the United Kingdom. Energy Strategy Rev. 2021, 38, 100730. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Economic Analysis of a Photovoltaic System: A Resource for Residential Households. Energies 2017, 10, 814. [Google Scholar] [CrossRef]
- Sarasa-Maestro, C.J.; Dufo-López, R.; Bernal-Agustín, J.L. Analysis of Photovoltaic Self-Consumption Systems. Energies 2016, 9, 681. [Google Scholar] [CrossRef]
- Ziemińska-Stolarska, A.; Pietrzak, M.; Zbiciński, I. Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art. Energies 2021, 14, 3143. [Google Scholar] [CrossRef]
- Kopecek, R.; Libal, J. Bifacial Photovoltaics 2021: Status, Opportunities and Challenges. Energies 2021, 14, 2076. [Google Scholar] [CrossRef]
- IEA; NEA. Projected Costs of Generating Electricity; International Energy Agency, OECD Nuclear Energy Agency: Paris, France, 2020. [Google Scholar]
- Viola, F.; Romano, P.; Sanseverino, E.R.; Miceli, R.; Cardinale, M.; Schettino, G. An Economic Study about the Installation of PV Plants Reconfiguration Systems in Italy. In Proceedings of the 2014 International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA, 19–22 October 2014; pp. 989–994. [Google Scholar]
- Khuong, P.M.; McKenna, R.; Fichtner, W. A Cost-Effective and Transferable Methodology for Rooftop PV Potential Assessment in Developing Countries. Energies 2020, 13, 2501. [Google Scholar] [CrossRef]
- Dávi, G.A.; De Asiain, J.L.; Solano, J.; Caamaño-Martín, E.; Bedoya, C. Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management. Energies 2017, 10, 1117. [Google Scholar] [CrossRef]
- Niedermeyer, F.; Braun, M. Comparison of Performance-Assessment Methods for Residential PV Battery Systems. Energies 2020, 13, 5529. [Google Scholar] [CrossRef]
- Olivella, J.; Domenech, B.; Calleja, G. Potential of Implementation of Residential Photovoltaics at City Level: The Case of London. Renew. Energy 2021, 180, 577–585. [Google Scholar] [CrossRef]
- Zsiborács, H.; Hegedűsné Baranyai, N.; Vincze, A.; Háber, I.; Pintér, G. Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe. Energies 2018, 11, 1445. [Google Scholar] [CrossRef]
- Castaneda, M.; Zapata, S.; Cherni, J.; Aristizabal, A.J.; Dyner, I. The Long-Term Effects of Cautious Feed-in Tariff Reductions on Photovoltaic Generation in the UK Residential Sector. Renew. Energy 2020, 155, 1432–1443. [Google Scholar] [CrossRef]
- Alipour, M.; Stewart, R.A.; Sahin, O. Beyond the Diffusion of Residential Solar Photovoltaic Systems at Scale: Allegorising the Battery Energy Storage Adoption Behaviour. Energies 2021, 14, 5015. [Google Scholar] [CrossRef]
- Javeed, I.; Khezri, R.; Mahmoudi, A.; Yazdani, A.; Shafiullah, G.M. Optimal Sizing of Rooftop Pv and Battery Storage for Grid-Connected Houses Considering Flat and Time-of-Use Electricity Rates. Energies 2021, 14, 3520. [Google Scholar] [CrossRef]
- Yang, C.J. Reconsidering Solar Grid Parity. Energy Policy 2010, 38, 3270–3273. [Google Scholar] [CrossRef]
- Budin, L.; Grdenić, G.; Delimar, M. A Quadratically Constrained Optimization Problem for Determining the Optimal Nominal Power of a Pv System in Net-Metering Model: A Case Study for Croatia. Energies 2021, 14, 1746. [Google Scholar] [CrossRef]
- Martín, H.; Coronas, S.; Alonso, À.; De La Hoz, J.; Matas, J. Renewable Energy Auction Prices: Near Subsidy-Free? Energies 2020, 13, 3383. [Google Scholar] [CrossRef]
- Panos, E.; Margelou, S. Long-Term Solar Photovoltaics Penetration in Single- and Two-Family Houses in Switzerland. Energies 2019, 12, 2460. [Google Scholar] [CrossRef]
- Sgroi, F.; Tudisca, S.; Di Trapani, A.M.; Testa, R.; Squatrito, R. Efficacy and Efficiency of Italian Energy Policy: The Case of PV Systems in Greenhouse Farms. Energies 2014, 7, 3985–4001. [Google Scholar] [CrossRef]
- Bhandari, R.; Stadler, I. Grid Parity Analysis of Solar Photovoltaic Systems in Germany Using Experience Curves. Sol. Energy 2009, 83, 1634–1644. [Google Scholar] [CrossRef]
- Nolden, C. Performance and Impact of the Feed-in Tariff Scheme: Review of Evidence Final Report; Department of Energy & Climate Changes: London, UK, 2015. [Google Scholar]
- Di Dio, V.; Favuzza, S.; La Cascia, D.; Massaro, F.; Zizzo, G. Critical Assessment of Support for the Evolution of Photovoltaics and Feed-in Tariff(s) in Italy. Sustain. Energy Technol. Assess. 2015, 9, 95–104. [Google Scholar] [CrossRef]
- Christoforidis, G.C.; Panapakidis, I.P.; Papadopoulos, T.A.; Papagiannis, G.K.; Koumparou, I.; Hadjipanayi, M.; Georghiou, G.E. A Model for the Assessment of Different Net-Metering Policies. Energies 2016, 9, 262. [Google Scholar] [CrossRef]
- Assereto, M.; Byrne, J. The Implications of Policy Uncertainty on Solar Photovoltaic Investment. Energies 2020, 13, 6233. [Google Scholar] [CrossRef]
- Pierro, M.; Moser, D.; Perez, R.; Cornaro, C. The Value of PV Power Forecast and the Paradox of the “Single Pricing” Scheme: The Italian Case Study. Energies 2020, 13, 3945. [Google Scholar] [CrossRef]
- Iwaszczuk, N.; Trela, M. Analysis of the Impact of the Assumed Moment of Meeting Total Energy Demand on the Profitability of Photovoltaic Installations for Households in Poland. Energies 2021, 14, 1637. [Google Scholar] [CrossRef]
- Kamran, M.; Fazal, R.M.; Mudassar, M.; Shah, R.A.; Adnan, M.; Abid, I.; Randhawa, F.J.S.; Shams, H. Solar Photovoltaic Grid Parity: A Review of Issues, Challenges and Status of Different PV Markets. Int. J. Renew. Energy Res. 2019, 9, 244–260. [Google Scholar] [CrossRef]
- Panapakidis, I.P.; Koltsaklis, N.; Christoforidis, G.C. A Novel Integrated Profit Maximization Model for Retailers under Varied Penetration Levels of Photovoltaic Systems. Energies 2021, 14, 92. [Google Scholar] [CrossRef]
- Squatrito, R.; Sgroi, F.; Tudisca, S.; di Trapani, A.M.; Testa, R. Post Feed-in Scheme Photovoltaic System Feasibility Evaluation in Italy: Sicilian Case Studies. Energies 2014, 7, 7147–7165. [Google Scholar] [CrossRef]
- Chen, C.N.; Yang, C.T. The Investability of PV Systems under Descending Feed-in Tariffs: Taiwan Case. Energies 2021, 14, 2728. [Google Scholar] [CrossRef]
- Gholami, H.; Røstvik, H.N. Levelised Cost of Electricity (Lcoe) of Building Integrated Photovoltaics (Bipv) in Europe, Rational Feed-in Tariffs and Subsidies. Energies 2021, 14, 2531. [Google Scholar] [CrossRef]
- Vartiainen, E.; Masson, G.; Breyer, C.; Moser, D.; Román Medina, E. Impact of Weighted Average Cost of Capital, Capital Expenditure, and Other Parameters on Future Utility-Scale PV Levelised Cost of Electricity. Prog. Photovolt. Res. Appl. 2020, 28, 439–453. [Google Scholar] [CrossRef]
- Palmer, J.; Sorda, G.; Madlener, R. Modeling the Diffusion of Residential Photovoltaic Systems in Italy: An Agent-Based Simulation. Technol. Forecast. Soc. Chang. 2015, 99, 106–131. [Google Scholar] [CrossRef]
- Nakano, S.; Washizu, A. On the Acceptability of Electricity Demand Side Management by Time of Day. Energies 2020, 13, 3665. [Google Scholar] [CrossRef]
- McKenna, E.; Pless, J.; Darby, S.J. Solar Photovoltaic Self-Consumption in the UK Residential Sector: New Estimates from a Smart Grid Demonstration Project. Energy Policy 2018, 118, 482–491. [Google Scholar] [CrossRef]
- Chiaroni, D.; Chiesa, V.; Colasanti, L.; Cucchiella, F.; D’Adamo, I.; Frattini, F. Evaluating Solar Energy Profitability: A Focus on the Role of Self-Consumption. Energy Convers. Manag. 2014, 88, 317–331. [Google Scholar] [CrossRef]
- Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Gródek-Szostak, Z.; Suder, M.; Kuboń, M.; Borkowski, T.; Malik, G. Solar Power: Stellar Profit or Astronomic Cost? A Case Study of Photovoltaic Installations under Poland’s National Prosumer Policy in 2016–2020. Energies 2021, 14, 4233. [Google Scholar] [CrossRef]
- Šimić, Z.; Topić, D.; Crnogorac, I.; Knežević, G. Method for Sizing of a PV System for Family Home Using Economic Indicators. Energies 2021, 14, 4529. [Google Scholar] [CrossRef]
- Wierling, A.; Zeiss, J.P.; Lupi, V.; Candelise, C.; Sciullo, A.; Schwanitz, V.J. The Contribution of Energy Communities to the Upscaling of Photovoltaics in Germany and Italy. Energies 2021, 14, 2258. [Google Scholar] [CrossRef]
- Błażejowska, M.; Gostomczyk, W. Warunki Tworzenia i Stan Rozwoju Spółdzielni i Klastrów Energetycznych w Polsce Na Tle Doświadczeń Niemieckich. Zesz. Nauk. SGGW W Warszawie-Probl. Rol. Światowego 2018, 18, 20–32. [Google Scholar] [CrossRef]
- Sudhoff, R.; Schreck, S.; Thiem, S.; Niessen, S. Operating Renewable Energy Communities to Reduce Power Peaks in the Distribution Grid: An Analysis on Grid-Friendliness, Different Shares of Participants, and Economic Benefits. Energies 2022, 15, 5468. [Google Scholar] [CrossRef]
- Kaldellis, J.K. Supporting the Clean Electrification for Remote Islands: The Case of the Greek Tilos Island. Energies 2021, 14, 1336. [Google Scholar] [CrossRef]
- Sospiro, P.; Amarnath, L.; di Nardo, V.; Talluri, G.; Gandoman, F.H. Smart Grid in China, EU, and the US: State of Implementation. Energies 2021, 14, 5637. [Google Scholar] [CrossRef]
- Antonanzas-Torres, F.; Antonanzas, J.; Blanco-Fernandez, J. State-of-the-Art of Mini Grids for Rural Electrification in West Africa. Energies 2021, 14, 990. [Google Scholar] [CrossRef]
- Alkholidi, A.; Hamam, H. Solar Energy Potentials in Southeastern European Countries: A Case Study. Int. J. Smart Grid 2019, 3, 108–119. [Google Scholar]
- Al-Ghussain, L.; Abujubbeh, M.; Darwish Ahmad, A.; Abubaker, A.M.; Taylan, O.; Fahrioglu, M.; Akafuah, N.K. 100% Renewable Energy Grid for Rural Electrification of Remote Areas: A Case Study in Jordan. Energies 2020, 13, 4908. [Google Scholar] [CrossRef]
- Sigrin, B.; Pless, J.; Drury, E. Diffusion into New Markets: Evolving Customer Segments in the Solar Photovoltaics Market. Environ. Res. Lett. 2015, 10, 84001. [Google Scholar] [CrossRef]
- Dharshing, S. Household Dynamics of Technology Adoption: A Spatial Econometric Analysis of Residential Solar Photovoltaic (PV) Systems in Germany. Energy Res. Soc. Sci. 2017, 23, 113–124. [Google Scholar] [CrossRef]
- Tomasi, S. The (Non) Impact of the Spanish “Tax on the Sun” on Photovoltaics Prosumers Uptake. Energy Policy 2022, 168, 113041. [Google Scholar] [CrossRef]
- Kowalska-Pyzalska, A. An Empirical Analysis of Green Electricity Adoption Among Residential Consumers in Poland. Sustainability 2018, 10, 2281. [Google Scholar] [CrossRef]
- Petrovich, B.; Hille, S.; Carattini, S.; Wustenhagen, R. Residential Solar Pv Investment: The Role of Beauty, Budget and Risk. In Proceedings of the 3rd AIEE Energy Symposium Current and Future Challenges to Energy Security, Rome, Italy, 10–12 December 2018; pp. 11–12. [Google Scholar]
- Balakumar, P.; Vinopraba, T.; Sankar, S.; Santhoshkumar, S.; Chandrasekaran, K. Smart Hybrid Microgrid for Effective Distributed Renewable Energy Sharing of PV Prosumers. J. Energy Storage 2022, 49, 104033. [Google Scholar] [CrossRef]
- Celik, I.; Ahangharnejhad, R.H.; Song, Z.; Heben, M.; Apul, D. Emerging Photovoltaic (PV) Materials for a Low Carbon Economy. Energies 2020, 13, 4131. [Google Scholar] [CrossRef]
- EUROSTAT Gross and Net Production of Electricity and Derived Heat by Type of Plant and Operator. Available online: https://ec.europa.eu/eurostat/databrowser/product/page/NRG_IND_PEH__custom_2430601 (accessed on 13 April 2022).
- PTPiREE Mikroinstalacje w Polsce. Available online: http://www.ptpiree.pl/energetyka-w-polsce/energetyka-w-liczbach/mikroinstalacje-w-polsce (accessed on 30 April 2022).
- ARE S.A. Informacja Statystyczna o Energii Elektrycznej Nr 12 (324); Agencja Rynku Energii S.A.: Warsaw, Poland, 2021. [Google Scholar]
- MKiS; ARE S.A. Informacja Statystyczna o Energii Elektrycznej Nr 12 (336); Ministerstwo Klimatu i Środowiska, Agencja Rynku Energii S.A.: Warsaw, Poland, 2022. [Google Scholar]
- LeSage, J.P. What Regional Scientists Need to Know about Spatial Econometrics. Rev. Region. Stud. 2014, 13–32. [Google Scholar] [CrossRef]
- Elhorst, J.P. Applied Spatial Econometrics: Raising the Bar. Spat. Econ. Anal. 2010, 5, 9–28. [Google Scholar] [CrossRef]
- Getis, A.; Aldstadt, J. Constructing the Spatial Weights Matrix Using a Local Statistic. Geogr. Anal. 2004, 36, 90–104. [Google Scholar] [CrossRef]
- Antczak, E. Building W Matrices Using Selected Geostatistical Tools: Empirical Examination and Application. Stats 2018, 1, 112–133. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation; Pion: London, UK, 1973. [Google Scholar]
- Anselin, L. Lagrange Multiplier Test Diagnostics for Spatial Dependence and Spatial Heterogeneity. Geogr. Anal. 1988, 20, 1–17. [Google Scholar] [CrossRef]
- Pietrzykowski, R. Klasyfikacja Obiektów w Ujęciu Czasowo-Przestrzennym z Zastosowaniem Analizy Funkcjonalnej. Pr. Nauk. Uniw. Ekon. We Wrocławiu 2018, 508, 170–179. [Google Scholar] [CrossRef]
- Pietrzykowski, R. Application of Spatial Techniques for Panel Data Analysis of Agricultural Real Estate Market in the Years 2004–2012. Metod. Ilościowe W Bad. Ekon. 2014, 15, 188–197. [Google Scholar]
- Pietrzykowski, R. Concept and Application Matrix Weight Modifications in Spatial Economic Research. Quant. Methods Econ. 2011, 12, 270–278. [Google Scholar]
- Rey, S.J.; Montouri, B.D. US Regional Income Convergence: A Spatial Econometric Perspective. Reg. Stud. 1999, 33, 143–156. [Google Scholar] [CrossRef]
- Rauf, A.; Al-Awami, A.T.; Kassas, M.; Khalid, M. Optimal Sizing and Cost Minimization of Solar Photovoltaic Power System Considering Economical Perspectives and Net Metering Schemes. Electronics 2021, 10, 2713. [Google Scholar] [CrossRef]
- Talavera, D.L.; Muñoz-Cerón, E.; De La Casa, J.; Lozano-Arjona, D.; Theristis, M.; Pérez-Higueras, P.J. Complete Procedure for the Economic, Financial and Cost-Competitiveness of Photovoltaic Systems with Self-Consumption. Energies 2019, 12, 345. [Google Scholar] [CrossRef]
- Brodziński, Z.; Brodzińska, K.; Szadziun, M. Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland. Energies 2021, 14, 2087. [Google Scholar] [CrossRef]
- Wilson, C.; Dowlatabadi, H. Models of Decision Making and Residential Energy Use. Annu. Rev. Environ. Resour. 2007, 32, 169–203. [Google Scholar] [CrossRef]
Region | PV micro-Systems 1 | PV Capacity 1 | Population | Household | Average Salary | GDP |
---|---|---|---|---|---|---|
number | MW | million | thousand | thousand PLN | billion PLN | |
Dolnoslaskie | 13,906 | 84.3 | 2.90 | 1100 | 5.32 | 175.7 |
Kujawsko-pomorskie | 9619 | 57.0 | 2.07 | 729 | 4.49 | 93.3 |
Lubelskie | 10,080 | 53.0 | 2.11 | 742 | 4.56 | 79.5 |
Lubuskie | 4932 | 30.1 | 1.01 | 365 | 4.56 | 46.1 |
Lodzkie | 12,605 | 74.4 | 2.45 | 944 | 4.79 | 127.0 |
Malopolskie | 23,212 | 130.3 | 3.41 | 1080 | 5.10 | 172.7 |
Mazowieckie | 23,189 | 129.4 | 5.42 | 1943 | 6.25 | 477.9 |
Opolskie | 6175 | 38.5 | 0.98 | 354 | 4.71 | 43.4 |
Podkarpackie | 18,156 | 87.5 | 2.13 | 649 | 4.39 | 83.1 |
Podlaskie | 4365 | 23.6 | 1.18 | 417 | 4.58 | 46.9 |
Pomorskie | 12,007 | 67.3 | 2.34 | 806 | 5.14 | 125.0 |
Slaskie | 25,384 | 144.5 | 4.52 | 1728 | 5.18 | 260.5 |
Swietokrzyskie | 7754 | 40.0 | 1.23 | 429 | 4.49 | 49.7 |
Warminsko-mazurskie | 6098 | 35.0 | 1.42 | 516 | 4.32 | 54.5 |
Wielkopolskie | 24,529 | 136.9 | 3.50 | 1129 | 4.69 | 208.2 |
Zachodniopomorskie | 5865 | 33.8 | 1.70 | 639 | 4.77 | 78.3 |
Parameters | Estimation of Parameters | Standard Error | p-Value 1 |
---|---|---|---|
11.9562 | 3.3546 | 0.00346 *** | |
1.1169 | 0.2667 | 0.00106 *** | |
2.2231 | 0.7193 | 0.0860 * |
Parameter | Estimation of Parameter | Standard Error | p-Value 1 |
---|---|---|---|
0.93658 | 2.88776 | 0.74569 | |
1.05412 | 0.16168 | 7.039 × 10−11 *** | |
3.52105 | 0.51521 | 8.244 × 10−12 *** | |
−1.96144 | 0.31011 | 2.531 × 10−10 *** | |
2.59639 | 1.41390 | 0.06631 * | |
0.7501 | 0.1641 | 4.8257 × 10−6 *** | |
−0.9151 | 0.3938 | 0.0201 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wicki, L.; Pietrzykowski, R.; Kusz, D. Factors Determining the Development of Prosumer Photovoltaic Installations in Poland. Energies 2022, 15, 5897. https://doi.org/10.3390/en15165897
Wicki L, Pietrzykowski R, Kusz D. Factors Determining the Development of Prosumer Photovoltaic Installations in Poland. Energies. 2022; 15(16):5897. https://doi.org/10.3390/en15165897
Chicago/Turabian StyleWicki, Ludwik, Robert Pietrzykowski, and Dariusz Kusz. 2022. "Factors Determining the Development of Prosumer Photovoltaic Installations in Poland" Energies 15, no. 16: 5897. https://doi.org/10.3390/en15165897
APA StyleWicki, L., Pietrzykowski, R., & Kusz, D. (2022). Factors Determining the Development of Prosumer Photovoltaic Installations in Poland. Energies, 15(16), 5897. https://doi.org/10.3390/en15165897