Geochemical Characteristics and Environmental Implications of Trace Elements of the Paleocene in the West Lishui Sag, East China Sea Basin
Abstract
:1. Introduction
2. Geological Settings
2.1. Tectonic Evolution Characteristics
2.2. Petrological and Mineralogical Characteristics
2.3. Sedimentary Characteristics
3. Materials and Methods
3.1. Samples
3.2. Methods
4. Results
4.1. Geochemical Characteristics of Elements
4.1.1. Enrichment Characteristics of Elements
4.1.2. Correlation of Elements
4.2. Paleoclimate
4.2.1. Cu/Sr
4.2.2. Mg/Ca
4.2.3. CaO/(MgO × Al2O3)
4.3. Paleotemperature
4.3.1. Sr Element Calculation of Paleotemperature
4.3.2. Oxygen Isotope Calculation of Paleotemperature
4.4. Offshore Distance and Paleobathymetric
4.4.1. Determination of Paleobathymetrics by Sedimentological Markers
4.4.2. Elemental Ratio Method
4.5. Paleoredox Environment
4.5.1. Cu/Zn
4.5.2. V/Ni and V/(V + Ni)
4.6. Paleosalinity
4.6.1. Rb/K
4.6.2. Sr/Ba
4.7. Paleoproductivity
4.7.1. Elemental Ratio Method
4.7.2. Formula Method
4.8. Paleoterrigenous Input
5. Discussion
6. Conclusions
- (1)
- The characteristics of the major and trace elements were similar in the E1m2, E1l1, E1l2, and E1y, and the paleoclimate of the Paleocene in the West Depression of Lishui Sag was dry as a whole. From the E1y to the E1m, it experienced an evolutionary process of the periodic exchange of humidity and dryness.
- (2)
- Combined with the Sr and oxygen isotope calculation results, the paleotemperature of the Paleocene in the West Lishui Sag was warm and the sedimentary environment was relatively stable. However, the content of Sr became smaller after later deposition, so the calculated paleowater temperature was higher. In addition, oxygen isotopes were affected by diagenesis, resulting in a negative oxygen isotope value, which needs further research.
- (3)
- The Paleocene in the West Lishui Sag was mainly in a reducing environment of brackish-salt water with weak water stratification. As a whole, the water depth showed a trend of becoming deeper, then shallower, and then deeper. The upper part of the E1m2 had the deepest water depth, the strongest reducibility, and the highest salinity.
- (4)
- The values of Baxs, Znxs, and the ratio of trace elements showed that the paleoproductivity of the study area was low, and the hydrocarbon generation potential was poor. The nutrient elements mainly came from the terrigenous input rather than the biological origin. Meanwhile, the Si/Al ratios also showed that the study area was greatly affected by the terrigenous input, and the terrigenous intrusion characteristics gradually increased from the E1y to the lower part of the E1m2.
- (5)
- The paleoproductivity was affected by the paleoclimate and paleowater depth. The warm and humid climate and the deep water body were conducive to the accumulation of paleoproductivity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiong, X.H.; Xiao, J.H. Geochemical Indicators of Sedimentary Environments-A Summary of Late Triassic strata in the middle part of western Ordos Basin. Earth Environ. 2011, 39, 405–414. [Google Scholar]
- Yuan, C.; Zhang, W.Z.; Wen, H.H.; Xu, W.; Liu, J.; Zhang, Z.W.; Yi, X.F. Trace Element Analysis and Its Sedimentary Environment Significance of Zhujiang Formation in Pearl River Mouth Basin. Geol. China 2017, 24, 91–92. [Google Scholar]
- Fan, Y.H.; Qu, H.J.; Yang, X.C.; Wang, H.; Feng, Y.W. The application of trace elements analysis to identifying sedimentary media environment: A case study of Late Triassic strata in the middle part of western Ordos Basin. Petrochem. Ind. Technol. 2012, 39, 382–389. [Google Scholar]
- Liu, G.; Zhou, D.S. Application of microelements analysis in identifying sedimentary environment-Taking Qianjiang Formation in the Jianghan Basin as an example. Pet. Geol. Exp. 2007, 29, 307–310, 314. [Google Scholar]
- Miller, E.K.; Blum, J.D.; Friedland, A.J. Determination of soil exchangeable-cation loss and weathering rates using Sr isotopes. Nature 1993, 362, 438–441. [Google Scholar] [CrossRef]
- Rimmer, S.M.; Thompson, J.A.; Goodnight, S.A.; Robl, T.L. Multiple controls on the preservation of organic matter in Devonian-Misssippian marine black shales geochemical and petrographic evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 215, 125–154. [Google Scholar] [CrossRef]
- Miao, J.Y.; Zhao, J.S.; Liu, C.Y.; Zhu, Y.J.; Wang, W.L. Relationship between the geochemical characteristics and sedimentary environment of Permian hydrocarbon source rocks in the Ordos basin. Geol. China 2007, 34, 430–435. [Google Scholar]
- Dominik, J.; Stanley, D.J. Boron, beylium and sufur in Holocene sediments and peats of the Nile deta Egypt: Their use as idicators of salinity and climate. Chem. Geol. 1993, 104, 203–216. [Google Scholar] [CrossRef]
- Krejcigraf, K. Geochemical facies of sediments. Soil Sci. 1975, 119, 20–23. [Google Scholar] [CrossRef]
- Custodio, E. Aquifer overexploitation:what does it mean? Hydrogeol. J. 2002, 10, 254–277. [Google Scholar] [CrossRef]
- Nian, X.Q.; Han, F.Q.; Han, J.L.; Mao, F.Q.; Ma, Z. Application of Trace Elements in Discriminating Sedimentary Environment-A Case Study of Strontium-Rich Sedimentary Rocks in The Strontium Ore Area in the Western Qaidam Basin. J. Salt Lake Res. 2019, 27, 66–72. [Google Scholar]
- Wang, Y.; Jiang, L.; Yang, W.L. Kinematical Analysis on faults in the Lishui Jiaojiang Sag. Chin. J. Geol. 2000, 35, 441–448. [Google Scholar]
- Bian, Y.Q.; Fu, Q.; Liu, J.S.; Ma, W.R.; Zhao, S.J.; Qin, T.T. Diagenesis and diagenetic evolution of Paleocene sandstone reservoir in Lishui West Sag, East China Sea Basin. Sediment. Geol. Tethyan Geol. 2022, 42, 1–14. [Google Scholar]
- Wu, Z.K.; Li, Q.; Zhang, Y.Z.; Qin, J.; Zhu, Z.J.; Gen, H.; Chen, H.H. Provenance and Geological significance of Paleocene in Lishui Sag, East China Sea Shelf Basin. Pet. Geol. Exp. 2022, 44, 1–12. [Google Scholar]
- Folk, R.L.; Andrews, P.B.; Lewis, D.W. Detrital sedimentary rock classification and nomenclature for use in New Zealand. N. Z. J. Geol. Geophys 1970, 13, 937–968. [Google Scholar] [CrossRef] [Green Version]
- Cai, K.; Xu, D.H.; Yuan, Y.; Liao, K.F. Sedimentary features and depositional model of the submarine fan of Mingyuefeng Formation in the Western Lishui Sag, East China Sea. Mar. Geol. Quat. Geol. 2020, 40, 22–30. [Google Scholar]
- Tian, B.; Li, X.Y.; Pang, G.Y.; Tang, J.; Tang, L.; Wang, Q. Sedimentary Systems of the Superimposed Rift-Subsidence Basin: Taking Lishui- Jiaojiang Sag of the East China Sea as an example. Acta Sedimentol. Sin. 2012, 30, 696–705. [Google Scholar]
- Fisher, J.B.; Boles, J.R. Water-rock interaction in Tertiary sandstones, San Joaquin Basin, California, USA: Diageneticcontrols on water composition. Chem. Geol. 1990, 82, 83–101. [Google Scholar] [CrossRef]
- Liu, J.H.; Wu, Z.X.; Yu, S.; Jia, D.H. Paleocene trace element geochemistry and its geological significance in Lishui Sag. China Offshore Oil Gas 2005, 17, 8–11. [Google Scholar]
- Wang, F.; Liu, X.C.; Den, G.X.Q.; Li, Y.H.; Tian, J.C.; Li, S.X.; You, J.Q. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin. Acta Sedimentol. Sin. 2017, 35, 1265–1273. [Google Scholar]
- Dill, H.; Teschner, M.; Wehner, H. Petrography, inorganic and organic geochemistry of lower Permian Carbonaceous fan sequences (“Brandschiefer Series”) Federal Republic of Germany, constraints to their paleogeography and assessment of their source rock potential. Chem. Geol. 1988, 67, 307–325. [Google Scholar] [CrossRef]
- Patterson, J.H.; Ramsden, A.R.; Dale, L.S.; Fardy, J.J. Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia. Chem. Geol. 1986, 55, 1–16. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Baudin, F.; Riboulleau, A. Analysis of marine environmental conditions based on molybdenum-uranium covariation applications to Mesozoic Paleoceanography. Chem. Geol. 2012, 324–325, 46–58. [Google Scholar] [CrossRef]
- Algeo, T.J.; Maynard, J.B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Peng, Z.C.; Li, Y.N.; Fu, X.F.; Zhang, S.X.Q. Application of the geochemical characteristics of the major and trace elements in the sedimentary environment. J. Xi’an Univ. (Nat. Sci. Ed.) 2018, 21, 108–111. [Google Scholar]
- Xu, B.; Zeng, W.Q.; Diao, H.; Tang, R.; Ou, G. Trace rare earth elements in the Pinghu Formation of Xihu Sag and its implications for paleo-production environment. Mar. Geol. Quat. Geol. 2021, 41, 72–84. [Google Scholar]
- Liu, F.T.; Li, R.X.; Zhao, B.S.; Liu, X.F.; Cheng, J.H.; Li, D.L.; Wu, X.L. Characteristics of carbon and oxygen isotopes of the Jixian System carbonate rocks in the southwestern margin of Ordos Basin and their implication. J. Lanzhou Univ. (Nat. Sci.) 2018, 54, 597–603. [Google Scholar]
- Li, Y.C.; Liu, W.H.; Wang, W.C.; Zheng, J.J. Identical carbon isotope trends of carbonate and organic carbon and their environmental significance from the Changhsingian(end-Permian), Meishan, South China. Chin. J. Geochem. 2011, 30, 496–506. [Google Scholar] [CrossRef]
- Keith, M.L.; Weber, J.N. Isotopic composition and environmental classification of selected limestones and fossils. Geochim. Et Cosmochim. Acta 1964, 28, 1786–1816. [Google Scholar] [CrossRef]
- Marais, D.J.D.; Strauss, H.; Summons, R.E.; Hayes, J.M. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 1992, 359, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Epstein, S.; Buchsbaum, R.; Lowenstam, H.A.; Urey, H.C. Revised carbonate water isotopic temperature scale. GSA Bull. 1953, 64, 1315–1326. [Google Scholar] [CrossRef]
- Gao, F.; Wang, N.X.; Qiao, X.Y.; Liu, P. Dolomite diagenetic environments analysis based on ancient salinity and ancient water temperature, A case study of M51sub-members of Majiagou Formation in Yanchang Area of Southeast Ordos Basin. Unconv. Oil Gas 2019, 6, 47–53. [Google Scholar]
- Zheng, Y.D.; Lei, Y.H.; Zhang, L.Q.; Wang, X.Z.; Zhang, L.X.; Jiang, C.F.; Cheng, M.; Yu, Y.X.; Tian, F.; Sun, B.H. Characteristics of Element Geochemistry and Paleo Sedimentary Environment Evolution of Zhangjiatan Shale in the Southeast of Ordos Basin and Its Geological Significance for Oil and Gas. Nat. Gas Geosci. 2015, 26, 1395–1404. [Google Scholar]
- Chen, J.; Huang, W.H.; Heng, M.Q. Elemental Geochemistry Characteristics of Mudstones from Benxi Formation to Lower Shihezi Formation in Southeastern Ordos Basin. Geoscience 2018, 32, 240–250. [Google Scholar]
- Yang, H.; Liu, C.L.; Wang, F.L.; Tang, G.M.; Li, G.X.; Zeng, X.X.; Wu, Y.P. Paleoenvironment and development model of source rocks of Dongying Formation in Bozhong Sag. Lithol. Reserv. 2021, 32, 240–250. [Google Scholar]
- Hu, T.; Pang, X.; Jiang, S.; Wang, Q.F.; Xu, T.W. Impact of paleosalinity, dilution, redox, and paleoproductivity on organic matter enrich-ment in a saline lacustrine rift basin, A case study of paleogene organic-rich shale in Dongpu depression, Bohai Bay Basin, eastern China. Energy Fuels 2018, 32, 5045–5061. [Google Scholar] [CrossRef]
- Moradi, A.V.; Sari, A.; Akkaya, P. Geochemistry of the Miocene oil shale (Hanili Formation) in the ankr-orum Basin, Central Turkey, Implications for Paleoclimate conditions, source–area weathering, provenance and tectonic setting. Sediment. Geol. 2016, 341, 289–303. [Google Scholar] [CrossRef]
- Awan, R.S.; Liu, C.L.; Gong, H.W.; Dun, C.; Tong, C.; Chamssidini, L.G. Paleo-sedimentary environment in relation to enrichment of organic matter of Early Cambrian black rocks of Niutitang Formation from Xiangxi area China. Mar. Pet. Geol. 2020, 112, 104057. [Google Scholar] [CrossRef]
- Algeo, T.J.; Kuwahara, K.; Sano, H.; Bates, S.; Lyons, T.; Elswick, E.; Hinnov, L.; Ellwood, B.; Moser, J.; Maynard, J.B. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 308, 65–83. [Google Scholar] [CrossRef]
- Yang, Y.H.; Sun, G.Q.; W, Y.T.; Zhu, W.J.; Qin, C.H.; Guan, B. Sedimentary Diagenetic Environment of the Lulehe Formation in the Pingtai Region, Northern Qaidam Basin. Acta Sedimentol. Sin. 2019, 37, 1258–1268. [Google Scholar]
- Chen, J.; Jiang, Z.X.; Qiu, H.J.; Qiu, H.J.; Jiang, K.P.; Fu, W.K.; Bi, C.Q. Sedimentary Facies Characteristics and Palaeoenvironment of Jurassic Yangye Formation in the Southeastern Depression of the Tarim Basin. Acta Geosci. Sin. 2015, 36, 344–352. [Google Scholar]
- Mei, S.Q. Application of Rock Chemistry in the Study of Presinian Sedimentary Environment and the Source of Uranium Mineralization in Hunan Province. Hunan Geol. 1988, 07, 25–31+49. [Google Scholar]
- Xie, X.W.; Yuan, H.M.; Song, J.M.; Duan, L.Q.; Liang, X.M.; Wang, Q.D.; Ren, C.J.; Wang, Y.Q. Response of redox sensitive elements to changes of sedimentary environment in core sediments of seasonal low-oxygen zone in East China Sea. Acta Oceanol. Sin. 2020, 42, 30–43. [Google Scholar]
- Stramma, L.; Johnson, G.C.; Sprintall, J.; Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 2008, 320, 655–658. [Google Scholar] [CrossRef] [Green Version]
- Couch, E.L. Calculation of paleosalinities from boron and clay mineral data. AAPG Bull. 1971, 55, 1829–1837. [Google Scholar]
- Walker, C.T.; Price, N.B. Departure curves for computing paleosalinity from boron in illites and shale. AAPG Bull. 1963, 47, 833–841. [Google Scholar]
- Rinna, J.; Warning, B.; Meyers, P.A.; Brumsack, H.J.; Rullkotter, J. Combined organic and inorganic geochemical reconstruction of paleodepositional conditions of a pliocene sapropel from the eastern Mediterranean sea. Geochim. Cosmochim. Acta 2002, 66, 1969–1986. [Google Scholar] [CrossRef]
- Sageman, B.B.; Murphy, A.E.; Werne, J.P.; Straeten, C.A.; Hollander, D.J.; Lyons, T.W. A tale of shales, the relative roles of production, decomposition, and dilution in the accumulation of organic-rich Strata, middle-upper Devonian, Appalachian basin. Chem. Geol. 2003, 195, 229–273. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies, an update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Acharya, S.S.; Panigrahi, M.K.; Gupta, A.K.; Tripathy, S. Response of trace metal redox proxies in continental shelf environment, the Eastern Arabian Sea scenario. Cont. Shelf Res. 2015, 106, 70–84. [Google Scholar] [CrossRef]
- Zhao, S.J.; Fu, Q.; Ma, W.R. Pore-throat Size Distribution and Classification of the Paleogene Tight Sandstone In Lishui Sag, East China Sea Shelf Basin, China. Energy Fuels 2021, 35, 290–305. [Google Scholar] [CrossRef]
- Tribovillard, N.; Desprairies, A.; Moureau, N.; Bertrand, P.; Moureau, N.; Ramdani, A.; Ramanampisoa, L. Geochemical study of organic-rich cycles from the Kimmeridge Clay Formation of Yorkshire (G.B.): Productivity vs. anoxia. Palaeogeogr Palaeoclim. Palaeoecol 1994, 108, 165–181. [Google Scholar] [CrossRef]
- Dehairs, F.; Baeyens, W.; Goeyens, L. Accumulation of suspended barite at mesopelagic depths and export production in the Southern Ocean. Science 1992, 258, 1332–1336. [Google Scholar] [CrossRef]
- Li, S.; Zhu, R.K.; Cui, J.W.; Liu, H. Paleoenvironment and controlling factors of organic matter enrichment:a case of Chang 7 oil reservoir in southern margin of Ordos Basin in the Southern Ocean. Lithol. Reserv. 2019, 31, 87–95. [Google Scholar]
- Jones, B.; Manning, D.A.C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol. 1994, 111, 111–129. [Google Scholar] [CrossRef]
Number | Well | Depth (m) | Formation | Lithology | Zr (ppm) | Sr (ppm) | Cu (ppm) | Ni (ppm) | Fe (%) | Mn (%) | Ti (%) | Ca (%) | K (%) | Ba (ppm) | P (%) | Mg (%) | Na (%) | Si (%) | Al (%) | Rb (ppm) | Zn (ppm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | A | 2233 | E1m2 | mudstone | 177.6 | 278.4 | 4.9 | 115.3 | 3.804 | 0.023 | 0.634 | 2.659 | 2.838 | 426 | 0.049 | 1.582 | 1.083 | 62.203 | 16.309 | 231.8 | 102.3 |
2 | A | 2234 | E1m2 | mudstone | 255 | 193.8 | 4.7 | 130.3 | 2.188 | 0.014 | 0.751 | 0.189 | 3.258 | 420.6 | 0.049 | 0.698 | 1.181 | 66.127 | 18.812 | 220.4 | 99 |
3 | A | 2236 | E1m2 | mudstone | 220.7 | 243 | 6.7 | 122 | 3.056 | 0.015 | 0.758 | 0.295 | 3.087 | 383.1 | 0.057 | 0.731 | 1.121 | 63.537 | 18.777 | 240.9 | 106.2 |
4 | A | 2257 | E1m2 | mudstone | 223.9 | 145 | 7.6 | 652.1 | 3.357 | 0.02 | 0.745 | 0.159 | 4.367 | 509.7 | 0.054 | 0.87 | 1.361 | 61.587 | 19.284 | 282.8 | 99 |
5 | A | 2258 | E1m2 | mudstone | 271.7 | 127.8 | 11.1 | 725 | 2.789 | 0.021 | 0.746 | 0.185 | 4.244 | 555.1 | 0.04 | 0.741 | 1.45 | 65.713 | 17.305 | 295 | 106.4 |
6 | A | 2285 | E1m2 | mudstone | 237.5 | 205 | 8.4 | 22.2 | 3.356 | 0.018 | 0.578 | 0.755 | 3.982 | 583.1 | 0.058 | 1.053 | 1.513 | 69.401 | 14.283 | 260.1 | 79.6 |
7 | A | 2286 | E1m2 | mudstone | 228.7 | 298.1 | 8.7 | 53.6 | 3.778 | 0.019 | 0.671 | 0.739 | 4.145 | 551.6 | 0.076 | 1.204 | 1.419 | 64.827 | 16.525 | 250.7 | 94.6 |
8 | A | 2287 | E1m2 | mudstone | 240.2 | 234.7 | 8.3 | 28.7 | 3.365 | 0.021 | 0.541 | 0.942 | 3.877 | 563.8 | 0.063 | 1.258 | 1.409 | 69.389 | 13.862 | 244.5 | 83.2 |
9 | A | 2288 | E1m2 | mudstone | 208.2 | 537.7 | 8.1 | 20.5 | 3.927 | 0.017 | 0.72 | 0.687 | 4.204 | 509.2 | 0.122 | 1.174 | 1.36 | 63.292 | 17.293 | 264 | 109.1 |
10 | A | 2293 | E1m2 | mudstone | 337 | 163.7 | 8.4 | 234.3 | 4.902 | 0.026 | 1.109 | 0.144 | 4.816 | 603.1 | 0.074 | 1.066 | 1.233 | 54.87 | 18.544 | 352.4 | 82.3 |
11 | A | 2294 | E1m2 | mudstone | 316.5 | 127 | 8.5 | 103.4 | 3.525 | 0.018 | 0.918 | 0.147 | 4.303 | 531.5 | 0.048 | 0.903 | 1.51 | 61.886 | 18.858 | 315.9 | 92.9 |
12 | B | 2573 | E1m2 | mudstone | 264.3 | 120.7 | 4.3 | 15.3 | 2.582 | 0.019 | 0.739 | 0.2 | 4.132 | 463.7 | 0.057 | 0.819 | 1.69 | 65.877 | 17.17 | 273.6 | 112.8 |
13 | B | 2575 | E1m2 | mudstone | 250.5 | 122.9 | 2.4 | 16 | 3.542 | 0.038 | 0.68 | 0.374 | 4.105 | 437.5 | 0.056 | 1.075 | 1.765 | 65.446 | 16.716 | 269.3 | 96.5 |
14 | B | 2576 | E1m2 | mudstone | 326 | 175.8 | 6.3 | 60.8 | 3.648 | 0.031 | 1.047 | 0.476 | 4.529 | 613 | 0.07 | 1.197 | 1.826 | 62.113 | 19.057 | 300.7 | 166.9 |
15 | B | 2586 | E1m2 | mudstone | 271.1 | 137.2 | 8.2 | 73 | 2.525 | 0.019 | 0.719 | 0.187 | 4.419 | 824.6 | 0.058 | 0.828 | 1.723 | 66.749 | 16.555 | 263.8 | 79.5 |
16 | B | 2586.7 | E1m2 | mudstone | 253.8 | 120.6 | 11.9 | 110.3 | 13.942 | 0.212 | 0.677 | 0.581 | 3.482 | 526.3 | 0.056 | 1.786 | 1.356 | 52.153 | 14.118 | 265.3 | 148.1 |
17 | B | 2587.1 | E1m2 | mudstone | 217.2 | 121.6 | 8.8 | 105.1 | 3.606 | 0.035 | 0.756 | 0.275 | 4.624 | 530.1 | 0.053 | 1.139 | 1.494 | 62.051 | 18.808 | 297.8 | 96.7 |
18 | B | 2587.6 | E1m2 | mudstone | 294.8 | 123 | 2.2 | 126.5 | 2.888 | 0.023 | 0.604 | 0.284 | 4.173 | 549.6 | 0.05 | 0.745 | 1.838 | 68.724 | 14.674 | 254.7 | 83.4 |
19 | C | 2742 | E1l1 | mudstone | 252.1 | 162.1 | 9.1 | 181.3 | 4.375 | 0.02 | 0.741 | 0.174 | 4.388 | 581 | 0.056 | 0.73 | 1.602 | 63.995 | 16.792 | 313.5 | 85.1 |
20 | C | 2745 | E1l1 | mudstone | 371.3 | 155.3 | 1.1 | 89.5 | 4.182 | 0.023 | 0.813 | 0.211 | 3.91 | 554.8 | 0.056 | 0.704 | 1.747 | 62.787 | 15.35 | 255.5 | 72.3 |
21 | D | 3333 | E1l2 | mudstone | 262.8 | 184.6 | 11.4 | 197.3 | 7.86 | 0.072 | 1.012 | 0.181 | 6.652 | 542.7 | 0.081 | 1.549 | 0.77 | 48.144 | 24.023 | 407.7 | 63.3 |
22 | D | 3339 | E1l2 | mudstone | 290.2 | 205.2 | 3.5 | 192.9 | 4.563 | 0.054 | 0.817 | 0.202 | 4.454 | 607.7 | 0.065 | 0.796 | 1.787 | 64.201 | 15.352 | 268.9 | 62.9 |
23 | D | 3348 | E1l2 | mudstone | 283.7 | 177.5 | 7.4 | 96.9 | 2.929 | 0.022 | 0.606 | 0.165 | 4.708 | 678.2 | 0.054 | 0.584 | 2.003 | 68.274 | 15.449 | 286.7 | 79 |
24 | D | 3349 | E1l2 | mudstone | 464.2 | 236.1 | 5.6 | 105.5 | 3.513 | 0.015 | 1.195 | 0.13 | 5.284 | 538.1 | 0.088 | 0.804 | 1.796 | 59.876 | 19.213 | 344.3 | 71.4 |
25 | D | 3756 | E1y | mudstone | 253.2 | 143.5 | 1 | 107.8 | 3.205 | 0.017 | 1.001 | 0.133 | 6.486 | 555.1 | 0.069 | 1.187 | 1.348 | 56.775 | 22.399 | 410 | 75.9 |
26 | D | 3758 | E1y | mudstone | 271.1 | 153.5 | 2 | 104 | 3.018 | 0.018 | 0.72 | 0.16 | 5.468 | 647 | 0.069 | 0.849 | 1.735 | 65.299 | 17.824 | 318.8 | 97.8 |
27 | D | 3759 | E1y | mudstone | 265.9 | 177.6 | 5.7 | 111.1 | 4.64 | 0.025 | 0.91 | 0.226 | 5.584 | 666 | 0.078 | 1.155 | 1.675 | 59.771 | 19.056 | 332.3 | 95.6 |
28 | D | 3760 | E1y | mudstone | 329.3 | 166.7 | 8.1 | 75.2 | 4.302 | 0.04 | 0.891 | 0.134 | 6.242 | 597.1 | 0.077 | 0.94 | 1.632 | 57.021 | 21.348 | 361.7 | 79.7 |
Elements | E1m2 | E1l1 | E1l2 | E1y |
---|---|---|---|---|
Fe | 21,880~139,420 39,322.2(18) | 41,820~43,750 42,785(2) | 29,290~78,600 47,162.5(4) | 30,180~46,400 37,912.5(4) |
Na | 10,830~18,380 14,628.9(18) | 16,020~17,470 16,745(2) | 7700~20,030 15,890(4) | 13,480~17,350 15,975(4) |
Al | 138,620~192,840 170,527.8(18) | 153,500~167,920 160,710(2) | 153520~240230 185,092.5(4) | 178,240~223,990 201,567.5(4) |
Sr | 120.6~537.7 193.1(18) | 155.3~162.1 158.7(2) | 177.5~236.1 200.9(4) | 143.5~177.6 160.3(4) |
Cu | 2.2~11.9 7.2(18) | 1.1~9.1 5.1(2) | 3.5~11.4 6.98(4) | 1.0~8.1 4.2(4) |
Mn | 140~2120 327.2(18) | 200~230 215(2) | 150~720 407.5(4) | 70~400 250(4) |
Rb | 220.4~352.4 271.3(18) | 220.4~352.4 271.3(2) | 255.5~313.5 284.5(4) | 208.9~407.7 326.9(4) |
Zn | 79.5~166.9 102.1(18) | 72.3~85.1 78.7(2) | 62.9~79 69.15(4) | 75.9~97.8 87.3(4) |
Well | Formation | Depth (m) | δ13CPDB | δ18OPDB | T (℃) |
---|---|---|---|---|---|
A | Upper part of E1m2 | 2235.4 | −4.008 | −10.539 | 66.140 |
2244.4 | −3.862 | −9.981 | 63.149 | ||
2247.9 | −2.377 | −10.223 | 64.443 | ||
2249.9 | −2.278 | −10.715 | 67.089 | ||
2291.5 | −1.323 | −10.768 | 67.375 | ||
2293.5 | −1.162 | −10.836 | 67.742 | ||
B | Lower part of E1m2 | 2575.74 | −4.608 | −10.665 | 66.819 |
2577.2 | −2.488 | −11.788 | 72.926 | ||
2580.35 | −3.05 | −11.596 | 71.875 | ||
2581.3 | −2.273 | −9.689 | 61.593 | ||
2581.7 | −4.355 | −10.103 | 63.800 | ||
2582.93 | −2.114 | −10.986 | 68.554 | ||
2583.63 | −2.037 | −10.951 | 68.365 | ||
2585.3 | −2.022 | −9.825 | 62.317 | ||
2588.7 | −7.508 | −10.397 | 65.376 | ||
C | E1l1 | 2741.2 | −2.841 | −8.651 | 56.119 |
2744.94 | −3.512 | −8.726 | 56.512 | ||
2748.07 | −3.264 | −8.812 | 56.963 | ||
D | E1l2 | 3332 | −4.944 | −15.158 | 91.858 |
3344.45 | −4.545 | −16.307 | 98.521 | ||
3344.84 | −5.655 | −16.794 | 101.376 | ||
3347 | −4.986 | −15.132 | 91.708 | ||
3347.5 | −5.18 | −15.255 | 92.416 |
Number | Well | Depth (m) | Formation | Ni (ppm) | V/% | V/Ni | V/(V + Ni) |
---|---|---|---|---|---|---|---|
1 | B | 2580.73 | E1m2 | 0.01 | 0.024 | 2.400 | 0.706 |
2 | B | 2580.79 | E1m2 | 0.013 | 0.027 | 2.077 | 0.675 |
3 | B | 2580.8 | E1m2 | 0.014 | 0.036 | 2.571 | 0.720 |
4 | B | 2580.85 | E1m2 | 0.013 | 0.024 | 1.846 | 0.649 |
5 | B | 2580.9 | E1m2 | 0.014 | 0.026 | 1.857 | 0.650 |
6 | B | 2582.39 | E1m2 | 0.018 | 0.018 | 1.000 | 0.500 |
7 | B | 2582.41 | E1m2 | 0.017 | 0.062 | 3.647 | 0.785 |
8 | B | 2582.42 | E1m2 | 0.012 | 0.031 | 2.583 | 0.721 |
9 | B | 2582.43 | E1m2 | 0.015 | 0.032 | 2.133 | 0.681 |
10 | B | 2582.51 | E1m2 | 0.013 | 0.032 | 2.462 | 0.711 |
11 | B | 2582.53 | E1m2 | 0.015 | 0.025 | 1.667 | 0.625 |
12 | B | 2582.55 | E1m2 | 0.013 | 0.03 | 2.308 | 0.698 |
13 | B | 2582.57 | E1m2 | 0.011 | 0.04 | 3.636 | 0.784 |
14 | C | 2747.49 | E1l1 | 0.011 | 0.012 | 1.091 | 0.522 |
15 | C | 2747.51 | E1l1 | 0.019 | 0.015 | 0.789 | 0.441 |
16 | C | 2747.53 | E1l1 | 0.011 | 0.012 | 1.091 | 0.522 |
17 | C | 2747.55 | E1l1 | 0.014 | 0.014 | 1.000 | 0.500 |
18 | C | 2747.57 | E1l1 | 0.013 | 0.023 | 1.769 | 0.639 |
19 | C | 2747.63 | E1l1 | 0.015 | 0.013 | 0.867 | 0.464 |
20 | C | 2747.67 | E1l1 | 0.016 | 0.013 | 0.813 | 0.448 |
21 | C | 2747.8 | E1l1 | 0.021 | 0.019 | 0.905 | 0.475 |
22 | C | 2747.82 | E1l1 | 0.014 | 0.021 | 1.500 | 0.600 |
23 | C | 2747.84 | E1l1 | 0.019 | 0.02 | 1.053 | 0.513 |
24 | C | 2747.86 | E1l1 | 0.011 | 0.018 | 1.636 | 0.621 |
25 | C | 2747.9 | E1l1 | 0.013 | 0.013 | 1.000 | 0.500 |
26 | C | 2747.94 | E1l1 | 0.017 | 0.014 | 0.824 | 0.452 |
27 | C | 2747.99 | E1l1 | 0.018 | 0.015 | 0.833 | 0.455 |
28 | C | 2748.03 | E1l1 | 0.014 | 0.012 | 0.857 | 0.462 |
29 | C | 2748.05 | E1l1 | 0.013 | 0.014 | 1.077 | 0.519 |
30 | C | 2748.08 | E1l1 | 0.016 | 0.012 | 0.750 | 0.429 |
31 | C | 2748.11 | E1l1 | 0.015 | 0.021 | 1.400 | 0.583 |
32 | C | 2748.17 | E1l1 | 0.015 | 0.014 | 0.933 | 0.483 |
33 | C | 2748.22 | E1l1 | 0.016 | 0.011 | 0.688 | 0.407 |
34 | C | 2748.25 | E1l1 | 0.014 | 0.016 | 1.143 | 0.533 |
35 | C | 2748.32 | E1l1 | 0.012 | 0.013 | 1.083 | 0.520 |
36 | D | 3346.25 | E1l2 | 0.016 | 0.019 | 1.188 | 0.543 |
37 | D | 3346.5 | E1l2 | 0.011 | 0.023 | 2.091 | 0.676 |
38 | D | 3346.7 | E1l2 | 0.011 | 0.019 | 1.727 | 0.633 |
39 | D | 3346.8 | E1l2 | 0.013 | 0.019 | 1.462 | 0.594 |
40 | D | 3346.95 | E1l2 | 0.015 | 0.027 | 1.800 | 0.643 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Fu, Q.; Liu, J.; Ma, W.; Yang, B.; Zhu, Z.; Teng, W. Geochemical Characteristics and Environmental Implications of Trace Elements of the Paleocene in the West Lishui Sag, East China Sea Basin. Energies 2022, 15, 5748. https://doi.org/10.3390/en15155748
Yang S, Fu Q, Liu J, Ma W, Yang B, Zhu Z, Teng W. Geochemical Characteristics and Environmental Implications of Trace Elements of the Paleocene in the West Lishui Sag, East China Sea Basin. Energies. 2022; 15(15):5748. https://doi.org/10.3390/en15155748
Chicago/Turabian StyleYang, Shuai, Qiang Fu, Jinshui Liu, Wenrui Ma, Bing Yang, Zhiwei Zhu, and Wen Teng. 2022. "Geochemical Characteristics and Environmental Implications of Trace Elements of the Paleocene in the West Lishui Sag, East China Sea Basin" Energies 15, no. 15: 5748. https://doi.org/10.3390/en15155748
APA StyleYang, S., Fu, Q., Liu, J., Ma, W., Yang, B., Zhu, Z., & Teng, W. (2022). Geochemical Characteristics and Environmental Implications of Trace Elements of the Paleocene in the West Lishui Sag, East China Sea Basin. Energies, 15(15), 5748. https://doi.org/10.3390/en15155748