DC-DC High-Step-Up Quasi-Resonant Converter to Drive Acoustic Transmitters
Abstract
:1. Introduction
2. Proposed DC-DC Power Converter
2.1. Converter Operation
2.2. Converter Gain
2.3. Design Procedure
3. Simulation Study
3.1. PZET Operation
3.2. Design of the Converter Elements
3.3. Simulation Results
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, C.; Wang, T.; Li, Y.; Yang, H.; Li, J.; Qu, D.; Xu, B.; Yang, Y.; Daemen, J. Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China. Appl. Energy 2015, 137, 467–481. [Google Scholar] [CrossRef]
- Alanne, K.; Cao, S. An overview of the concept and technology of ubiquitous energy. Appl. Energy 2019, 238, 284–302. [Google Scholar] [CrossRef]
- Deng, Z.D.; Lu, J.; Li, H.; Tian, C.; Myjak, M.J.; Bellgraph, B.J.; Cartmell, S.; Xiao, J. Signal Transmitter and Methods for Transmitting Signals from Animals; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2019. [Google Scholar]
- Zhang, W.; Han, G.; Wang, X.; Guizani, M.; Fan, K.; Shu, L. A node location algorithm based on node movement prediction in underwater acoustic sensor networks. IEEE Trans. Veh. Technol. 2020, 69, 3166–3178. [Google Scholar] [CrossRef]
- Kiran, M.R.; Farrok, O.; Abdullah-Al-Mamun, M.; Islam, M.R.; Xu, W. Progress in piezoelectric material based oceanic wave energy conversion technology. IEEE Access 2020, 8, 146428–146449. [Google Scholar] [CrossRef]
- Roshandel, E.; Namazi, M.M.; Saghaian-Nejad, S.M.; Ahn, J.-W. A Step-Up High-Power-Density DC/AC Converter to Drive Piezoelectric Transmitters. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea, 7–10 October 2018; pp. 688–692. [Google Scholar] [CrossRef]
- Song, H.; Zhang, Y.; Gao, J.; Zhang, Y. Small power ZVS circuits for the marine-controlled source electromagnetic transmitter. J. Eng. 2019, 2019, 4325–4330. [Google Scholar] [CrossRef]
- Choi, H. Prelinearized class-b power amplifier for piezoelectric transducers and portable ultrasound systems. Sensors 2019, 19, 287. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.B.; Webb, A. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Benson, B.; Li, Y.; Kastner, R.; Faunce, B.; Domond, K.; Kimball, D.; Schurgers, C. Design of a low-cost, underwater acoustic modem for short-range sensor networks. In Proceedings of the OCEANS’10 IEEE Sydney, Sydney, Australia, 24–27 May 2010; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bhaskar, M.S.; Ramachandaramurthy, V.K.; Padmanaban, S.; Blaabjerg, F.; Ionel, D.M.; Mitolo, M.; Almakhles, D. Survey of DC-DC non-isolated topologies for unidirectional power flow in fuel cell vehicles. IEEE Access 2020, 8, 178130–178166. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, H.; Sun, K.; Xing, Y. A family of isolated buck-boost converters based on semiactive rectifiers for high-output voltage applications. IEEE Trans. Power Electron. 2015, 31, 6327–6340. [Google Scholar] [CrossRef]
- Meraj, M.; Bhaskar, M.S.; Reddy, B.P.; Iqbal, A. Non-isolated DC–DC power converter with high gain and inverting capability. IEEE Access 2021, 9, 62084–62092. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, C.-W.; Lai, J.-S.; Yu, O. Circuit design considerations for reducing parasitic effects on GaN-based 1-MHz high-power-density high-step-up/down isolated resonant converters. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 695–705. [Google Scholar] [CrossRef]
- Lee, S.-W.; Do, H.-L. Isolated High Step-Up Dual-Flyback DC–DC Converter with a Resonant Voltage Multiplier. Electr. Power Compon. Syst. 2020, 48, 871–880. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Zhi, Y.; Cai, G. New breed of solid-state transformer mainly combing hybrid cascaded multilevel converter with resonant DC-DC converters. Appl. Energy 2018, 210, 724–736. [Google Scholar] [CrossRef]
- Moradzadeh, M.; Babaei, E.; Zamiri, E.; Hamkari, S. A new high step-up DC/DC converter structure by using coupled inductor with reduced switch-voltage stress. Electr. Power Compon. Syst. 2017, 45, 1705–1719. [Google Scholar] [CrossRef]
- Veerachary, M.; Senjyu, T.; Uezato, K. Modeling of closed-loop voltage-mode controlled interleaved dual boost converter. Comput. Electr. Eng. 2003, 29, 67–84. [Google Scholar] [CrossRef]
- Li, F.; Liu, H. A cascaded coupled inductor-reverse high step-up converter integrating three-winding coupled inductor and diode–capacitor technique. IEEE Trans. Ind. Inform. 2016, 13, 1121–1130. [Google Scholar] [CrossRef]
- Babu, A.R.; Raghavendiran, T.A. High voltage gain multiphase interleaved DC-DC converter for DC micro grid application using ıntelligent control. Comput. Electr. Eng. 2019, 74, 451–465. [Google Scholar] [CrossRef]
- Deng, C.; Yong, M.; Rodriguez, L.A.G.; Balda, J.C.; Li, R. Passive integration using FMLF technique for integrated boost resonant converters. IEEE Trans. Ind. Electron. 2019, 67, 3756–3766. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, Z.; Mei, X. Boost-integrated LCL resonant converter with high voltage gain. IET Power Electron. 2020, 13, 332–339. [Google Scholar] [CrossRef]
- Zhu, B.; Ren, L.; Wu, X.; Song, K. ZVT high step-up DC/DC converter with a novel passive snubber cell. IET Power Electron. 2017, 10, 599–605. [Google Scholar] [CrossRef]
- Lin, B.R.; Huang, C.L. Zero voltage switching active clamp buck-boost stage Cuk converter. IET Electr. Power Appl. 2007, 1, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Sayed, K.F.; Nakaoka, M.; Morimoto, K.; Kwon, S.K. New high-frequency linked half-bridge softswitching PWM DC-DC converter with input DC rail side active edge resonant snubbers. IET Power Electron. 2010, 3, 774–783. [Google Scholar] [CrossRef]
- Li, Z.; Wu, T.; Zhang, G.; Yang, R. Hybrid modulation method combining variable frequency and double phase-shift for a 10 kW LLC resonant converter. IET Power Electron. 2018, 11, 2161–2169. [Google Scholar] [CrossRef]
- Roshandel, E.; He, J. High Efficiency High Step-Up DC-DC Converter to Drive Piezo-Electric Transmitters. In Proceedings of the 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA, 29 September–3 October 2019; pp. 1–16. [Google Scholar] [CrossRef]
- Mean-Well SD-100C-24, M. 100W Single Output DC-DC Converter. Available online: https://au.mouser.com/ProductDetail/MEAN-WELL/SD-100C-24?qs=sGAEpiMZZMtz8P%2FeuiupSWlCmLAwku1ozA57skhLwW4%3D (accessed on 7 July 2022).
- Yu, D.; Yang, J.; Xu, R.; Xia, Z.; Iu, H.H.-C.; Fernando, T. A family of module-integrated high step-up converters with dual coupled inductors. IEEE Access 2018, 6, 16256–16266. [Google Scholar] [CrossRef]
- Tang, Y.; Tong, H.; Afzal, R.; Guo, Y. High step-up ZVT converter based on active switched coupled inductors. IEEE Access 2020, 1. [Google Scholar] [CrossRef]
- Zhu, B.; Chen, S.; Zhang, Y.; Huang, Y. An interleaved zero-voltage zero-current switching high step-up DC-DC converter. IEEE Access 2020, 9, 5563–5572. [Google Scholar] [CrossRef]
- Hassan, W.; Lu, D.D.-C.; Xiao, W. Single-switch high step-up DC–DC converter with low and steady switch voltage stress. IEEE Trans. Ind. Electron. 2019, 66, 9326–9338. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Lu, Z.-X.; Liang, R.-H. Analysis and design of a novel high-step-up DC/DC converter with coupled inductors. IEEE Trans. Power Electron. 2017, 33, 425–436. [Google Scholar] [CrossRef]
- Rajabi, A.; Rajaei, A.; Tehrani, V.M.; Dehghanian, P.; Guerrero, J.M.; Khan, B. A Non-Isolated High Step-Up DC-DC Converter Using Voltage Lift Technique: Analysis, Design, and Implementation. IEEE Access 2022, 10, 6338–6347. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, B.; Jin, K. Hybrid nonisolated active quasi-switched DC-DC converter for high step-up voltage conversion applications. IEEE Access 2020, 8, 222584–222598. [Google Scholar] [CrossRef]
- Carobbi, C.F.M.; Lalléchère, S.; Arnaut, L.R. Review of uncertainty quantification of measurement and computational modeling in EMC part I: Measurement uncertainty. IEEE Trans. Electromagn. Compat. 2019, 61, 1690–1698. [Google Scholar] [CrossRef]
- Cepova, L.; Kovacikova, A.; Cep, R.; Klaput, P.; Mizera, O. Measurement system analyses-gauge repeatability and reproducibility methods. Meas. Sci. Rev. 2018, 18, 20. [Google Scholar] [CrossRef] [Green Version]
The Proposed Converter | Ref [32] | Ref [33] | Ref [34] | Ref [35] | |
---|---|---|---|---|---|
Converter power | 120 W | 120 W | 200 W | 200 W | 200 W |
Switching frequency | 25–100 kHz | 100 kHz | 60 kHz | 50 kHz | 30 kHz |
Maximum Efficiency | 95.8% | 96.7% | 94.5% | 93.1% | 92.5% |
Operating duty cycle | 0.2–0.75 | 0.3–0.7 | 0.5–0.9 | 0.1–0.75 | 0.05–0.3 |
Number of inductors | 2 | 1 | 4 | 2 | 2 |
Inductors’ value | L = 0.86 μH, Lr = 0.57 μH | Lm= 50 μH, Lk = 1.1 μH | L1 = L2 = 1.4 μH, L3 = L4 = 100 μH | Lm = 100 μH, Lk = 300 μH | L1= L2= 220 μH |
Number of capacitors | 2 | 5 | 4 | 3 | 4 |
Capacitors’ value | Cr = 3.3 μF, Co = 1.2 μF | C1 to C4 = 30 μF, Co = 47 μF | C1 = C2 = 5 μF, C3 = C4 = 220 μF | C1 = 470 μF, C2 = 1000 μF, C3 =100 μF | C1 = C2 = C3 = 100 μF, C4 = 220 μF |
Number of diodes | 1 | 5 | 4 | 3 | 4 |
Number of switches | 3 | 1 | 2 | 2 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roshandel, E.; Mahmoudi, A.; Kahourzade, S.; Davazdah-Emami, H. DC-DC High-Step-Up Quasi-Resonant Converter to Drive Acoustic Transmitters. Energies 2022, 15, 5745. https://doi.org/10.3390/en15155745
Roshandel E, Mahmoudi A, Kahourzade S, Davazdah-Emami H. DC-DC High-Step-Up Quasi-Resonant Converter to Drive Acoustic Transmitters. Energies. 2022; 15(15):5745. https://doi.org/10.3390/en15155745
Chicago/Turabian StyleRoshandel, Emad, Amin Mahmoudi, Solmaz Kahourzade, and Hamid Davazdah-Emami. 2022. "DC-DC High-Step-Up Quasi-Resonant Converter to Drive Acoustic Transmitters" Energies 15, no. 15: 5745. https://doi.org/10.3390/en15155745
APA StyleRoshandel, E., Mahmoudi, A., Kahourzade, S., & Davazdah-Emami, H. (2022). DC-DC High-Step-Up Quasi-Resonant Converter to Drive Acoustic Transmitters. Energies, 15(15), 5745. https://doi.org/10.3390/en15155745