On the Water-Oil Relative Permeabilities of Southern Algerian Sandstone Rock Samples
Abstract
:1. Introduction
2. Laboratory Procedures
2.1. Samples Preparation
2.2. Experimental Section
3. Experimental Outcomes
3.1. Influence of Petrophysical Properties
3.2. Relative Permeability of Different Wells
3.3. Pressure Effects on the Relative Permeability
3.3.1. Wettability Effect
3.3.2. Capillary Pressure Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donaldson, E.C.; Thomas, R.D. Microscopic Observations of Oil Displacement in Water-Wet and Oil-Wet Systems; SPE-3555-MS; Society of Petroleum Engineers: New Orleans, LA, USA, 1971; p. 8. [Google Scholar] [CrossRef]
- Donaldson, E.C.; Chilingarian, G.V.; Yen, T.F. Enhanced Oil Recovery, II: Processes and Operations; Elsevier: Amsterdam, The Netherlands, 1989; Volume 17. [Google Scholar]
- Muggeridge, A.; Cockin, A.; Webb, K.; Frampton, H.; Collins, I.; Moulds, T.; Salino, P. Recovery rates, enhanced oil recovery and technological limits. Phil. Trans. R. Soc. A 2014, 372, 20120320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghadasi, J.; Müller-Steinhagen, H.; Jamialahmadi, M.; Sharif, A. Theoretical and experimental study of particle movement and deposition in porous media during water injection. J. Pet. Sci. Eng. 2004, 43, 163–181. [Google Scholar] [CrossRef]
- Khormali, A.; Petrakov, D.G.; Farmanzade, A.R. Prediction and inhibition of inorganic salt formation under static and dynamic conditions-effect of pressure, temperature, and mixing ratio. Int. J. Technol. 2016, 7, 943–951. [Google Scholar] [CrossRef]
- Senthilmurugan, B.; Ghosh, B.; Sanker, S. High performance maleic acid based oil well scale inhibitors—Development and comparative evaluation. J. Ind. Eng. Chem. 2011, 17, 415–420. [Google Scholar] [CrossRef]
- Blunt, M.; Fayers, F.J.; Orr, F.M. Carbon dioxide in enhanced oil recovery. Energy Convers. Manag. 1993, 34, 1197–1204. [Google Scholar] [CrossRef]
- Bentley, R.W. Global oil & gas depletion: An overview. Energy Policy 2002, 30, 189–205. [Google Scholar] [CrossRef]
- Collins, A.G.; Wright, C.C. Enhanced Oil Recovery Injection Waters; chapter Chapter 6 Enhanced Oil Recovery Injection Waters; Developments in Petroleum Science: Elsevier: Amsterdam, The Netherlands, 1982; Volume 17, pp. 151–221. [Google Scholar] [CrossRef]
- Royce, B.; Kaplan, E.; Garrell, M.; Geffent, T. Enhanced Oil Recovery Water Requirements. Miner. Environ. 1984, 6, 44–53. [Google Scholar] [CrossRef]
- Sandrea, I.; Sandrea, R. Global Oil Reserves-1: Recovery factors leave vast target for EOR technologies. Oil Gas J. 2007, 105, 44. [Google Scholar]
- Sen, R. Biotechnology in petroleum recovery: The microbial EOR. Prog. Energy Combust. Sci. 2008, 34, 714–724. [Google Scholar] [CrossRef]
- Samsudin, Y.; Darman, N.; Husain, D.; Hamdan, K. Chapter Enhanced Oil Recovery in Malaysia: Making It a Reality (Part II); SPE-95931-MS; Society of Petroleum Engineers: Kuala Lumpur, Malaysia, 2005; p. 7. [Google Scholar] [CrossRef]
- Wilkinson, J.R.; Teletzke, G.F.; King, K.C. Chapter Opportunities and Challenges for Enhanced Recovery in the Middle East; SPE-101679-MS; Society of Petroleum Engineers: Abu Dhabi, United Arab Emirates, 2006; p. 10. [Google Scholar] [CrossRef]
- Satter, A.; Iqbal, G.M. 17—Enhanced Oil Recovery Processes: Thermal, Chemical, and Miscible Floods; Gulf Professional Publishing: Boston, MA, USA, 2016; pp. 313–337. [Google Scholar]
- Speight, J.G. Chapter 6—General Methods of Oil Recovery, 2nd ed.; Gulf Professional Publishing: Boston, MA, USA, 2016; pp. 253–322. [Google Scholar]
- Akkal, R.; Ramézani, H.; Khodja, M.; Azzi, S. Influence of the Clay Content and Type of Algerian Sandstone Rock Samples on Water–Oil Relative Permeabilities. Energy Fuels 2019, 33, 9330–9341. [Google Scholar] [CrossRef]
- Silpngarmlers, N.; Guler, B.; Ertekin, T.; Grader, A.S. Development and Testing of Two-Phase Relative Permeability Predictors Using Artificial Neural Networks. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 25–28 March 2001; p. 12. [Google Scholar] [CrossRef]
- Koederitz, L.F.; Mohamad Ibrahim, M.N. PETSOC-2002-213; Chapter Developing a Proficient Relative Permeability Resource From Historical Data. Petroleum Society of Canada: Calgary, Alberta, 2002; p. 9. [Google Scholar] [CrossRef]
- Hawkins, J.T. Comparison Of Three Methods Of Relative Permeability Measurement. Log Anal. 1989, 30, 9. [Google Scholar]
- Honarpour, M.M.; Koederitz, F.; Herbert, A. Relative Permeability of Petroleum Reservoirs; CRC Press Inc.: Boca Raton, FL, USA, 1986. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Zendehboudi, S.; Dusseault, M.B.; Chatzis, I. Evolving simple-to-use method to determine water-oil relative permeability in petroleum reservoirs. Petroleum 2016, 2, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Hassler, G.L. Method and Apparatus for Permeability Measurements. U.S. Patent 2,345,935, 4 April 1944. p. 8. [Google Scholar]
- Gates, J.I.; Lietz, W.T. API-50-285; Chapter Relative Permeabilities of California Cores by the Capillary—Pressure Method; American Petroleum Institute: New York, NY, USA, 1950; p. 18. [Google Scholar]
- Richardson, J.G.; Kerver, J.K.; Hafford, J.A.; Osoba, J.S. Laboratory Determination of Relative Permeability. J. Pet. Technol. 1952, 4, 187–196. [Google Scholar] [CrossRef]
- Josendal, V.A.; Sandiford, B.B.; Wilson, J.W. Improved Multiphase Flow Studies Employing Radioactive Tracers. J. Pet. Technol. 1952, 4, 65–76. [Google Scholar] [CrossRef]
- Johnson, E.F.; Bossler, D.P.; Bossler, V.O.N. Calculation of Relative Permeability from Displacement Experiments. Soc. Pet. Eng. 1959, 216, 370–372. [Google Scholar] [CrossRef]
- Loomis, A.G.; Crowell, D.C. Relative Permeability Studies: Gas-Oil and Water-Oil Systems; United States Government Printing Office: Washington, DC, USA, 1962. [Google Scholar]
- Purcell, W.R. Capillary Pressures - Their Measurement Using Mercury and the Calculation of Permeability Therefrom. J. Pet. Technol. 1949, 1, 39–48. [Google Scholar] [CrossRef]
- Fatt, I.; Dykstra, H. Relative Permeability Studies. J. Pet. Technol. 1951, 3, 249–256. [Google Scholar] [CrossRef]
- Slobod, R.L.; Chambers, A.; Prehn, W.L.J. Use of Centrifuge for Determining Connate Water, Residual Oil, and Capillary Pressure Curves of Small Core Samples. J. Pet. Technol. 1951, 3, 127–134. [Google Scholar] [CrossRef]
- Van Spronsen, E. Chapter Three-Phase Relative Permeability Measurements Using the Centrifuge Method; SPE-10688-MS; Society of Petroleum Engineers: Tulsa, Oklahoma, 1982; p. 24. [Google Scholar] [CrossRef]
- OḾeara, D.J.J.; Lease, W.O. Multiphase Relative Permeability Measurements Using an Automated Centrifuge. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Francisco, CA, USA, 5–8 October 1983; p. 12. [Google Scholar] [CrossRef]
- Liu, R.; Liu, H.; Li, X.; Wang, J.; Pang, C. Chapter Calculation of Oil and Water Relative Permeability for Extra Low Permeability Reservoir; SPE-131388-MS; Society of Petroleum Engineers: Beijing, China, 2010; p. 8. [Google Scholar] [CrossRef]
- Firoozabadi, A.; Aziz, K. Relative Permeabilities From Centrifuge Data. J. Can. Pet. Technol. 1991, 30, 11. [Google Scholar] [CrossRef]
- Toth, J.; Bodi, T.; Szucs, P.; Civan, F. Convenient formulae for determination of relative permeability from unsteady-state fluid displacements in core plugs. J. Pet. Sci. Eng. 2002, 36, 33–44. [Google Scholar] [CrossRef]
- Botermans, C.W.; van Batenburg, D.W.; Bruining, J. Relative Permeability Modifiers: Myth or Reality? Soc. Pet. Eng. 2001, 13. [Google Scholar] [CrossRef]
- Feigl, A. Treatment of relative permeabilities for application in hydrocarbon reservoir simulation model. Nafta 2011, 62, 233–243. [Google Scholar]
- Virnovsky, G.A.; Skjaeveland, S.M.; Surdal, J.; Ingsoy, P. Chapter Steady-State Relative Permeability Measurements Corrected for Capillary Effects; SPE-30541-MS; Society of Petroleum Engineers: Dallas, TX, USA, 1995; p. 11. [Google Scholar] [CrossRef]
- Chen, X.; DiCarlo, D.A. A new unsteady-state method of determining two-phase relative permeability illustrated by CO2-brine primary drainage in berea sandstone. Adv. Water Resour. 2016, 96, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Tsakiroglou, C.; Aggelopoulos, C.; Terzi, K.; Avraam, D.; Valavanides, M. Steady-state two-phase relative permeability functions of porous media: A revisit. Int. J. Multiph. Flow 2015, 73, 34–42. [Google Scholar] [CrossRef]
- Kianinejad, A.; Chen, X.; DiCarlo, D.A. Direct measurement of relative permeability in rocks from unsteady-state saturation profiles. Adv. Water Resour. 2016, 94, 1–10. [Google Scholar] [CrossRef]
- Heaviside, J.; Black, C. Fundamentals of relative permeability: Experimental and theoretical considerations. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Francisco, CA, USA, 5–8 October 1983; OnePetro: Richardson, TX, USA, 1983. [Google Scholar]
- Borazjani, S.; Hemmati, N.; Behr, A.; Genolet, L.; Mahani, H.; Zeinijahromi, A.; Bedrikovetsky, P. Determining water-oil relative permeability and capillary pressure from steady-state coreflood tests. J. Pet. Sci. Eng. 2021, 205, 108810. [Google Scholar] [CrossRef]
- Buckley, S.E.; Leverett, M.C. Mechanism of Fluid Displacement in Sands. Trans. AIME 1942, 146, 107–116. [Google Scholar] [CrossRef]
- Welge, H.J. A Simplified Method for Computing Oil Recovery by Gas or Water Drive. J. Pet. Technol. 1952, 4, 91–98. [Google Scholar] [CrossRef]
- Salathiel, R.A. Oil Recovery by Surface Film Drainage in Mixed-Wettability Rocks. J. Pet. Technol. 1973, 25, 1216–1224. [Google Scholar] [CrossRef]
- Jilani, S.Z.; Menouar, H.; Al-Majed, A.A.; Khan, M.A. Effect of overbalance pressure on formation damage. J. Pet. Sci. Eng. 2002, 36, 97–109. [Google Scholar] [CrossRef]
- Iscan, A.G.; Civan, F.; Kok, M.V. Alteration of permeability by drilling fluid invasion and flow reversal. J. Pet. Sci. Eng. 2007, 58, 227–244. [Google Scholar] [CrossRef]
- Ping, G.; Weigang, H.; Yiwei, J. Research on the Irreducible and Movable Water of Tight Sandstone Gas Reservoir. Nat. Gas Ind. 2006, 26, 99. [Google Scholar]
- Gao, S.S.; Ye, L.Y.; Xiong, W.; Zhong, B.; Yang, H.Z.; Hu, Z.M.; Liu, H.X.; Xue, H. Seepage Mechanism and Strategy for Development of Large and Low Permeability and Tight Sandstone Gas Reservoirs with Water Content. J. Oil Gas Technol. 2013, 7, 20. [Google Scholar]
- Mo, S.; He, S.; Lei, G.; Gai, S.; Liu, Z. Effect of the drawdown pressure on the relative permeability in tight gas: A theoretical and experimental study. J. Nat. Gas Sci. Eng. 2015, 24, 264–271. [Google Scholar] [CrossRef]
- Gupta, S.P.; Trushenski, S.P. Micellar Flooding—Compositional Effects on Oil Displacement. Soc. Pet. Eng. J. 1979, 19, 116–128. [Google Scholar] [CrossRef]
- Mohanty, K.K. Multiphase Flow in Porous Media: III. Oil Mobilization, Transverse Dispersion, and Wettability; SPE-12127-MS; Society of Petroleum Engineers: San Francisco, CA, USA, 1983; p. 21. [Google Scholar] [CrossRef]
- Bhuyan, D. Effect of Wettability on Capillary Desaturation Curves. Ph.D. Thesis, University of Texas, Austin, TX, USA, 1986. [Google Scholar]
- Delshad, M.; Bhuyan, D.; Pope, G.A.; Lake, L.W. Effect of Capillary Number on the Residual Saturation of a Three-Phase Micellar Solution; SPE-14911-MS; Chapter Effect of Capillary Number on the Residual Saturation of a Three-Phase Micellar Solution; Society of Petroleum Engineers: Tulsa, OK, USA, 1986; p. 12. [Google Scholar] [CrossRef]
- Morrow, N.R. Wettability and Its Effect on Oil Recovery. J. Pet. Technol. 1990, 42, 1476–1484. [Google Scholar] [CrossRef]
- Sharma, M.M.; Filoco, P.R. Effect of Brine Salinity and Crude-Oil Properties on Oil Recovery and Residual Saturations. SPE J. 2000, 5, 293–300. [Google Scholar] [CrossRef]
- Elshahawi, H.; Fathy, K.; Hiekal, S. Capillary Pressure and Rock Wettability Effects on Wireline Formation Tester Measurements; SPE-56712-MS; Society of Petroleum Engineers: Houston, TX, USA, 1999; p. 16. [Google Scholar] [CrossRef]
- Zekri, A.R.Y.; Shedid, S.A.; Almehaideb, R.A. Experimental investigations of variations in petrophysical rock properties due to carbon dioxide flooding in oil heterogeneous low permeability carbonate reservoirs. J. Pet. Explor. Prod. Technol. 2013, 3, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Falode, O.; Manuel, E. Wettability Effects on Capillary Pressure, Relative Permeability, and Irredcucible Saturation Using Porous Plate. J. Pet. Eng. 2014, 2014, 12. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; O’Malley, D.; Mudunuru, M.K.; Sweeney, M.R.; Hyman, J.D.; Karra, S.; Frash, L.; Carey, J.W.; Gross, M.R.; Guthrie, G.D.; et al. A machine learning framework for rapid forecasting and history matching in unconventional reservoirs. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Baker, L. Three-phase relative permeability correlations. In Proceedings of the SPE Enhanced Oil Recovery Symposium, Tulsa, OK, USA, 16–21 April 2022; OnePetro: Richardson, TX, USA, 1988. [Google Scholar]
- Gitis, V.; Rothenberg, G. Handbook Of Porous Materials: Synthesis, Properties, Modeling And Key Applications (In 4 Volumes); World Scientific: Singapore, 2020; Volume 16. [Google Scholar]
Sample Description | Coast | Porosity | Density (gr/cc) | Irreducible Water Saturation Swi | Permeability K | Initial Oil in Place IOP | Residual Oil Saturation Sor | Pressure Saturation [×14.2233] Psi |
---|---|---|---|---|---|---|---|---|
Hassi Messaoud sample #1 | 3072.39 | 18.4 | 2.64 | 16.0 | 356.5 | 52.6 | 39.8 | 0.89 |
Hassi Messaoud sample #2 | 3094.57 | 20.1 | 2.67 | 13.3 | 1217.2 | 44.9 | 47.8 | 0.23 |
Hassi Messaoud sample #3 | 2996.03 | 21.5 | 2.64 | 11.7 | 2122.1 | 49.0 | 45.1 | 0.25 |
Hassi Messaoud sample #4 | 2996.08 | 21.4 | 2.64 | 11.2 | 1971.4 | 55.1 | 39.9 | 0.13 |
Hassi Messaoud sample #5 | 2996.17 | 20.9 | 2.66 | 12.7 | 1549.8 | 49.6 | 44.1 | 0.23 |
Hassi Messaoud sample #6 | 3016.90 | 20.9 | 2.64 | 12.6 | 1297.5 | 45.7 | 47.5 | 0.54 |
Hassi Messaoud sample #7 | 3182.07 | 21.4 | 2.65 | 9.3 | 1538.2 | 52.3 | 43.2 | 0.23 |
Hassi Messaoud sample #8 | 3198.54 | 19.4 | 2.67 | 12.2 | 1796.0 | 47.2 | 46.3 | 0.12 |
Hassi Messaoud sample #9 | 3200.64 | 19.4 | 2.65 | 15.5 | 1037.3 | 49.2 | 42.9 | 0.75 |
Hassi Messaoud sample #10 | 3235.05 | 17.8 | 2.65 | 26.9 | 440.3 | 43.2 | 41.5 | 1.05 |
Hassi Messaoud sample #11 | 3235.10 | 18.2 | 2.67 | 30.6 | 263.4 | 45.0 | 38.1 | 2.00 |
Hassi Messaoud sample #12 | 3235.15 | 19.1 | 2.60 | 30.7 | 265.3 | 51.4 | 33.7 | 1.90 |
Hassi Messaoud sample #13 | 3186.85 | 16.6 | 2.67 | 15.5 | 329.6 | 51.3 | 41.2 | 1.60 |
Hassi Messaoud sample #14 | 3257.71 | 16.1 | 2.66 | 26.8 | 241.4 | 43.9 | 41.0 | 1.60 |
Hassi Messaoud sample #15 | 3257.81 | 17.5 | 2.62 | 22.7 | 431.2 | 49.9 | 38.7 | 0.98 |
Sample Description | Coast | Wettability Index | Result | Observation |
---|---|---|---|---|
Hassi Messaoud sample# 16 | 3244.32 | −0.65 | Oil-wet | Restored sample |
Hassi Messaoud sample# 17 | 3200.59 | −0.68 | Oil-wet | Restored sample |
Hassi Messaoud sample# 18 | 3244.32 | −0.25 | Oil-wet | Restored sample |
Hassi Messaoud sample# 19 | 3198.65 | −0.83 | Oil-wet | Native sample |
Hassi Messaoud sample# 20 | 3072.49 | −0.74 | Oil-wet | Native sample |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahyaoui, S.; Akkal, R.; Khodja, M.; Ahmed Zaid, T. On the Water-Oil Relative Permeabilities of Southern Algerian Sandstone Rock Samples. Energies 2022, 15, 5687. https://doi.org/10.3390/en15155687
Yahyaoui S, Akkal R, Khodja M, Ahmed Zaid T. On the Water-Oil Relative Permeabilities of Southern Algerian Sandstone Rock Samples. Energies. 2022; 15(15):5687. https://doi.org/10.3390/en15155687
Chicago/Turabian StyleYahyaoui, Sami, Rezki Akkal, Mohammed Khodja, and Toudert Ahmed Zaid. 2022. "On the Water-Oil Relative Permeabilities of Southern Algerian Sandstone Rock Samples" Energies 15, no. 15: 5687. https://doi.org/10.3390/en15155687
APA StyleYahyaoui, S., Akkal, R., Khodja, M., & Ahmed Zaid, T. (2022). On the Water-Oil Relative Permeabilities of Southern Algerian Sandstone Rock Samples. Energies, 15(15), 5687. https://doi.org/10.3390/en15155687