Influence of Raman Spectroscopy Test Conditions on the Results of Carbon Chemical Structure of Chars
Abstract
:Highlights
- Uncertainty in the one-time measurement for chars by Raman spectroscopy technology is evident.
- Influence of char particle size and objective lens magnification on Raman characteristic parameters was investigated.
- The number of measurements required to obtain stable characteristic parameters is related to the micro-zone properties of the char surface.
Abstract
1. Introduction
2. Experiment
2.1. Sample Preparation
2.2. Raman Spectroscopy Characterization
3. Results and Discussion
3.1. Influence of Peak Deconvolution Method
3.2. Influence of Magnification of Objective Lens
3.3. Influence of Particle Size of Samples
3.4. The Influence of the Number of Measurements on the Stability of the Results
3.5. Analysis of the Cause of Variability in Raman Results
4. Conclusions
- As far as goodness of fit is concerned, it is more reasonable to adopt Gaussian fitting for the D3 peak of char Raman spectrum. Compared with Lorentz fitting, Gaussian fitting makes the positions of D3 and G peaks shift to the right and the D3 peak position changed more obviously. In addition, AD1/AAll, AD3/AAll, and AD4/AAll increased while AG/AAll and AD2/AAll decreased.
- The objective lens magnification affects the intensity of the Raman peak spectrum. The greater the objective lens magnification, the higher the intensity of the Raman peak spectrum. In addition, when the objective lens magnification is 50×, the coefficient of variation that characterizes the stability of the Raman parameter is the smallest.
- There is no correlation between the intensity of the original Raman peak spectrum and the particle size. AD1/AG, AD1/AAll, and AD3/AAll, which characterize the defect structures of char, gradually increase with increasing particle size; however, the characteristic parameter AG/AAll, which characterizes the perfect graphite structure of chars, decreases with an increase in particle size.
- The number of measurements required to obtain stable Raman characteristic parameters of chars is related to the micro-zone properties of the char surface. The higher the degree of uniformity in the carbon structure of the char micro-zones, the lower the number of measurements required and the smaller the coefficients of variation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quirico, E.; Rouzaud, J.; Bonal, L.; Montagnac, G. Maturation grade of coals as revealed by Raman spectroscopy: Progress and problems. Spectrochim. Acta Part A 2005, 61, 2368–2377. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hayashi, J.; Li, C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel 2006, 85, 1700–1707. [Google Scholar] [CrossRef]
- Hinrichs, R.; Brown, M.; Vasconcellos, M.T.; Abrashev, M.V.; Kalkreuth, W. Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy. Int. J. Coal Geol. 2014, 136, 52–58. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Tan, P.; Li, X.; Fang, Q.; Chen, G. Effects of hydrothermal upgrading on the physicochemical structure and gasification characteristics of Zhundong coal. Fuel Process. Technol. 2018, 172, 200–208. [Google Scholar] [CrossRef]
- Sheng, C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity. Fuel 2007, 86, 2316–2324. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Green, P.D.; Johnson, C.A.; Thomas, K. Applications of laser Raman microprobe spectroscopy to the characterization of coals and cokes. Fuel 1983, 62, 1013–1023. [Google Scholar] [CrossRef]
- Wang, X.; Gong, Y.; Wang, X.; Jin, B. Experimental and kinetics investigations of separated-gasification chemical looping combustion of char with an iron ore as the oxygen carrier. Fuel Process. Technol. 2020, 210, 106554. [Google Scholar] [CrossRef]
- Knight, D.S.; White, W.B. Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 1989, 4, 385–393. [Google Scholar] [CrossRef]
- Ma, C.; Zou, C.; Zhao, J.; Shi, R.; Li, X.; He, J.; Zhang, X. Pyrolysis Characteristics of Low-Rank Coal under a CO-Containing Atmosphere and Properties of the Prepared Coal Chars. Energy Fuel 2019, 33, 6098–6112. [Google Scholar] [CrossRef]
- Yoshida, A.; Kaburagi, Y.; Hishiyama, Y. Full width at half maximum intensity of the G band in the first order Raman spectrum of carbon material as a parameter for graphitization. Carbon 2006, 44, 2330–2356. [Google Scholar] [CrossRef]
- Zaida, A.; Bar-Ziv, E.; Radovic, L.; Lee, Y. Further development of Raman Microprobe spectroscopy for characterization of char reactivity. Proc. Combust. Inst. 2007, 31, 1881–1887. [Google Scholar] [CrossRef]
- Liu, L.; Kong, B.; Yang, J.; Liu, Q.; Liu, X. CO2 Gasification Kinetics and Structural Characteristics of Tri-High Coal Char Prepared at Elevated Temperature. Am. Chem. Soc. 2020, 5, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zeng, F.; Qi, F.; Sun, B. Raman Spectroscopic Characteristics of Different Rank Coals and the Relation with XRD Structural Parameters. Spectrosc. Spectr. Anal. 2009, 29, 2446–2449. [Google Scholar]
- Wang, B.; Sun, L.; Su, S.; Xiang, J.; Hu, S.; Fei, H. Char Structural Evolution during Pyrolysis and Its Influence on Combustion Reactivity in Air and Oxy-Fuel Conditions. Energy Fuel 2012, 26, 1565–1574. [Google Scholar] [CrossRef]
- Zou, C.; He, J.; Zhao, J.; Li, X.; Shi, R.; Ma, C.; Kang, Y.; Zhang, X. Structure and Reactivity of Low-Rank Coal Chars Prepared from Fluidized Bed and Moving Bed Pyrolyzers and the Potential for Using Them in Pulverized Coal Injection (PCI). Met. Mater. Trans. A 2019, 50, 2304–2318. [Google Scholar] [CrossRef]
- Xu, J.; Tang, H.; Su, S.; Liu, J.; Xu, K.; Qian, K.; Wang, Y.; Zhou, Y.; Hu, S.; Zhang, A.; et al. A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals. Appl. Energy 2018, 212, 46–56. [Google Scholar] [CrossRef]
- Vidano, R.P.; Fischbach, D.B.; Willis, L.J.; Loehr, T.M. Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun. 1981, 39, 341–344. [Google Scholar] [CrossRef]
- Sadezkya, A.; Muckenhuberb, H.; Grotheb, H.; Niessnera, R.; Pöschla, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Matthews, M.J.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Origin of Dispersive Effects of the Raman D Band in Carbon Materials. Phys. Rev. B 1999, 59, R6585. [Google Scholar] [CrossRef]
- Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martínez-Alonso, A.; Tascón, J.M.D. Raman microprobe studies on carbon materials. Carbon 1994, 32, 1523–1532. [Google Scholar] [CrossRef]
- Rantitsch, G.; Bhattacharyya, A.; Schenk, J.; Lünsdorf, N. Assessing the quality of metallurgical coke by Raman spectroscopy. Int. J. Coal Geol. 2014, 130, 1–7. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; Zhang, X.; Ling, P.; Xu, K.; He, L.; Su, S.; Wang, Y.; Hu, S.; Xiang, J. Chemical imaging of coal in micro-scale with Raman mapping technology. Fuel 2020, 264, 116826. [Google Scholar] [CrossRef]
- Tselev, A.; Ivanov, I.N.; Lavrik, N.V.; Belianinov, A.; Jesse, S.; Mathews, J.P.; Mitchell, G.D.; Kalinin, S.V. Mapping internal structure of coal by confocal micro-Raman spectroscopy and scanning microwave microscopy. Fuel 2014, 126, 32–37. [Google Scholar] [CrossRef]
- Sforna, M.C.; Zuilen, M.; Philippot, P. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia. Geochim. Et Cosmochim. Acta 2014, 124, 18–33. [Google Scholar] [CrossRef]
- Seong, H.; Boehman, A.L. Evaluation of Raman Parameters Using Visible Raman Microscopy for Soot Oxidative Reactivity. Energy Fuel 2013, 27, 1613–1624. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, Y.; Liu, Z.; Ding, H.; Huang, X.; Zheng, C. Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy. Fuel 2015, 157, 97–106. [Google Scholar] [CrossRef]
- Dong, S.; Paterson, N.; Kazarian, S.G.; Dugwell, D.R.; Kandiyoti, R. Characterization of Tuyere-Level Core-Drill Coke Samples from Blast Furnace Operation. Energy Fuels 2007, 21, 3446–3454. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, C.; Zhao, J.; Ma, C.; Hu, B.; Liu, S.; He, J. Effect of H2 and CO as pyrolysis atmosphere on chemical structure of char by XRD and Raman methods. J. Fuel Chem. Technol. 2019, 47, 1288–1297. [Google Scholar]
- Rantitsch, G.; Bhattacharyya, A.; Günbati, A.; Schulten, M.; Schenk, J.; Letofsky-Papst, I.; Albering, J. Microsturctural evolution of metallurgical coke: Evidence from Raman spectroscopy. Int. J. Coal Geology 2020, 227, 103546. [Google Scholar] [CrossRef]
- Wang, Y.; Alsmeyer, D.C.; McCreery, R.L. Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra. Chem. Mater. 1990, 2, 557–563. [Google Scholar] [CrossRef]
- Jawhari, T.; Roid, A.; Casado, J. Raman spectroscopic characterization of some commercially available carbon black materials. Caron 1995, 33, 1561–1565. [Google Scholar] [CrossRef]
- Dong, M.; Lu, J.; Yao, S.; Li, J.; Li, J.; Zhong, Z.; Lu, W. Application of LIBS for direct determination of volatile matter content in coal. J. Anal. At. Spectrom. 2011, 26, 2183–2188. [Google Scholar] [CrossRef]
- Zhang, S.; Min, Z.; Tay, H.; Asadullah, M.; Li, C. Effects of volatile–char interactions on the evolution of char structure during the gasification of Victorian brown coal in steam. Fuel 2011, 90, 1529–1535. [Google Scholar] [CrossRef]
- Babu, V.S.; Seehra, M.S. Modeling of disorder and X-ray diffraction in coal-based graphitic carbons. Carbon 1996, 34, 1259–1265. [Google Scholar] [CrossRef]
Sample | Mad/% | Aad/% | Vad/% | FCad/% |
---|---|---|---|---|
Char1 | 0.93 | 7.57 | 12.38 | 79.12 |
Char2 | 1.21 | 8.45 | 7.38 | 82.96 |
Times | Magnification/5× | Magnification/20× | Magnification/50× | |||
---|---|---|---|---|---|---|
4L1G/(χ2/dof) | 5L/(χ2/dof) | 4L1G/(χ2/dof) | 5L/(χ2/dof) | 4L1G/(χ2/dof) | 5L/(χ2/dof) | |
1 | 1.02 | 1.12 | 0.82 | 1.62 | 1.84 | 3.41 |
2 | 0.85 | 2.30 | 0.76 | 1.36 | 1.20 | 2.70 |
3 | 0.70 | 2.04 | 1.10 | 1.51 | 3.57 | 4.56 |
Magnification/× | Coefficient of Variation | |||
---|---|---|---|---|
AD1/AAll/% | AG/AAll/% | AD3/AAll/% | AD1/AG | |
5 | 0.044 | 0.139 | 0.182 | 0.177 |
20 | 0.017 | 0.085 | 0.071 | 0.101 |
50 | 0.002 | 0.040 | 0.018 | 0.042 |
Particle Size | Coefficient of Variation | |||
---|---|---|---|---|
AD1/AAll/% | AG/AAll/% | AD3/AAll/% | AD1/AG | |
<30 μm | 0.023 | 0.058 | 0.125 | 0.045 |
61–75 μm | 0.028 | 0.171 | 0.085 | 0.191 |
81–96 μm | 0.003 | 0.031 | 0.048 | 0.028 |
120–140 μm | 0.019 | 0.031 | 0.076 | 0.050 |
Times | Char1 | Char2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AD4/AAll/% | AD1/AAll/% | AD3/AAll/% | AG/AAll/% | AD2/AAll/% | AD1/AG | AD4/AAll/% | AD1/AAll/% | AD3/AAll/% | AG/AAll/% | AD2/AAll/% | AD1/AG | |
1 | 6.78 | 55.69 | 13.32 | 14.47 | 9.73 | 3.85 | 3.12 | 68.50 | 8.72 | 13.05 | 6.61 | 5.25 |
2 | 5.68 | 67.67 | 10.01 | 9.97 | 6.67 | 6.79 | 8.75 | 45.20 | 10.93 | 25.36 | 9.77 | 1.78 |
3 | 0.70 | 64.06 | 13.44 | 12.57 | 9.23 | 5.09 | 8.71 | 49.65 | 10.87 | 17.57 | 13.20 | 2.82 |
4 | 0.86 | 61.05 | 11.71 | 15.94 | 10.44 | 3.83 | 4.53 | 63.55 | 9.15 | 15.95 | 6.83 | 3.98 |
5 | 3.78 | 62.41 | 11.84 | 12.94 | 9.02 | 4.82 | 12.40 | 46.00 | 11.55 | 16.50 | 13.55 | 2.79 |
6 | 1.05 | 64.55 | 13.61 | 11.42 | 9.36 | 5.65 | 2.95 | 48.24 | 22.34 | 21.97 | 4.51 | 2.20 |
7 | 1.39 | 63.91 | 12.48 | 13.49 | 8.73 | 4.74 | 6.30 | 50.13 | 7.61 | 28.90 | 7.06 | 1.73 |
8 | 0.84 | 63.59 | 13.81 | 12.25 | 9.52 | 5.19 | 1.36 | 69.30 | 6.58 | 18.21 | 4.54 | 3.80 |
9 | 2.05 | 63.10 | 13.14 | 12.91 | 8.79 | 4.89 | 11.03 | 37.61 | 14.13 | 28.16 | 9.08 | 1.34 |
10 | 4.07 | 62.62 | 13.00 | 11.86 | 8.46 | 5.28 | 3.58 | 67.04 | 4.67 | 18.53 | 6.18 | 3.62 |
11 | 0.97 | 64.31 | 12.91 | 12.82 | 8.98 | 5.02 | 8.56 | 48.77 | 12.73 | 18.29 | 11.66 | 2.67 |
12 | 4.85 | 62.30 | 11.75 | 12.79 | 8.31 | 4.87 | 1.35 | 62.73 | 9.02 | 18.58 | 8.31 | 3.38 |
13 | - | - | - | - | - | - | 5.22 | 56.12 | 8.70 | 17.95 | 12.02 | 3.13 |
14 | - | - | - | - | - | - | 7.45 | 54.15 | 9.99 | 17.25 | 11.16 | 3.14 |
15 | - | - | - | - | - | - | 5.28 | 55.76 | 8.38 | 20.27 | 10.31 | 2.75 |
Times | Char1 of Coefficient of Variation | Char2 of Coefficient of Variation | ||||||
---|---|---|---|---|---|---|---|---|
AD1/AAll/% | AG/AAll/% | AD3/AAll/% | AD1/AG | AD1/AAll/% | AG/AAll/% | AD3/AAll/% | AD1/AG | |
2 | 0.140 | 0.260 | 0.201 | 0.39 | 0.29 | 0.45 | 0.16 | 0.70 |
3 | 0.098 | 0.183 | 0.159 | 0.282 | 0.23 | 0.33 | 0.12 | 0.54 |
4 | 0.082 | 0.195 | 0.133 | 0.286 | 0.20 | 0.29 | 0.12 | 0.43 |
5 | 0.071 | 0.170 | 0.116 | 0.248 | 0.20 | 0.26 | 0.12 | 0.40 |
6 | 0.065 | 0.165 | 0.114 | 0.225 | 0.17 | 0.24 | 0.41 | 0.40 |
7 | 0.059 | 0.201 | 0.104 | 0.208 | 0.17 | 0.29 | 0.43 | 0.44 |
8 | 0.055 | 0.142 | 0.103 | 0.193 | 0.19 | 0.27 | 0.45 | 0.40 |
9 | 0.052 | 0.133 | 0.098 | 0.181 | 0.21 | 0.28 | 0.42 | 0.45 |
10 | 0.049 | 0.129 | 0.092 | 0.171 | 0.21 | 0.27 | 0.46 | 0.42 |
11 | 0.047 | 0.122 | 0.088 | 0.162 | 0.20 | 0.26 | 0.43 | 0.40 |
12 | 0.044 | 0.116 | 0.087 | 0.155 | 0.20 | 0.25 | 0.42 | 0.38 |
13 | - | - | - | - | 0.19 | 0.24 | 0.41 | 0.36 |
14 | - | - | - | - | 0.18 | 0.24 | 0.40 | 0.35 |
15 | - | - | - | - | 0.17 | 0.23 | 0.39 | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Zou, C.; Zhao, J.; Xi, J.; She, Y.; Ren, M.; Xu, Y. Influence of Raman Spectroscopy Test Conditions on the Results of Carbon Chemical Structure of Chars. Energies 2022, 15, 5627. https://doi.org/10.3390/en15155627
He J, Zou C, Zhao J, Xi J, She Y, Ren M, Xu Y. Influence of Raman Spectroscopy Test Conditions on the Results of Carbon Chemical Structure of Chars. Energies. 2022; 15(15):5627. https://doi.org/10.3390/en15155627
Chicago/Turabian StyleHe, Jiangyong, Chong Zou, Junxue Zhao, Jiale Xi, Yuan She, Mengmeng Ren, and Yufen Xu. 2022. "Influence of Raman Spectroscopy Test Conditions on the Results of Carbon Chemical Structure of Chars" Energies 15, no. 15: 5627. https://doi.org/10.3390/en15155627
APA StyleHe, J., Zou, C., Zhao, J., Xi, J., She, Y., Ren, M., & Xu, Y. (2022). Influence of Raman Spectroscopy Test Conditions on the Results of Carbon Chemical Structure of Chars. Energies, 15(15), 5627. https://doi.org/10.3390/en15155627