Applicability Analysis of Pre-Stack Inversion in Carbonate Karst Reservoir
Abstract
:1. Introduction
2. Geological Modeling Design
2.1. Model Design
2.2. Method and Workflow
3. Results
4. Discussion
4.1. Cave Top Prediction
4.2. Cave Size Prediction
5. Case Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, Y.; Yang, J.; Pan, Z.; Meng, S.; Wang, K.; Niu, X. Unconventional Natural Gas Accumulations in Stacked Deposits: A Discussion of Upper Paleozoic Coal-Bearing Strata in the East Margin of the Ordos Basin, China. Acta Geol. Sin.-Engl. Ed. 2019, 93, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Pan, S.; Ning, S.; Shao, L.; Jing, Z.; Wang, Z. Coal measure metallogeny: Metallogenic system and implication for resource and environment. Sci. China Earth Sci. 2022, 65, 1211–1228. [Google Scholar] [CrossRef]
- Zeng, H.; Wang, G.; Janson, X.; Loucks, R.; Xia, Y.; Xu, L.; Yuan, B. Characterizing seismic bright spots in deeply buried, Ordovician Paleokarst strata, Central Tabei uplift, Tarim Basin, Western China. Geophysics 2011, 76, B127–B137. [Google Scholar] [CrossRef]
- Xu, C.; Di, B.; Wei, J. A physical modeling study of seismic features of karst cave reservoirs in the Tarim Basin, China. Geophysics 2016, 81, B31–B41. [Google Scholar] [CrossRef]
- Jinhua, Y.; Guofa, L.; Yang, L.; Weidong, J. The application of elastic impedance inversion in reservoir prediction at the Jinan area of Tarim Oilfield. Appl. Geophys. 2007, 4, 201–206. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Y.; Wang, X.; Wang, N.; Gao, G.; Zhu, X. The application of high-resolution 3D seismic acquisition techniques for carbonate reservoir characterization in China. Lead. Edge 2012, 31, 168–179. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Jin, Z.; Dong, N.; Chen, Y.; Liu, X. An Amplitude-Based Modeling Method and its Application on the Impedance Inversion in Heterogeneous Paleokarst Carbonate Reservoirs. Earth Sci. Res. 2016, 5, 199. [Google Scholar] [CrossRef] [Green Version]
- Xiang, K.; Han, L.; Hu, Z.; Landa, E. Improving the resolution of impedance inversion in karst systems by incorporating diffraction information: A case study of Tarim Basin, China. Geophysics 2020, 85, B223–B232. [Google Scholar] [CrossRef]
- Zhao, H.; Yin, C.; Li, R.; Xu, F.; Chen, G.; Li, X.; Fu, L. Design method of gun offset based on maximizing the energy efficiency of the receiver receiving illumination. Oil Geophys. Geophys. 2011, 46, 333–338. [Google Scholar]
- Biot, M.A. Generalized Theory of Acoustic Propagation in Porous Dissipative Media. J. Acoust. Soc. Am. 1962, 34, 1254–1264. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, S.Z.; Yang, H.; Wang, H.; Han, J.; Gao, H.; Luo, C.; Jing, B. Pre-stack inversion for caved carbonate reservoir prediction: A case study from Tarim Basin, China. Pet. Sci. 2011, 8, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Sam, Z.S.; Xie, H. Nonstationary sparsity-constrained seismic deconvolution. Appl. Geophys. 2014, 11, 459–467. [Google Scholar] [CrossRef]
- Zhan, G.; Pestana, R.C.; Stoffa, P.L. Decoupled equations for reverse time migration in tilted transversely isotropic media. Geophysics 2012, 77, 37–45. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Sun, Z.D.; Han, J.F.; Wang, H.Y.; Fan, C.Y. Fluid mapping in deeply buried Ordovician paleokarst reservoirs in the Tarim Basin, western China. Geofluids 2016, 16, 421–433. [Google Scholar] [CrossRef]
- Sun, S.Z.; Yang, P.; Liu, L.; Sun, X.; Liu, Z.; Zhang, Y. Ultimate use of prestack seismic data: Integration of rock physics, amplitude-preserved processing, and elastic inversion. Lead. Edge 2015, 34, 308–314. [Google Scholar] [CrossRef]
- Wang, X.W.; Lei, L.; Liu, W. Seismic data processing techniques of carbonate rocks in Tarim Basin. Lithol. Reserv. 2008, 20, 109–112. [Google Scholar]
- Sun, S.Z.; Yang, H.; Zhang, Y.; Han, J.; Wang, D.; Sun, W.; Jiang, S. The application of amplitude-preserved processing and migration for carbonate reservoir prediction in the Tarim Basin, China. Pet. Sci. 2011, 8, 406–414. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, Z.; Jin, Z.; Fan, C. The Comparison between Full-Stack Data and Pure P-Wave Data on Deeply Buried Ordovician Paleokarst Reservoir Prediction. Earth Sci. Res. 2016, 5, 57–59. [Google Scholar] [CrossRef]
- Xu, C.; Di, B.; Wei, J. Influence of Reservoir Size on AVO Characteristics of Reservoirs at Seismic Scale. In Proceedings of the 76th EAGE Conference and Exhibition 2014, Amsterdam, The Netherlands, 16–19 June 2014. [Google Scholar] [CrossRef]
- Wang, B.L.; Yin, X.Y.; Zhang, F.C. Elastic impedance inversion and its application. Prog. Geophys. 2005, 20, 89–92. [Google Scholar]
- Zhang, Y.; Sun, Z.; Fan, C. An Iterative AVO Inversion Workflow for S-wave Improvement. Geology 2013, 10, 1–3. [Google Scholar]
- Gan, L.D.; Zhao, B.L.; Du, W.H.; Li, L.G. The potential analysis of elastic impedance in the lithology and fluid prediction. Geophys. Prospect. Pet. 2005, 44, 504–508. [Google Scholar]
- Wang, H.; Sun, S.Z.; Yang, H. Velocity prediction models evaluation and permeability prediction for fractured and caved carbonate reservoir: From theory to case study. In Society of Exploration Geophysicists SEG Technical Program Expanded Abstracts 2009; Society of Exploration Geophysicists: Houston, TX, USA, 2009; pp. 2194–2198. [Google Scholar]
- Etgen, J.T.; Brandsberg-Dahl, S. The pseudo-analytical method: Application of pseudo-Laplacians to acoustic and acoustic anisotropic wave propagation. In Society of Exploration Geophysicists SEG Technical Program Expanded Abstracts 2009; Society of Exploration Geophysicists: Houston, TX, USA, 2009; pp. 2252–2256. [Google Scholar]
- Huang, J.Q.; Li, Z.C. Modeling and reverse time migration of pure quasi-P-waves in complex TI media with a low-rank decomposition. Chin. J. Geophys. 2017, 60, 704–721. [Google Scholar]
- Xu, S.; Zhou, H. Accurate simulations of pure quasi-P-waves in complex anisotropic media. Geophys. J. Soc. Explor. Geophys. 2014, 79, 341–348. [Google Scholar] [CrossRef]
- Wang, Y.; Mu, P.; Cai, W.; Wang, P.; Gui, Z. Optimization of five-diagonal compact difference scheme and numerical simulation of two-dimensional acoustic wave propagation wave equation. Geophys. Prospect. Pet. 2019, 58, 487–498. [Google Scholar]
- Zhang, J.-M.; He, B.-S.; Tang, H.-G. Pure quasi-p wave equation and numerical solution in 3d tti media. Appl. Geophys. 2017, 14, 125–132. [Google Scholar] [CrossRef]
- Li, Q.; Wu, G.; Duan, P. Quasi-regular grid high-order finite difference method for heterogeneous elastic wave field simulation. Oil Geophys. Prospect. 2019, 54, 540–550. [Google Scholar]
- Chu, C.; Macy, B.K.; Anno, P.D. Approximation of pure acoustic seismic wave propagation in TTI media. Geophysics 2011, 76, WB97–WB107. [Google Scholar] [CrossRef]
- Du, Q.Z.; Guo, C.F.; Gong, X.F. Hybrid PS/FD numerical simulation and stability analysis of pure P-wave propagation in VTI media. Chin. J. Geophys. 2015, 58, 287–301. [Google Scholar] [CrossRef] [Green Version]
Model No. | Cave No. | P Wave Velocity (m/s) | S Wave Velocity (m/s) | Density (kg/m3) | Size/Distance (m) |
---|---|---|---|---|---|
1 | 1 | 2800 | 1700 | 2120 | 40 × 40 |
1 | 2 | 3150 | 2050 | 2250 | 40 × 40 |
1 | 3 | 3550 | 2600 | 2320 | 40 × 40 |
1 | 4 | 4200 | 2680 | 2400 | 40 × 40 |
1 | 5 | 4550 | 2700 | 2480 | 40 × 40 |
1 | 6 | 5150 | 3000 | 2560 | 40 × 40 |
2 | 7 | 4000 | 2670 | 2380 | 80 × 80 |
2 | 8 | 4000 | 2670 | 2380 | 40 × 40 |
2 | 9 | 4000 | 2670 | 2380 | 20 × 20 |
2 | 10 | 4000 | 2670 | 2380 | 10 × 10 |
3 | 11 | 4000 | 2670 | 2380 | 160 × 10/10 |
3 | 12 | 4000 | 2670 | 2380 | 160 × 10/20 |
3 | 13 | 4000 | 2670 | 2380 | 160 × 20/20 |
3 | 14 | 4000 | 2670 | 2380 | 160 × 80/120 |
3 | 15 | 4000 | 2670 | 2380 | 160 × 160/120 |
3 | 16 | 4000 | 2670 | 2380 | 80 × 80/40 |
3 | 17 | 4000 | 2670 | 2380 | 20 × 20/10 |
3 | 18 | 4000 | 2670 | 2380 | 10 × 10 |
Vp from Geological Model (m/s) | Vp from Pre-Stack Inversion (m/s) | Error | |
---|---|---|---|
Geological model 1 | 2800 | 2800–2900 | 0–3.57% |
3150 | 3100–3300 | 1.58–4.76% | |
3550 | 3400–3700 | 1.4–4.22% | |
4200 | 4000–4500 | 4.76–7.14% | |
4550 | 4500–4700 | 1.09–3.29% | |
5150 | 5100–5300 | 0.97–2.91% |
Model | Model Aim | Analysis |
---|---|---|
Model 1 | Different fillings | Velocity and density related to fluid prediction; velocity 5–10% error with the P wave velocity geological model |
Model 2 | Top of cave | Predicted accurately |
Different volume | Possible when the caves volume is more than 20 m × 20 m × 20 m; possible to predict the size and position of the cave | |
Model 3 | Complex combination | Layered characterization, predicted the boundary of a single cave |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Liu, B. Applicability Analysis of Pre-Stack Inversion in Carbonate Karst Reservoir. Energies 2022, 15, 5598. https://doi.org/10.3390/en15155598
Wang R, Liu B. Applicability Analysis of Pre-Stack Inversion in Carbonate Karst Reservoir. Energies. 2022; 15(15):5598. https://doi.org/10.3390/en15155598
Chicago/Turabian StyleWang, Rui, and Bo Liu. 2022. "Applicability Analysis of Pre-Stack Inversion in Carbonate Karst Reservoir" Energies 15, no. 15: 5598. https://doi.org/10.3390/en15155598
APA StyleWang, R., & Liu, B. (2022). Applicability Analysis of Pre-Stack Inversion in Carbonate Karst Reservoir. Energies, 15(15), 5598. https://doi.org/10.3390/en15155598