Exploring the Relationship between Energy and Food Security in Africa with Instrumental Variables Analysis
Abstract
:1. Introduction
2. Literature Review
3. Data, Modeling, and Methodology
3.1. Data
3.2. Modeling
3.3. Methodology
3.3.1. Cross-Sectional Dependence and Unit Root Tests
3.3.2. Instrumental Variables (2SLS)
3.3.3. Instrumental Variables (GMM)
3.3.4. Panel Driscoll–Kraay Standard Errors
4. Results
4.1. Pre-Regression Analysis
4.2. Main Results
4.3. Alternative Analysis
4.4. Heteroskedasticity, Autocorrelation, and Spatial Correlation
5. Discussion
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Component | Eigenvalue | Difference | Proportion | Cumulative |
---|---|---|---|---|
Comp1 | 1.766 | 0.743 | 0.442 | 0.442 |
Comp2 | 1.023 | 0.330 | 0.256 | 0.697 |
Comp3 | 0.693 | 0.174 | 0.173 | 0.870 |
Comp4 | 0.518 | 0.130 | 1.000 |
Variable | Comp1 | Comp2 | Comp3 | Comp4 |
---|---|---|---|---|
AVAILAB | −0.547 | 0.156 | 0.745 | 0.350 |
APPLICAB | −0.168 | 0.918 | −0.351 | 0.077 |
ACCEPTA | 0.619 | 0.075 | 0.072 | 0.779 |
AFFORDA | 0.539 | 0.357 | 0.563 | −0.515 |
Component | Eigenvalue | Difference | Proportion | Cumulative |
---|---|---|---|---|
Comp1 | 7.465 | 6.164 | 0.747 | 0.747 |
Comp2 | 1.301 | 0.411 | 0.130 | 0.877 |
Comp3 | 0.889 | 0.724 | 0.089 | 0.966 |
Comp4 | 0.166 | 0.055 | 0.017 | 0.982 |
Comp5 | 0.111 | 0.081 | 0.011 | 0.993 |
Comp6 | 0.030 | 0.008 | 0.003 | 0.996 |
Comp7 | 0.023 | 0.008 | 0.002 | 0.999 |
Comp8 | 0.015 | 0.015 | 0.002 | 1.000 |
Comp9 | 0 | 0 | 0.000 | 1.000 |
Comp10 | 0 | 0.000 | 1.000 |
Variable | Comp1 | Comp2 | Comp3 | Comp4 | Comp5 | Comp6 | Comp7 | Comp8 |
---|---|---|---|---|---|---|---|---|
Cassava | 0.064 | 0.858 | −0.104 | −0.074 | 0.045 | 0.050 | 0.217 | −0.003 |
Maize | 0.328 | −0.064 | −0.381 | −0.032 | 0.755 | 0.016 | −0.196 | 0.162 |
Potatoes | 0.357 | −0.128 | −0.032 | −0.022 | −0.364 | −0.180 | −0.610 | 0.124 |
Rice | 0.343 | −0.063 | 0.278 | −0.456 | −0.076 | 0.504 | 0.015 | −0.480 |
Wheat | 0.351 | −0.120 | 0.181 | −0.297 | −0.101 | −0.583 | 0.515 | 0.245 |
Fruit | 0.347 | −0.032 | −0.215 | 0.557 | −0.048 | −0.252 | 0.170 | −0.654 |
Pulses | 0.234 | 0.120 | 0.771 | 0.470 | 0.253 | 0.081 | −0.081 | 0.194 |
Vegetables | 0.340 | −0.136 | −0.289 | 0.293 | −0.308 | 0.537 | 0.347 | 0.438 |
Cereals | 0.361 | −0.084 | 0.013 | −0.274 | 0.231 | 0.020 | 0.086 | −0.044 |
Root and tuber | 0.316 | 0.429 | −0.089 | −0.063 | −0.253 | −0.108 | −0.337 | 0.094 |
References
- Sutrisno, A.; Normaler, Ö.; Alkemade, F. Has the global expansion of energy markets truly improved energy security? Energy Policy 2021, 148, 111931. [Google Scholar] [CrossRef]
- Kruyt, B.; van Vuuren, D.P.V.; de Vries, H.J.M.; Groenenberg, H. Indicators for energy security. Energy Policy 2009, 37, 2166–2181. [Google Scholar] [CrossRef]
- Fang, D.; Shi, S.; Yu, Q. Evaluation of Sustainable Energy Security and an Empirical Analysis of China. Sustainability 2018, 10, 1685. [Google Scholar] [CrossRef] [Green Version]
- Narula, K.; Reddy, B.S.; Pachauri, S. Sustainable energy security for India: An assessment of energy demand sub-system. Appl. Energy 2017, 186, 126–139. [Google Scholar] [CrossRef]
- Pool, U.; Dooris, M. Prevalence of food security in the UK measured by the Food Insecurity Experience Scale. J. Public Health 2021, fdab120. [Google Scholar] [CrossRef]
- Cole, M.B.; Augustin, M.A.; Robertson, M.J.; Manners, J.M. The science of food security. Npj Sci. Food 2018, 2, 14. [Google Scholar] [CrossRef]
- Akbari, M.; Foroudi, P.; Shahmoradi, M.; Padash, H.; Parizi, Z.S.; Khosravani, A.; Ataei, P.; Cuomo, M.T. The Evolution of Food Security: Where Are We Now, Where Should We Go Next? Sustainability 2022, 14, 3634. [Google Scholar] [CrossRef]
- Answer, M.K.; Iqbal Godil, D.; Aderounmu, B.; Onabote, A.; Osabohien, R.; Ashraf, J.; Yao-Ping Peng, M. Social Inclusion, Innovation and Food Security in West Africa. Sustainability 2021, 13, 2619. [Google Scholar] [CrossRef]
- Campi, M.; Dueñas, M.; Fagiolo, G. Specialization in food production affects global food security and food systems sustainability. World Dev. 2021, 141, 105411. [Google Scholar] [CrossRef]
- Marti, L.; Puertas, R. Sustainable energy development analysis: Energy Trilemma. Sustain. Technol. Entrep. 2022, 1, 100007. [Google Scholar] [CrossRef]
- Driscoll, J.C.; Kraay, A.C. Consistent covariance matrix estimation with spatially dependent panel data. Rev. Econ. Stat. 1998, 80, 549–560. [Google Scholar] [CrossRef]
- Sani, Y.; Scholz, M. Interplay of Water–Energy Security and Food Consumption Patterns towards Achieving Nutrition Security in Katsina State, North-Western Nigeria. Sustainability 2022, 14, 4478. [Google Scholar] [CrossRef]
- Rodríguez-Merchan, V.; Ulloa-Tesser, C.; Baeza, C.; Casas-Ledón, Y. Evaluation of the Water–Energy nexus in the treatment of urban drinking water in Chile through exergy and environmental indicators. J. Clean. Prod. 2021, 317, 128494. [Google Scholar] [CrossRef]
- Ali Akbar Salehi, A.; Ghannadi-Maragheh, M.; Torab-Mostaedi, M.; Torkaman, R.; Asadollahzadeh, M. A review on the water-energy nexus for drinking water production from humid air. Renew. Sustain. Energy Rev. 2020, 120, 109627. [Google Scholar] [CrossRef]
- Katekar, V.P.; Deshmukh, S.S. Energy-Drinking Water-Health Nexus in Developing Countries. In Energy and Environmental Security in Developing Countries; Asif, M., Ed.; Advanced Sciences and Technologies for Security Applications; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Glauben, T.; Svanidze, M.; Götz, L.; Prehn, S.; Jamali Jaghdani, T.; Đurić, I.; Kuhn, L. The War in Ukraine, Agricultural Trade and Risks to Global Food Security. Intereconomics 2022, 57, 157–163. [Google Scholar] [CrossRef]
- Mara, D.; Nate, S.; Stavytskyy, A.; Kharlamova, G. The Place of Energy Security in the National Security Framework: An Assessment Approach. Energies 2022, 15, 658. [Google Scholar] [CrossRef]
- Behnassi, M.; El Haiba, M. Implications of the Russia–Ukraine war for global food security. Nat. Hum. Behav. 2022, 6, 754–755. [Google Scholar] [CrossRef]
- Benton, T.G.; Froggatt, A.; Wellesley, L.; Schröder, P. The Ukraine War and Threats to Energy and Food Security: Cascading Risks from Rising Prices and Supply Disruption. Chatham House. 2022. Available online: https://policycommons.net/artifacts/2325091/the-ukraine-war-and-threats-to-food-and-energy-security/3085617/ (accessed on 23 July 2022).
- Axon, C.J.; Darton, R.C. Sustainability and risk—A review of energy security. Sustain. Prod. Consum. 2021, 27, 1195–1204. [Google Scholar] [CrossRef]
- Yu, Z.; Li, J.; Yang, G. A Review of Energy Security Index Dimensions and Organization. Energy Res. Lett. 2022, 3, 28914. [Google Scholar] [CrossRef]
- Brunet, C.; Savadogo, O.; Baptiste, P.; Bouchard, M.A.; Cholez, C.; Rosei, F.; Gendron, C.; Sinclair-Desgagné, B.; Merveille, N. Does solar energy reduce poverty or increase energy security? A comparative analysis of sustainability impacts of on-grid power plants in Burkina Faso, Madagascar, Morocco, Rwanda, Senegal and South Africa. Energy Res. Soc. Sci. 2022, 87, 102212. [Google Scholar] [CrossRef]
- Lee, C.C.; Xing, W. The impact of energy security on income inequality: The key role of economic development. Energy 2022, 248, 123564. [Google Scholar] [CrossRef]
- Alemzero, D.A.; Sun, H.; Mohsin, M.; Iqbal, N.; Nadeem, M.; Vinh Vo, X. Assessing energy security in Africa based on multi-dimensional approach of principal composite analysis. Environ. Sci Pollut Res. 2021, 28, 2158–2171. [Google Scholar] [CrossRef]
- Santon, T. Regional energy security goes South: Examining energy integration in South America. Energy Res. Soc. Sci. 2021, 76, 102050. [Google Scholar] [CrossRef]
- Leal Filho, W.; Balogun, A.-L.; Surroop, D.; Salvia, A.L.; Narula, K.; Li, C.; Hunt, J.D.; Gatto, A.; Sharifi, A.; Feng, H.; et al. Realizing the Potential of Renewable Energy as a Tool for Energy Security in Small Island Developing States. Sustainability 2022, 14, 4965. [Google Scholar] [CrossRef]
- Okpanachi, E.; Ambe-Uva, T.; Fassih, A. Energy regime reconfiguration and just transitions in the Global South: Lessons for West Africa from Morocco’s comparative experience. Futures 2022, 139, 102934. [Google Scholar] [CrossRef]
- Kharazishvili, Y.; Kwilinski, A.; Sukhodolia, O.; Dzwigol, H.; Bobro, D.; Kotowicz, J. The Systemic Approach for Estimating and Strategizing Energy Security: The Case of Ukraine. Energies 2021, 14, 2126. [Google Scholar] [CrossRef]
- Gong, X.; Wang, Y.; Boquiang, L. Assessing dynamic China’s energy security: Based on functional data analysis. Energy 2021, 217, 119324. [Google Scholar]
- Bezner Kerr, R.; Madsen, S.; Stüber, M.; Liebert, J.; Enloe, S.; Borghino, N.; Parros, P.; Munyao Mutyambai, D.; Prudhon, M.; Wezel, A. Can agroecology improve food security and nutrition? A review. Glob. Food Secur. 2021, 29, 100540. [Google Scholar] [CrossRef]
- O’Hara, S.; Toussaint, E.C. Food access in crisis: Food security and COVID-19. Ecol. Econ. 2021, 180, 106859. [Google Scholar]
- Agyei, S.K.; Isshaq, Z.; Frimpong, S.; Adam, A.M.; Bossman, A.; Asiamah, O. COVID-19 and food prices in sub-Saharan Africa. Afr. Dev. Rev. 2021, 33, S102–S113. [Google Scholar]
- Nicholson, C.F.; Stephens, E.C.; Kopainsky, B.; Jones, A.D.; Parsons, D.; Garrett, J. Food security outcomes in agricultural systems models: Current status and recommended improvements. Agric. Syst. 2021, 188, 103028. [Google Scholar] [CrossRef]
- Lukwa, A.T.; Odunitan-Wayas, F.; Lambert, E.V.; Alaba, O.A.; on behalf of the “Savings for Health” IDRC Collaborators. Can Informal Savings Groups Promote Food Security and Social, Economic and Health Transformations, Especially among Women in Urban Sub-Saharan Africa: A Narrative Systematic Review. Sustainability 2022, 14, 3153. [Google Scholar] [CrossRef]
- Fujimori, S.; Wu, W.; Doelman, J.; Frank, S.; Hristov, J.; Kyle, P.; Sands, R.; van Zeist, W.-J.; Havlik, P.; Domínguez, I.P.; et al. Land-based climate change mitigation measures can affect agricultural markets and food security. Nat. Food 2022, 3, 110–121. [Google Scholar] [CrossRef]
- Horn, B.; Ferreira, C.; Kalantari, Z. Links between food trade, climate change and food security in developed countries: A case study of Sweden. Ambio 2022, 52, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Molotoks, A.; Smith, P.; Dawson, T.P. Impacts of land use, population, and climate change on global food security. Food Energy Secur. 2021, 10, e261. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Z.; Tang, Y. Enhancing food security and environmental sustainability: A critical review of food loss and waste management. Resour. Environ. Sustain. 2021, 4, 100023. [Google Scholar] [CrossRef]
- Bielski, S.; Marks-Bielska, R.; Zielińska-Chmielewska, A.; Romaneckas, K.; Šarauskis, E. Importance of Agriculture in Creating Energy Security—A Case Study of Poland. Energies 2021, 14, 2465. [Google Scholar] [CrossRef]
- Larson, R.B. Reconciling Energy and Food Security Law. Univ. Richmond Law Rev. 2014, 48, 929. [Google Scholar]
- Ogbolumani, O.A.; Nwulu, N.I. A food-energy-water nexus meta-model for food and energy security. Sustain. Prod. Consum. 2022, 30, 438–453. [Google Scholar] [CrossRef]
- Nkiaka, E.; Okpara, U.T.; Okumah, M. Food-energy-water security in sub-Saharan Africa: Quantitative and spatial assessments using an indicator-based approach. Environ. Dev. 2021, 40, 100655. [Google Scholar] [CrossRef]
- Huntington, H.P.; Schmidt, J.I.; Loring, P.A.; Whitney, E.; Aggarwal, S.; Byrd, A.G.; Dev, S.; Dotson, A.D.; Huang, D.; Johnson, B.; et al. Applying the food–energy–water nexus concept at the local scale. Nat. Sustain. 2021, 4, 672–679. [Google Scholar] [CrossRef]
- Beekma, J.; Bird, J.; Mersha, A.N.; Reinhard, S.; Prathapar, S.A.; Rasul, G.; Richey, J.; Campen, J.V.; Ragab, R.; Perry, C.; et al. Enabling policy environment for water, food and energy security. Irrig. Drain. 2021, 70, 392–409. [Google Scholar] [CrossRef]
- Lin, H.-I.; Yu, Y.-Y.; Wen, F.-I.; Liu, P.-T. Status of Food Security in East and Southeast Asia and Challenges of Climate Change. Climate 2022, 10, 40. [Google Scholar] [CrossRef]
- Candelise, C.; Saccone, D.; Vallino, E. An empirical assessment of the effects of electricity access on food security. World Dev. 2021, 141, 105390. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdul-Rahim, A.S.; Zubair, A.O. Impacts of bioenergy sustainable growth on food security in EU28 region: An empirical analysis. Environ. Dev. Sustain. 2021, 23, 17423–17442. [Google Scholar] [CrossRef]
- Falchetta, G. Energy access investment, agricultural profitability, and rural development: Time for an integrated approach. Environ. Res. Infrastruct. Sustain. 2021, 1, 033002. [Google Scholar] [CrossRef]
- Chandio, A.A.; Shah, M.I.; Sethi, N.; Mushtaq, Z. Assessing the effect of climate change and financial development on agricultural production in ASEAN-4: The role of renewable energy, institutional quality, and human capital as moderators. Environ. Sci. Pollut. Res. 2022, 29, 13211–13225. [Google Scholar] [CrossRef]
- Guo, K.J.; Tanaka, T. Energy security versus food security: An analysis of fuel ethanol- related markets using the spillover index and partial wavelet coherence approaches. Energy Econ. 2022, 112, 106142. [Google Scholar] [CrossRef]
- Farhad Taghizadeh-Hesary, F.; Rasoulinezhad, E.; Yoshino, N. Energy and Food Security: Linkages through Price Volatility. Energy Policy 2019, 128, 796–806. [Google Scholar] [CrossRef]
- Gafa, D.W.; Egbendewe, A.Y.G. Energy poverty in rural West Africa and its determinants: Evidence from Senegal and Togo. Energy Policy 2021, 156, 112476. [Google Scholar] [CrossRef]
- Mironova, I.B.; Moiseeva, L.R.; Nigmatulina, E.F.; Mirgorodskaya, M.G. Fiscal Policy, Control, and Supervision to Ensure Food and Energy Security and Sustainable Development. In Geo-Economy of the Future; Popkova, E.G., Sergi, B.S., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Xia, Y.; Yan, B. Energy-food nexus scarcity risk and the synergic impact of climate policy: A global production network perspective. Environ. Sci. Policy 2022, 135, 26–35. [Google Scholar] [CrossRef]
- Cobb, C.W.; Douglas, P.H. A Theory of Production. Am. Econ. Rev. 1928, 18, 139–165. [Google Scholar]
- Zhang, Y.; Liu, W.; Khan, S.U.; Swallow, B.; Zhou, C.; Zhao, M. An insight into the drag effect of water, land, and energy on economic growth across space and time: The application of improved Solow growth model. Environ. Sci. Pollut. Res. 2022, 29, 6886–6899. [Google Scholar] [CrossRef]
- Fetanat, A.; Tayebi, M.; Mofid, H. Water-energy-food security nexus based selection of energy recovery from wastewater treatment technologies: An extended decision making framework under intuitionistic fuzzy environment. Sustain. Energy Technol. Assess. 2021, 43, 100937. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, X.; Peng, H.; Skitmore, M.; Bai, X.; Zheng, Z. The energy-food-water nexus: Water footprint of Henan-Hubei-Hunan in China. Renew. Sustain. Energy Rev. 2021, 135, 110417. [Google Scholar] [CrossRef]
- Pesaran, M.H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2021, 60, 13–50. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Im, K.S.; Pesaran, M.; Shin, Y. Testing for unit roots in heterogenous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Chakamera, C.; Alagidede, P. Electricity crisis and the effect of CO2 emissions on infrastructure-growth nexus in Sub Saharan Africa. Renew. Sustain. Energy Rev. 2018, 94, 945–958. [Google Scholar] [CrossRef]
- Owen, P.D. Evaluating ingenious instruments for fundamental determinants of long-run economic growth and development. Econometrics 2017, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.; Acheampong, A.O. Reducing carbon emissions: The role of renewable energy and democracy. J. Clean. Prod. 2019, 240, 118245. [Google Scholar] [CrossRef]
- Hoechle, D. Robust standard errors for panel regressions with cross-sectional dependence. Stata J. 2007, 7, 281–312. [Google Scholar] [CrossRef] [Green Version]
- Cirera, X.; Masset, E. Income distribution trends and future food demand. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2821–2834. [Google Scholar] [CrossRef]
- Koondhar, M.A.; Aziz, N.; Tan, Z.; Yang, S.; Abbasi, K.R.; Kong, R. Green growth of cereal food production under the constraints of agricultural carbon emissions: A new insights from ARDL and VECM models. Sustain. Energy Technol. Assess. 2021, 47, 101452. [Google Scholar] [CrossRef]
- Gretz, R.T.; Malshe, A. Rejoinder to “Endogeneity bias in marketing research: Problem, causes and remedies”. Ind. Mark. Manag. 2019, 77, 57–62. [Google Scholar] [CrossRef]
- Ullah, S.; Zaefarian, G.; Ullah, F. How to use instrumental variables in addressing endogeneity? A step-by-step procedure for non-specialists. Ind. Mark. Manag. 2021, 96, A1–A6. [Google Scholar] [CrossRef]
- Başar, S.; Tosun, B. Environmental Pollution Index and economic growth: Evidence from OECD countries. Environ. Sci. Pollut. Res. 2021, 28, 36870–36879. [Google Scholar] [CrossRef]
- Lv, T.; Hu, H.; Zhang, X.; Wang, L.; Fu, S. Impact of multi-dimensional urbanization on carbon emissions in an ecological civilization experimental area of China. Phys. Chem. Earth Parts A B C 2022, 126, 103120. [Google Scholar] [CrossRef]
- Mitchell, C.; Karl-Waithaka, Z.; Unnikrshnan, S.; Oyekan, T. Transforming Africa’s Food Systems from the Demand Side. Boston Consult. Group, 30 August 2021. Available online: https://www.bcg.com/publications/2021/transforming-africa-food-systems-from-demand-side (accessed on 20 July 2022).
- Harris, D.; Chamberlin, J.; Mausch, K. Can African Smallholders Farm Themselves out of Poverty? Conversat, 11 December 2019. Available online: https://theconversation.com/can-african-smallholders-farm-themselves-out-of-poverty-126692 (accessed on 20 July 2022).
- Ferreira, E.; Fuinhas, J.A.; Moutinho, V. An investigation of the environmental Kuznets relationship in BRICS countries at a sectoral economic level. Energy Syst. 2021, 1–24. [Google Scholar] [CrossRef]
- Bjornlund, V.; Bjornlund, H.; Van Rooyen, A.F. Why agricultural production in sub-Saharan Africa remains low compared to the rest of the world–a historical perspective. Int. J. Water Resour. Dev. 2020, 36, S20–S53. [Google Scholar] [CrossRef]
- Wonyra, K.O.; Ametoglo, M.E. Impact of Remittances on Agricultural Labor Productivity in Sub-Saharan Africa. In The Palgrave Handbook of Agricultural and Rural Development in Africa; Osabuohien, E.S., Ed.; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 67–88. [Google Scholar]
Variables | Meaning | Unit and Measurement | Sources |
---|---|---|---|
Fsec | Food security | PCA estimation | WDI, 2022 |
Esec | Energy security | PCA estimation | WDI, 2022 |
Gdp | GDP per capita | GDP per capita (constant 2015 USD) | WDI, 2022 |
Labor | Labor force | Labor force participation rate, total (percentage of total population ages 15+) | WDI, 2022 |
CO2 | CO2 emissions | CO2 emissions (metric tons per capita) | WDI, 2022 |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Fsec | 522 | 0 | 1.902 | −18.128 | 3.341 |
Esec | 522 | −0.323 | 0.813 | −4.647 | 0 |
Gdp | 522 | 1.39 | 5.951 | −47.503 | 37.535 |
Labor | 522 | 6,070,325.8 | 7,974,551.1 | 385,654 | 53,950,175 |
CO2 | 522 | 1488.651 | 1908.175 | 150 | 16,280 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
(1) Fsec | 1.000 | ||||
(2) Esec | −0.044 | 1.000 | |||
(0.317) | |||||
(3) Gdp | 0.225 *** | −0.078 ** | 1.000 | ||
(0.000) | (0.073) | ||||
(4) Labor | 0.380 *** | −0.351 *** | 0.170 *** | 1.000 | |
(0.000) | (0.000) | (0.000) | |||
(5) CO2 | 0.434 *** | −0.247 *** | 0.172 *** | 0.861 *** | 1.000 |
(0.000) | (0.000) | (0.000) | (0.000) |
Pesaran CSD | CIPS | ||
---|---|---|---|
Variables | Statistical Value | Level | 1st Different |
Fsec | 12.988 *** (0.000) | −3.058 *** | −5.595 *** |
Esec | 6.490 *** (0.000) | 1.609 | 2.713 *** |
Gdp | 1.002 (0.3165) | −4.327 *** | −5.434 *** |
Labor | −1.253 (0.2103) | −3.006 *** | −3.021 *** |
CO2 | 0.356 *** (0.002) | −2.016 | −4.817 *** |
Variables | Coef. | St.Err. | t-Value | p-Value | 95% Conf | Interval |
---|---|---|---|---|---|---|
Esec | 0.232 ** | 0.105 | 2.21 | 0.027 | 0.026 | 0.437 |
Gdp | 0.05 ** | 0.013 | 3.93 | 0.001 | 0.025 | 0.075 |
Labor | 0.001 | 0.001 | 0.48 | 0.632 | 0.001 | 0.001 |
CO2 | −0.001 *** | 0.001 | −5.06 | 0.001 | −0.001 | −0.001 |
Constant | −0.666 *** | 0.097 | −6.84 | 0.001 | −0.857 | −0.475 |
Mean dependent var | −0.027 | SD dependent var | 1.905 | |||
R-squared | 0.215 | Number of obs | 504 | |||
Chi-square | 140.776 | Prob > chi2 | 0.000 |
Variables | Coef. | St.Err. | t-Value | p-Value | 95% Conf | Interval |
---|---|---|---|---|---|---|
Esec | 0.385 *** | 0.112 | 3.43 | 0.001 | 0.165 | 0.604 |
Gdp | 0.066 *** | 0.022 | 3.02 | 0.003 | 0.023 | 0.11 |
Labor | 0.001 | 0.001 | −0.55 | 0.582 | 0.001 | 0.001 |
CO2 | −0.001 *** | 0.001 | −4.14 | 0.001 | −0.001 | −0.001 |
Constant | −0.776 *** | 0.084 | −9.29 | 0.001 | −0.939 | −0.612 |
Mean dependent var | −0.027 | SD dependent var | 1.905 | |||
R-squared | 0.195 | Number of obs | 504 | |||
Chi-square | 85.223 | Prob > chi2 | 0.000 |
Variables | Coef. | Std.Err. | T | P > t | 95%Conf. | Interval |
---|---|---|---|---|---|---|
Esec | 0.163 ** | 0.094 | 1.720 | 0.096 | −0.031 | 0.356 |
Gdp | 0.049 ** | 0.024 | 2.030 | 0.052 | −0.001 | 0.099 |
Labor | 0.001 | 0.001 | 0.100 | 0.920 | −0.001 | 0.000 |
CO2 | −0.001 ** | 0.001 | −2.070 | 0.048 | −0.001 | 0.001 |
Constant | −0.675 *** | 0.180 | −3.750 | 0.001 | −0.044 | −0.306 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakari, A.; Toplak, J.; Tomažič, L.M. Exploring the Relationship between Energy and Food Security in Africa with Instrumental Variables Analysis. Energies 2022, 15, 5473. https://doi.org/10.3390/en15155473
Zakari A, Toplak J, Tomažič LM. Exploring the Relationship between Energy and Food Security in Africa with Instrumental Variables Analysis. Energies. 2022; 15(15):5473. https://doi.org/10.3390/en15155473
Chicago/Turabian StyleZakari, Abdulrasheed, Jurij Toplak, and Luka Martin Tomažič. 2022. "Exploring the Relationship between Energy and Food Security in Africa with Instrumental Variables Analysis" Energies 15, no. 15: 5473. https://doi.org/10.3390/en15155473
APA StyleZakari, A., Toplak, J., & Tomažič, L. M. (2022). Exploring the Relationship between Energy and Food Security in Africa with Instrumental Variables Analysis. Energies, 15(15), 5473. https://doi.org/10.3390/en15155473