Performance and Efficiency Trade-Offs in Brazilian Passenger Vehicle Fleet
Abstract
:1. Introduction
2. Literature Review
Estimating Technological Progress and Trade-Offs
3. Methods
Model Specifications
4. Brazilian LDV Market Evolution
4.1. Establishing Data-Set
4.2. Evolution of Key Parameters
4.3. Performance Parameters and Fuel Economy
4.4. Relative Sales Categories
5. Results and Discussion
5.1. Trade-Offs
5.2. Technological Progress
6. The Future
6.1. Internal Combustion Engines
6.2. Electrification
6.3. Efficiency Pathways
6.4. Establishing Baselines
6.5. Sales-Mix
7. Fe Scenarios in 2030 and 2035—Policy Implications
7.1. The Road Not Taken
8. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Pesquisa Energética, E. Brazilian Energy Balance 2020: Year 2019; EPE: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Greene, D.L.; Sims, C.B.; Muratori, M. Two trillion gallons: Fuel savings from fuel economy improvements to US light-duty vehicles, 1975–2018. Energy Policy 2020, 142, 111517. [Google Scholar] [CrossRef]
- Knittel, C.R. Automobiles on steroids: Product attribute trade-offs and technological progress in the automobile sector. Am. Econ. Rev. 2011, 101, 3368–3399. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, D.W. Fuel Economy Regulations and Efficiency Technology Improvements in US Cars Since 1975. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2013. [Google Scholar]
- Larrick, R.P.; Soll, J.B. The MPG illusion. Science 2008, 320, 1593–1594. [Google Scholar] [CrossRef] [PubMed]
- Mosquim, R.F.; Mady, C.E.K. Design, performance trends, and exergy efficiency of the Brazilian passenger vehicle fleet: 1970–2020. J. Clean. Prod. 2021, 290, 125788. [Google Scholar] [CrossRef]
- Kalghatgi, G. Is it really the end of internal combustion engines and petroleum in transport? Appl. Energy 2018, 225, 965–974. [Google Scholar] [CrossRef]
- Falco, D.G.; Sacilotto, L.M.; Cavaliero, C.K.N. Urban Collective Mobility: Global Challenges Toward Sustainability. In Environmental Sustainability; CRC Press: Boca Raton, FL, USA, 2021; pp. 272–291. [Google Scholar]
- Malaquias, A.C.T.; Netto, N.A.D.; da Costa, R.B.R.; Langeani, M.; Baêta, J.G.C. The misleading total replacement of internal combustion engines by electric motors and a study of the Brazilian ethanol importance for the sustainable future of mobility: A review. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 1–23. [Google Scholar] [CrossRef]
- Nogueira, G.P.; McManus, M.C.; Leak, D.J.; Franco, T.T.; de Souza Dias, M.O.; Cavaliero, C.K.N. Are eucalyptus harvest residues a truly burden-free biomass source for bioenergy? A deeper look into biorefinery process design and Life Cycle Assessment. J. Clean. Prod. 2021, 299, 126956. [Google Scholar] [CrossRef]
- Velandia Vargas, J.E.; Seabra, J.E.; Cavaliero, C.K.; Walter, A.; Souza, S.P.; Falco, D.G. The new neighbor across the street: An outlook for battery electric vehicles adoption in Brazil. World Electr. Veh. J. 2020, 11, 60. [Google Scholar] [CrossRef]
- Tomanik, E.; Policarpo, E.; Rovai, F. Life Cycle Assessment of Vehicular Electrification; Technical Report; SAE Technical Paper; SAE: Warrendale, PA, USA, 2022. [Google Scholar]
- Ferrari, F.; Nogueira, G.; Franco, T.; Dias, M.; Cavaliero, C.; Witkamp, G.J.; Van Der Wielen, L.; Forte, M.B.S. The role of ionic liquid pretreatment and recycling design in the sustainability of a biorefinery: A sugarcane to ethanol example. Green Chem. 2021, 23, 9126–9139. [Google Scholar] [CrossRef]
- He, X.; Zhang, S.; Wu, Y.; Wallington, T.J.; Lu, X.; Tamor, M.A.; McElroy, M.B.; Zhang, K.M.; Nielsen, C.P.; Hao, J. Economic and climate benefits of electric vehicles in China, the United States, and Germany. Environ. Sci. Technol. 2019, 53, 11013–11022. [Google Scholar] [CrossRef] [PubMed]
- Cheah, L.; Evans, C.; Bandivadekar, A.; Heywood, J. Factor of two: Halving the fuel consumption of new US automobiles by 2035. In Reducing Climate Impacts in the Transportation Sector; Springer: Berlin/Heidelberg, Germany, 2008; pp. 49–71. [Google Scholar]
- Highlights of the Automotive Trends Report. Available online: https://www.epa.gov/automotive-trends/highlights-automotive-trends-report (accessed on 18 April 2022).
- Schmitt, W.F.; Szklo, A.; Schaeffer, R. Policies for improving the efficiency of the Brazilian light-duty vehicle fleet and their implications for fuel use, greenhouse gas emissions and land use. Energy Policy 2011, 39, 3163–3176. [Google Scholar] [CrossRef]
- Benvenutti, L.M.; Uriona-Maldonado, M.; Campos, L.M. The impact of CO2 mitigation policies on light vehicle fleet in Brazil. Energy Policy 2019, 126, 370–379. [Google Scholar]
- Benvenutti, L.M.M.; Ribeiro, A.B.; Uriona, M. Long term diffusion dynamics of alternative fuel vehicles in Brazil. J. Clean. Prod. 2017, 164, 1571–1585. [Google Scholar] [CrossRef]
- De Melo, C.A.; Jannuzzi, G.D.M.; Santana, P.H.D.M. Why should Brazil to implement mandatory fuel economy standards for the light vehicle fleet? Renew. Sustain. Energy Rev. 2018, 81, 1166–1174. [Google Scholar] [CrossRef]
- Smith, C.B. Análise da Difusão de Novas Tecnologias Automotivas em prol da Eficiência Energética na Frota de Novos Veículos Leves no Brasil. Ph.D. Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Bastin, C.; Szklo, A.; Rosa, L.P. Diffusion of new automotive technologies for improving energy efficiency in Brazil’s light vehicle fleet. Energy Policy 2010, 38, 3586–3597. [Google Scholar] [CrossRef]
- INMETRO. Programa Brasileiro de Etiquetagem. Available online: http://pbeveicular.petrobras.com.br (accessed on 24 July 2020).
- Wills, W.; La Rovere, E.L. Light vehicle energy efficiency programs and their impact on Brazilian CO2 emissions. Energy Policy 2010, 38, 6453–6462. [Google Scholar] [CrossRef]
- Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa (SEEG). Available online: https://plataforma.seeg.eco.br/sectors/energia (accessed on 19 April 2022).
- de Andrade Junior, M.A.U.; Valin, H.; Soterroni, A.C.; Ramos, F.M.; Halog, A. Exploring future scenarios of ethanol demand in Brazil and their land-use implications. Energy Policy 2019, 134, 110958. [Google Scholar] [CrossRef] [Green Version]
- de Salvo Junior, O.; de Almeida, F.G.V. Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption. Appl. Energy 2019, 241, 98–112. [Google Scholar]
- de Salvo Junior, O.; de Souza, M.T.S.; de Almeida, F.G.V. Implementation of new technologies for reducing fuel consumption of automobiles in Brazil according to the Brazilian Vehicle Labelling Programme. Energy 2021, 233, 121132. [Google Scholar] [CrossRef]
- Lutsey, N.; Sperling, D. Energy efficiency, fuel economy, and policy implications. Transp. Res. Rec. 2005, 1941, 8–17. [Google Scholar] [CrossRef]
- An, F.; DeCicco, J. Trends in technical efficiency trade-offs for the US light vehicle fleet. SAE Trans. 2007, 116, 859–873. [Google Scholar]
- Bandivadekar, A.P. Evaluating the Impact of Advanced Vehicle and Fuel Technologies in US Light Duty Vehicle Fleet. Ph.D. Thesis, Massachusetts Institute of Technology, Engineering Systems Division, Cambridge, MA, USA, 2008. [Google Scholar]
- Keutenedjian Mady, C.E.; Reis Pinto, C.; Torelli Reis Martins Pereira, M. Application of the second law of thermodynamics in brazilian residential appliances towards a rational use of energy. Entropy 2020, 22, 616. [Google Scholar] [CrossRef]
- Cheah, L.W. Cars on a Diet: The Material and Energy Impacts of Passenger Vehicle Weight Reduction in the US. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. [Google Scholar]
- Hu, K.; Chen, Y. Technological growth of fuel efficiency in european automobile market 1975–2015. Energy Policy 2016, 98, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Sprei, F.; Karlsson, S. Energy efficiency versus gains in consumer amenities—An example from new cars sold in Sweden. Energy Policy 2013, 53, 490–499. [Google Scholar] [CrossRef]
- Kwon, T.H. The determinants of the changes in car fuel efficiency in Great Britain (1978–2000). Energy Policy 2006, 34, 2405–2412. [Google Scholar] [CrossRef]
- Van den Brink, R.M.; Van Wee, B. Why has car-fleet specific fuel consumption not shown any decrease since 1990? Quantitative analysis of Dutch passenger car-fleet specific fuel consumption. Transp. Res. Part D Transp. Environ. 2001, 6, 75–93. [Google Scholar] [CrossRef]
- Wu, J.; Posen, I.D.; MacLean, H.L. Trade-offs between vehicle fuel economy and performance: Evidence from heterogeneous firms in China. Energy Policy 2021, 156, 112445. [Google Scholar] [CrossRef]
- Moskalik, A.; Newman, K. Assessment of Changing Relationships between Vehicle Fuel Consumption and Acceleration Performance; Technical Report; SAE Technical Paper; SAE: Warrendale, PA, USA, 2020. [Google Scholar]
- Craglia, M.; Cullen, J. Do technical improvements lead to real efficiency gains? Disaggregating changes in transport energy intensity. Energy Policy 2019, 134, 110991. [Google Scholar] [CrossRef]
- Carrosnaweb. 2020. Available online: http://www.carrosnaweb.com.br (accessed on 1 December 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Hanck, C.; Arnold, M.; Gerber, A.; Schmelzer, M. Introduction to Econometrics with R; University of Duisburg-Essen: Duisburg, Germany, 2019. [Google Scholar]
- Serrenho, A.C.; Sousa, T.; Warr, B.; Ayres, R.U.; Domingos, T. Decomposition of useful work intensity: The EU (European Union)-15 countries from 1960 to 2009. Energy 2014, 76, 704–715. [Google Scholar] [CrossRef]
- Weiss, M.; Irrgang, L.; Kiefer, A.T.; Roth, J.R.; Helmers, E. Mass-and power-related efficiency trade-offs and CO2 emissions of compact passenger cars. J. Clean. Prod. 2020, 243, 118326. [Google Scholar] [CrossRef]
- Leach, F.; Kalghatgi, G.; Stone, R.; Miles, P. The scope for improving the efficiency and environmental impact of internal combustion engines. Transp. Eng. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Naber, J.D.; Johnson, J.E. Internal combustion engine cycles and concepts. In Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance; Elsevier: Amsterdam, The Netherlands, 2014; pp. 197–224. [Google Scholar]
- Toda, T.; Sakai, M. The New Toyota Inline 4-Cylinder 2.5 L Gasoline Engine; Technical Report; SAE Technical Paper; SAE: Warrendale, PA, USA, 2017. [Google Scholar]
- De Cesare, M.; Cavina, N.; Paiano, L. Technology comparison for spark ignition engines of new generation. SAE Int. J. Engines 2017, 10, 2513–2534. [Google Scholar] [CrossRef]
- Sellnau, M.; Foster, M.; Moore, W.; Sinnamon, J.; Hoyer, K.; Klemm, W. Pathway to 50% brake thermal efficiency using gasoline direct injection compression ignition. SAE Int. J. Adv. Curr. Pract. Mobil. 2019, 1, 1581–1603. [Google Scholar]
- Jono, M.; Taguchi, M.; Shonohara, T.; Narihiro, S. Development of a New 2.0 L I4 Turbocharged Gasoline Direct Injection Engine; Technical Report; SAE Technical Paper; SAE: Warrendale, PA, USA, 2016. [Google Scholar]
- Middleton, R.J.; Gupta, O.G.H.; Chang, H.Y.; Lavoie, G.; Martz, J. Fuel Efficiency Estimates for Future Light Duty Vehicles, Part A: Engine Technology and Efficiency; Technical Report; SAE Technical Paper; SAE: Warrendale, PA, USA, 2016. [Google Scholar]
- Middleton, R.J.; Harihara Gupta, O.G.; Chang, H.Y.; Lavoie, G.; Martz, J. Fuel Efficiency Estimates for Future Light Duty Vehicles, Part B: Powertrain Technology and Drive Cycle Fuel Economy; Technical Report; SAE Technical Paper; SAE: Warrendale, PA, USA, 2016. [Google Scholar]
- Turoń, K.; Kubik, A.; Chen, F. When, What and How to Teach about Electric Mobility? An Innovative Teaching Concept for All Stages of Education: Lessons from Poland. Energies 2021, 14, 6440. [Google Scholar] [CrossRef]
- Galvin, R. Are electric vehicles getting too big and heavy? Modelling future vehicle journeying demand on a decarbonized US electricity grid. Energy Policy 2022, 161, 112746. [Google Scholar] [CrossRef]
- Turoń, K.; Kubik, A.; Chen, F. Operational aspects of electric vehicles from car-sharing systems. Energies 2019, 12, 4614. [Google Scholar] [CrossRef] [Green Version]
- Zeng, I.Y.; Chen, J.; Niu, Z.; Liu, Q.; Wu, T. The GHG Emissions Assessment of Online Car-Hailing Development under the Intervention of Evaluation Policies in China. Sustainability 2022, 14, 1908. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Luo, G.; Huang, J.; Wu, T. The Economic Recovery from Traffic Restriction Policies during the COVID-19 through the Perspective of Regional Differences and Sustainable Development: Based on Human Mobility Data in China. Sustainability 2022, 14, 6453. [Google Scholar] [CrossRef]
- O Caminho da Descarbonização do Setor Automotivo no Brasil. Available online: https://acervo.anfavea.com.br/AcervoDocs/APRESENTA%C3%87%C3%83O_ANFAVEA_E_BCG.pdf (accessed on 20 April 2022).
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
Weight | −0.359 *** | −0.423 *** | −0.470 *** |
(0.023) | (0.025) | (0.018) | |
Torque | −0.097 *** | - | - |
(0.010) | |||
Horsepower | - | −0.059 *** | - |
(0.012) | |||
Acceleration | - | - | 0.079 *** |
(0.011) | |||
Electric-vehicle | 1.076 *** | 1.045 *** | 1.062 *** |
(0.033) | (0.034) | (0.033) | |
Gasoline | 0.042 *** | 0.046 *** | 0.041 *** |
(0.010) | (0.010) | (0.010) | |
Hybrid | 0.571 *** | 0.569 *** | 0.581 *** |
(0.016) | (0.016) | (0.016) | |
AT | −0.003 | −0.004 | −0.010 ** |
(0.005) | (0.005) | (0.005) | |
CVT | 0.007 | 0.011 | 0.002 |
(0.010) | (0.011) | (0.011) | |
DCT | 0.348 *** | 0.328 *** | 0.319 *** |
(0.087) | (0.088) | (0.088) | |
Constant | 5.047 *** | 5.487 *** | 5.353 *** |
(0.141) | (0.138) | (0.137) | |
Observations | 2621 | 2622 | 2622 |
R2 | 0.601 | 0.590 | 0.593 |
Adjusted R2 | 0.595 | 0.584 | 0.587 |
Year | Model 1 | Model 2 | Model 3 |
---|---|---|---|
1991 | 1.7 | 1.3 | 1.2 |
1992 | 0.9 | 0.9 | 0.8 |
1993 | 3.3 | 3.9 | 3.7 |
1994 | 3.2 | 3.7 | 3.6 |
1995 | 6.3 | 7.1 | 6.8 |
1996 | 6.1 | 6.8 | 6.9 |
1997 | 6.4 | 7.5 | 7.5 |
1998 | 6.9 | 7.9 | 7.9 |
1999 | 8.0 | 9.5 | 9.5 |
2000 | 5.6 | 7.3 | 7.3 |
2001 | 3.6 | 5.3 | 5.1 |
2002 | 0.4 | 2.0 | 2.0 |
2003 | 3.3 | 4.8 | 4.8 |
2004 | 5.5 | 7.0 | 7.0 |
2005 | 5.1 | 6.5 | 6.4 |
2006 | 8.2 | 10.2 | 10.0 |
2007 | 8.5 | 10.5 | 10.4 |
2008 | 11.7 | 13.9 | 13.6 |
2009 | 11.2 | 13.4 | 13.0 |
2010 | 12.1 | 14.2 | 13.8 |
2011 | 12.4 | 14.5 | 14.2 |
2012 | 12.9 | 15.0 | 14.8 |
2013 | 15.3 | 17.4 | 17.3 |
2014 | 15.8 | 18.3 | 18.0 |
2015 | 17.8 | 20.2 | 20.3 |
2016 | 18.0 | 20.4 | 20.6 |
2017 | 22.3 | 24.9 | 25.0 |
2018 | 26.1 | 28.7 | 28.9 |
2019 | 25.9 | 28.7 | 28.7 |
2020 | 29.8 | 32.6 | 32.8 |
Category | 2020 avg. FE | 2020 Market Share | 2001 Market Share |
---|---|---|---|
Subcompact | 13.8 | 4.0 | 23.8 |
Compact | 13.0 | 29.1 | 44.5 |
Mid-size | 13.1 | 22.8 | 19.0 |
Large | 11.4 | 4.1 | 2.5 |
Compact SUV | 11.5 | 20.6 | – |
SUV | 9.6 | 3.6 | 0.4 |
Compact Truck | 11.2 | 9.6 | 4.3 |
Truck (Diesel) | 9.7 | 5.1 | 3.2 |
Scenario | xEV I | xEV II | SUV | CPT | ||||
---|---|---|---|---|---|---|---|---|
Year | 2030 | 2035 | 2030 | 2035 | 2030 | 2035 | 2030 | 2035 |
Subcompact | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 30 |
Compact | 20 | 10 | 15 | 5 | 15 | 10 | 45 | 50 |
Mid-size | 15 | 10 | 13 | 5 | 20 | 20 | 15 | 3 |
Large | 5 | 5 | 5 | 5 | 5 | 4 | 3 | 1 |
Cpt. SUV | 28 | 20 | 25 | 10 | 35 | 40 | 0 | 0 |
Full-size SUV | 5 | 8 | 5 | 5 | 5 | 10 | 0 | 0 |
Cpt. Truck | 10 | 10 | 10 | 5 | 10 | 3 | 4 | 3 |
Truck | 5 | 5 | 5 | 3 | 5 | 3 | 3 | 3 |
xEV | 12 | 32 | 22 | 62 | 5 | 10 | 5 | 10 |
Scenario | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |
---|---|---|---|---|---|---|---|
SUV | 16.4 | 15.6 | 14.9 | 14.1 | 13.5 | 12.8 | 12.3 |
xEV I | 17.1 | 16.3 | 15.5 | 14.8 | 14.1 | 13.4 | 12.8 |
CPT | 17.9 | 17.0 | 16.2 | 15.5 | 14.7 | 14.0 | 13.4 |
xEV II | 18.3 | 17.5 | 16.6 | 15.8 | 15.1 | 14.3 | 13.7 |
Scenario | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |
---|---|---|---|---|---|---|---|
SUV | 19.6 | 18.2 | 16.9 | 15.7 | 14.6 | 13.6 | 12.6 |
xEV I | 22.4 | 20.8 | 19.4 | 18.0 | 16.7 | 15.5 | 14.4 |
CPT | 21.5 | 19.9 | 18.6 | 17.3 | 16.0 | 14.9 | 13.8 |
xEV II | 28.1 | 26.1 | 24.3 | 22.6 | 21.0 | 19.5 | 18.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosquim, R.F.; Mady, C.E.K. Performance and Efficiency Trade-Offs in Brazilian Passenger Vehicle Fleet. Energies 2022, 15, 5416. https://doi.org/10.3390/en15155416
Mosquim RF, Mady CEK. Performance and Efficiency Trade-Offs in Brazilian Passenger Vehicle Fleet. Energies. 2022; 15(15):5416. https://doi.org/10.3390/en15155416
Chicago/Turabian StyleMosquim, Rafael Fernandes, and Carlos Eduardo Keutenedjian Mady. 2022. "Performance and Efficiency Trade-Offs in Brazilian Passenger Vehicle Fleet" Energies 15, no. 15: 5416. https://doi.org/10.3390/en15155416
APA StyleMosquim, R. F., & Mady, C. E. K. (2022). Performance and Efficiency Trade-Offs in Brazilian Passenger Vehicle Fleet. Energies, 15(15), 5416. https://doi.org/10.3390/en15155416