Analysis of Perovskite Solar Cell Degradation over Time Using NIR Spectroscopy—A Novel Approach
Abstract
:1. Introduction
2. Samples and the Method of Measurement
3. Results and Discussion
- S1: Rratio(t) = R(t, 1278 nm)/R(t, 1583 nm)
- S2: Rratio(t) = R(t, 1321 nm)/R(t, 1583 nm)
- S3: Rratio(t) = R(t, 1314 nm)/R(t, 1583 nm)
- S4: Rratio(t) = R(t, 1268 nm)/R(t, 1583 nm)
- S1: Rratio(t) = R(t, 1059 nm)/R(t, 1332 nm)
- S2: Rratio(t) = R(t, 1108 nm)/R(t, 1397 nm)
- S3: Rratio(t) = R(t, 1176 nm)/R(t, 1397 nm)
- S4: Rratio(t) = R(t, 1128 nm)/R(t, 1397 nm)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Photovoltaic Report. Fraunhofer Institute for Solar Energy Systems Freiburg. 24 February 2022. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed on 20 July 2022).
- NREL Chart. Available online: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf (accessed on 20 July 2022).
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J.E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar Cell Efficiency Tables (Version 58). Prog. Photovolt. Res. Appl. 2021, 29, 657–667. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, M.; Seo, J.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M.A.; Eickemeyer, F.T.; et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Al-Ashouri, A.; Köhnen, E.; Bor, L.; Magomedov, A.; Hempel, H.; Caprioglio, P.; Márquez, J.; Morales Vilches, A.B.; Kasparavicius, E.; Smith, J.A.; et al. Monolithicperovskite/silicon tandem solarcell with >29% efficiency by enhanced hole extraction. Science 2020, 370, 1300–1309. [Google Scholar] [CrossRef]
- Leijtens, T.; Bush, K.; Cheacharoen, R.; Beal, R.; Bowring, A.; McGehee, M.D. Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 2017, 5, 11483–11500. [Google Scholar] [CrossRef]
- Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477. [Google Scholar] [CrossRef]
- Yang, J.; Siempelkamp, B.D.; Liu, D.; Kelly, T.L. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 2015, 9, 1955–1963. [Google Scholar] [CrossRef]
- Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J.M.; Bach, U.; Spiccia, L.; Cheng, Y.-B. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3, 8139–8147. [Google Scholar] [CrossRef]
- Rolston, N.; Watson, B.L.; Bailie, C.D.; McGehee, M.D.; Bastos, J.P.; Gehlhaar, R.; Kim, J.-E.; Vak, D.; Mallajosyula, A.T.; Gupta, G.; et al. Mechanical integrity of solution-processed perovskite solar cells. Extrem. Mech. Lett. 2016, 9, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Cheacharoen, R.; Rolston, N.; Harwood, D.; Bush, K.A.; Dauskardt, R.H.; McGehee, M.D. Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustain. Energy Fuels 2018, 2, 2398–2406. [Google Scholar] [CrossRef]
- Cheacharoen, R.; Rolston, N.; Harwood, D.; Bush, K.A.; Dauskardt, R.H.; McGehee, M.D. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 2018, 11, 144–150. [Google Scholar] [CrossRef]
- Ahmad, T.; Dasgupta, S.; Almosni, S.; Dudkowiak, A.; Wojciechowski, K. Encapsulation protocol for flexible perovskite solar cells enabling stability in accelerated aging tests. Energy Environ. 2022, e12434. [Google Scholar] [CrossRef]
- Braly, I.L.; Stoddard, R.J.; Rajagopal, A.; Jen, A.K.-Y.; Hillhouse, H.W. Photoluminescence and Photoconductivity to Assess Maximum Open-Circuit Voltage and Carrier Transport in Hybrid Perovskites and Other Photovoltaic Materials. J. Phys. Chem. Lett. 2018, 9, 3779–3792. [Google Scholar] [CrossRef]
- Mei, A.; Sheng, Y.; Ming, Y.; Hu, Y.; Rong, Y.; Zhang, W.; Luo, S.; Na, G.; Tian, C.; Hou, X.; et al. Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9000-h Operational Tracking. Joule 2020, 4, 2646–2660. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Tan, S.; Chen, Z.; Song, K.; Huang, S.; Shi, J.; Luo, Y.; Li, D.; Meng, Q. High-efficiency (>20%) planar carbon-based perovskite solar cells through device configuration engineering. J. Colloid Interface Sci. 2022, 608, 3151–3158. [Google Scholar] [CrossRef]
- Kim, N.-K.; Min, Y.H.; Noh, S.; Cho, E.; Jeong, G.; Joo, M.; Ahn, S.-W.; Lee, J.S.; Kim, S.; Ihm, K.; et al. Investigation of Thermally Induced Degradation in CH3NH3PbI3 Perovskite Solar Cells using In-situ Synchrotron Radiation Analysis. Sci. Rep. 2017, 7, 4645. [Google Scholar] [CrossRef]
- Dou, B.; Wheeler, L.M.; Christians, J.A.; Moore, D.T.; Harvey, S.P.; Berry, J.J.; Barnes, F.S.; Shaheen, S.E.; van Hest, M.F. Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions. ACS Energy Lett. 2018, 3, 979–985. [Google Scholar] [CrossRef]
- Gąsiorowski, M.; Patryn, A.; Bychto, L. Possibilities and Area of Application of the Small Size DLP NIRSCAN NANO Spectrometer for Instant Spectral Measurements; Research Notes of Faculty of Electronics and Computer Science; Koszalin University of Technology: Koszalin, Poland, 2020; pp. 57–70. (In Polish) [Google Scholar]
- Gąsiorowski, M.; Szymak, P.; Bychto, L.; Patryn, A. Application of Artificial Neural Networks in Analysis of Time-Variable Optical Reflectance Spectra in Digital Light Projection. Coatings 2022, 12, 37. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar, R.; Kumar, A.; Jain, N.; Singh, R.K.; Singh, J. Novel synthesis process of methyl ammonium bromide and effect of particle size on structural, optical and thermodynamic behavior of CH3NH3PbBr3 organometallic perovskite light harvester. J. Alloys Compd. 2018, 743, 728–736. [Google Scholar] [CrossRef]
- Ahmad, T.; Wilk, B.; Radicchi, E.; Pineda, R.F.; Spinelli, P.; Jan, H.; Castriotta, L.A.; Dasgupta, S.; Mosconi, E.; de Angelis, F.; et al. New Fullerene Derivative as an n-Type Material for Highly Efficient, Flexible Perovskite Solar Cells of a p-i-n Configuration. Adv. Funct. Mater. 2020, 30, 2004357. [Google Scholar] [CrossRef]
- DLP NIRScan Nano EVM User’s Guide; Texas Instruments: Dallas, TX, USA, 2017; Available online: https://www.ti.com/lit/ug/dlpu030g/dlpu030g.pdf (accessed on 20 July 2022).
- Noda, I. Two-Dimensional Infrared (2D IR) Spectroscopy: Theory and Applications. Appl. Spectrosc. 1990, 44, 550–561. [Google Scholar] [CrossRef]
- Park, Y.; Noda, I.; Jung, Y.M. Two-dimensional correlation spectroscopy in polymer study. Front. Chem. 2015, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Meng, X.; Bai, Y.; Xiao, S.; Hu, C.; Yang, Y.; Chen, H.; Yang, S. Profiling the organic cation-dependent degradation of organolead halide perovskite solar cells. J. Mater. Chem. A 2017, 5, 1103–1111. [Google Scholar] [CrossRef]
- Zhidkov, I.S.; Poteryaev, A.I.; Kukharenko, A.I.; Finkelstein, L.D.; Cholakh, S.O.; Akbulatov, A.F.; Troshin, P.A.; Chueh, C.-C.; Kurmaev, E.Z. XPS evidence of degradation mechanism in CH3NH3PbI3 hybrid perovskite. J. Phys. Condens. Matter 2020, 32, 095501. [Google Scholar] [CrossRef] [Green Version]
- Boyd, C.C.; Cheacharoen, R.; Bush, K.A.; Prasanna, R.; Leijtens, T.; McGehee, M.D. Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 1772–1778. [Google Scholar] [CrossRef]
- Besleaga, C.; Abramiuc, L.E.; Stancu, V.; Tomulescu, A.G.; Sima, M.; Trinca, L.; Plugaru, N.; Pintilie, L.; Nemnes, G.A.; Iliescu, M.; et al. Iodine Migration and Degradation of Perovskite Solar Cells Enhanced by Metallic Electrodes. J. Phys. Chem. Lett. 2016, 7, 5168–5175. [Google Scholar] [CrossRef]
Sample | Ag Electrode |
---|---|
S1 | Yes |
S2 | Yes |
S3 | Yes |
S4 | Yes |
S5 | No |
S6 | No |
S7 | No |
S8 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gąsiorowski, M.; Dasgupta, S.; Bychto, L.; Ahmad, T.; Szymak, P.; Wojciechowski, K.; Patryn, A. Analysis of Perovskite Solar Cell Degradation over Time Using NIR Spectroscopy—A Novel Approach. Energies 2022, 15, 5397. https://doi.org/10.3390/en15155397
Gąsiorowski M, Dasgupta S, Bychto L, Ahmad T, Szymak P, Wojciechowski K, Patryn A. Analysis of Perovskite Solar Cell Degradation over Time Using NIR Spectroscopy—A Novel Approach. Energies. 2022; 15(15):5397. https://doi.org/10.3390/en15155397
Chicago/Turabian StyleGąsiorowski, Marek, Shyantan Dasgupta, Leszek Bychto, Taimoor Ahmad, Piotr Szymak, Konrad Wojciechowski, and Aleksy Patryn. 2022. "Analysis of Perovskite Solar Cell Degradation over Time Using NIR Spectroscopy—A Novel Approach" Energies 15, no. 15: 5397. https://doi.org/10.3390/en15155397
APA StyleGąsiorowski, M., Dasgupta, S., Bychto, L., Ahmad, T., Szymak, P., Wojciechowski, K., & Patryn, A. (2022). Analysis of Perovskite Solar Cell Degradation over Time Using NIR Spectroscopy—A Novel Approach. Energies, 15(15), 5397. https://doi.org/10.3390/en15155397