Thermal Aging Study of an Anodized Aluminum Strip Wire for Winding and High Temperature Use
Abstract
:1. Introduction
2. Presentation of the Anodized Aluminum Strip
3. Dielectric Properties Characterizations
3.1. Partial Discharge Inception Voltage Measurements
3.1.1. Measurement Device Description
3.1.2. Results
- -
- For a temperature T < 100 °C (area 1): the PDIV increases. This can be explained by the drying of the samples; there is no ambient humidity above 100 °C. In addition, during the anodizing process, after the formation of the alumina layer, the clogging of the pores of the insulating layer is achieved. A phenomenon of hydration of the alumina then occurs on the surface layer. This hydration involves a change of state of the alumina, which is then transformed into alumina monohydrate (Al2O3(H2O)) [19].
- -
- For 100 °C < T < 350 °C (area 2): PDIV is stable. Heating the sample up to 100 °C causes partial drying of this monohydrate layer, thereby causing this increase in PDIV [20].
- -
3.2. Dissipation Factor Measurement
3.2.1. Measurement Device Description
- Cp: parallel capacitance (F).
- f: measurement frequency (Hz).
- Rp∶ parallel resistance (Ω).
3.2.2. Results
4. Thermal Aging
4.1. Test Description
- -
- 24 h cycles under 460 °C,
- -
- 72 h cycles under 440 °C,
- -
- 168 h cycles under 420 °C.
4.2. Results
- Lt: lifespan under thermal stress in hours.
- A∶ material constant, to be estimated from experimental data (s-1).
- Ea: activation energy, to be estimated from experimental data.
- R: is the universal gas constant 8.314 J·mol−1·K−1. T: operating temperature (K).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Höpner, V.N.; Wilhelm, V.E. Insulation Life Span of Low-Voltage Electric Motors—A Survey. Energies 2021, 14, 1738. [Google Scholar] [CrossRef]
- Stone, G.C.; Culbert, I.; Boulter, E.A.; Dhirani, H. Electrical Insulation for Rotating Machines-Design, Evaluation, Aging, Testing, and Repair; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Aymonino, F.; Lebey, T.; Malec, D.; Petit, B.; Michel, J.S.; Anton, A.; Gimenez, A. Degradation and dielectrics measurements of rotating machines insulation at high temperature (200–400 °C). In Proceedings of the 2007 IEEE International Conference on Solid Dielectrics, Winchester, UK, 8–13 July 2007; pp. 130–133. [Google Scholar]
- IEC 60505; Evaluation and Qualification of Electrical Insulation Systems. IEC: London, UK, 2011.
- Korcak, L.L.; Kavanagh, D.F. Thermal Accelerated Aging Methods for Magnet Wire: A Review. In Proceedings of the 2018 International Conference on Diagnostics in Electrical Engineering (Diagnostika), Pilsen, Czech Republic, 4–7 September 2018; pp. 1–4. [Google Scholar]
- Szczepanski, M.; Malec, D.; Maussion, P.; Manfé, P. Design of Experiments Predictive Models as a Tool for Lifespan Prediction and Comparison for Enameled Wires Used in Low-Voltage Inverter-Fed Motors. IEEE Trans. Ind. Appl. 2020, 56, 3100–3113. [Google Scholar] [CrossRef]
- Langlois, O.; Foch, E.; Roboam, X.; Piquet, H. De l’avion plus électrique à l’avion tout électrique: État de l’art et prospective sur les réseaux de bord. J3eA 2005, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Zouzou, N.; Dang, T.; Duchesne, S.; Velu, G.; Ninet, O. Modeling and Experimental Characterization of Nickel-Coated Copper Wires for the Design of Extremely High-Temperature Electrical Machines. IEEE Trans. Magn. 2020, 56, 1–9. [Google Scholar] [CrossRef]
- Aluminum strips reduce size of transformer windings. Electr. Eng. 1955, 74, 1024–1025. [CrossRef]
- Bose, B.N. Aluminium foil for electrical windings. In Proceedings of the Symposium on Metallurgy of Substitute Ferrous & Non-Ferrous Alloys, NML, Jamshedpur, India, 27–30 April 1966; pp. 205–209. [Google Scholar]
- Gourber, J.; Wyss, C. Anodized Aluminum strip excitation coils for the prototype LEP quadrupole and sextupole magnets. IEEE Trans. Magn. 1981, 17, 1868–1871. [Google Scholar] [CrossRef] [Green Version]
- Iosif, V.; Roger, D.; Duchesne, S.; Malec, D. Assessment and improvements of inorganic insulation for high temperature low voltage motors. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2534–2542. [Google Scholar] [CrossRef]
- Roger, D.; Vélu, G.; Ait-Amar, S.; Babicz, S. High temperature machines: A comparison between ceramic-coated wires and anodized aluminum strips. Int. J. Appl. Electromagn. Mech. 2020, 63, 715–724. [Google Scholar] [CrossRef]
- Babicz, S.; Ait-Amar, S.; Vélu, G.; Cavallini, A.; Mancinelli, P. Behavior of Anodized Aluminum Strip under Sine and Square Wave Voltage. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 39–46. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Sun, X.; Sun, G.; Liang, Y.; Bi, J. Influence of Additives on Microstructure and Mechanical Properties of Alumina Ceramics. Materials 2022, 15, 2956. [Google Scholar] [CrossRef]
- Babicz, S.; Ait-Amar, S.; Vélu, G. Etude d’un conducteur en aluminium avec une isolation électrique sans solvants pour la conception de machines tournantes. In Proceedings of the Conférence Francophone sur l’Eco-Conception en Génie Electrique (CONFREGE), Albi, France, 26–17 May 2014. [Google Scholar]
- IEC 60270; High-Voltage Test Techniques, Partial Discharge Measurements. IEC: London, UK, 2001.
- IEC 60851-5; Winding Wires—Test Methods—Part 5: Electrical Properties. IEC: London, UK, 2008.
- Suzuki, K.; Koyama, K.; Inuzuka, T.; Nabeta, Y. Alumina Thin Film Humidity Sensor Controlling of Humidity Characteristics and Aging. In Proceedings of the 3rd Sensor Symposium, Tsukuba, Japan, 9–10 June 1983; pp. 251–256. [Google Scholar]
- Barlow, F.D.; Elshabini, A. Ceramic Interconnect Technology Handbook; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Wernick, S.; Pinner, R.; Sheasby, P.G. The Surface Treatment and Finishing of Aluminium and Its Alloys; ASM International: Materials Park, OH, USA, 1987. [Google Scholar]
- Roske, L.; Lebey, T.; Valdez-Nava, Z. High temperature behavior of ceramic substrates for power electronics applications. In Proceedings of the 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Chenzhen, China, 20–23 October 2013; pp. 595–598. [Google Scholar]
- Babicz, S.; Ait-Amar, S.; Vélu, G. Temperature and humidity dependence of anodized aluminum strip. In Proceedings of the 2016 IEEE International Conference on Dielectrics (ICD), Montpellier, France, 3–7 July 2016. [Google Scholar]
- IEC 60216-1; Electrical Insulating Materials—Thermal Endurance Properties—Part 1: Ageing Procedures and Evaluation of Test Results. IEC: London, UK, 2013.
- IEC 60216-3; Electrical Insulating Materials—Thermal Endurance Properties—Part 3: Instructions for Calculating Thermal Endurance Characteristics. IEC: London, UK, 2021.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ait-Amar, S.; Saoudi, R.; Vélu, G. Thermal Aging Study of an Anodized Aluminum Strip Wire for Winding and High Temperature Use. Energies 2022, 15, 5362. https://doi.org/10.3390/en15155362
Ait-Amar S, Saoudi R, Vélu G. Thermal Aging Study of an Anodized Aluminum Strip Wire for Winding and High Temperature Use. Energies. 2022; 15(15):5362. https://doi.org/10.3390/en15155362
Chicago/Turabian StyleAit-Amar, Sonia, Rania Saoudi, and Gabriel Vélu. 2022. "Thermal Aging Study of an Anodized Aluminum Strip Wire for Winding and High Temperature Use" Energies 15, no. 15: 5362. https://doi.org/10.3390/en15155362
APA StyleAit-Amar, S., Saoudi, R., & Vélu, G. (2022). Thermal Aging Study of an Anodized Aluminum Strip Wire for Winding and High Temperature Use. Energies, 15(15), 5362. https://doi.org/10.3390/en15155362