Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost
Abstract
:1. Introduction
2. Algorithm Principle
2.1. Discrete Wavelet Transform (DWT)
2.2. CGTSSA
2.3. CatBoost Model
2.3.1. GBDT Algorithm
2.3.2. Principle of CatBoost Model
3. Experimental
3.1. Instrument and Equipment
3.2. Experimental Steps
3.3. Experimental Data
4. Extraction of Health Factor Based on DWT-CGTSSA
4.1. Extraction of Health Factor Based on DWT
4.2. Selection of Health Factors Based on CGTSSA
5. Model Establishment and Verification
5.1. Comparison of CatBoost Model and Its Parameter Optimization Algorithm
5.2. Comparison with Other Models
5.3. Verification of the Generalization Capability
6. Discussion
7. Conclusions
- (1)
- By extracting the characteristics of signal amplitude factor and pulse factor after DWT decomposition, and then screening the characteristics by using the CGTSSA algorithm, the characteristics that were more suitable for the batter SOH prediction model could be extracted.
- (2)
- In the established feature engineering, the CatBoost and its optimization models were used to predict the SOH of different batteries in dataset A, and good prediction results were obtained. Among them, the CGTSSA-CatBoost model had the best prediction effect, with AE 0, an MSE lower than 1‰, and an SSE lower than 0.2.
- (3)
- Compared with the ELM and SVM models commonly used in the SOH prediction of battery, the CatBoost model had better performance and a better effect on multiple indicators such as MSE and RMSE. The AE index was 0, and the RUL prediction error of the model was lower.
- (4)
- The SOH prediction of the same battery in dataset B using the feature engineering and prediction model in this paper also achieved good prediction results, the RMSE was less than 5, and the proposed method had a strong generalization ability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.U.; Zafar, A.; Nengroo, S.H.; Hussain, S.; Alvi, M.J.; Kim, H.J. Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation. Energies 2019, 12, 446. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.F.; Xia, B.Z.; Li, B.H.; Cao, L.B.; Lai, Y.Z.; Zheng, W.W.; Wang, H.W.; Wang, W. State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles. Energies 2018, 11, 1820. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Gu, Q.; Shen, S.; Shen, J.; Shu, X. Prediction of lithium ion battery health status based on health feature extraction and PSO-RBF neural network. J. Kunming Univ. Technol. Nat. Sci. Ed. 2020, 45, 92–103. [Google Scholar] [CrossRef]
- Zeng, X.Q.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A.S.; Lu, J.; Amine, K. Commercialization of Lithium Battery Technologies for Electric Vehicles. Adv. Energy Mater. 2019, 9, 1900161. [Google Scholar] [CrossRef]
- Yao, L.; Fang, Z.P.; Xiao, Y.Q.; Hou, J.J.; Fu, Z.J. An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine. Energy 2021, 214, 118866. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, M.; Huang, G. Review on lithium-ion battery modeling methods based on BMS. Energy Storage Sci. Technol. 2020, 9, 1933–1939. [Google Scholar] [CrossRef]
- He, L.; Yang, Z.; Gu, Y.; Liu, C.; He, T.; Shin, K.G. SoH-Aware Reconfiguration in Battery Packs. IEEE Trans. Smart Grid 2018, 9, 3727–3735. [Google Scholar] [CrossRef]
- Ge, M.F.; Liu, Y.B.; Jiang, X.X.; Liu, J. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries. Measurement 2021, 174, 109057. [Google Scholar] [CrossRef]
- Shen, S.Q.; Liu, B.C.; Zhang, K.; Ci, S. Toward Fast and Accurate SOH Prediction for Lithium-Ion Batteries. IEEE Trans. Energy Convers. 2021, 36, 2036–2046. [Google Scholar] [CrossRef]
- Lin, C.P.; Cabrera, J.; Yu, D.Y.W.; Yang, F.; Tsui, K.L. SOH Estimation and SOC Recalibration of Lithium-Ion Battery with Incremental Capacity Analysis & Cubic Smoothing Spline. J. Electrochem. Soc. 2020, 167, 090537. [Google Scholar] [CrossRef]
- Jian, X.; Wei, J.; Wang, R. Remaining life prediction of lithium-ion batteries based on RPMDE-MKSVM. Control. Eng. 2021, 28, 665–671. [Google Scholar] [CrossRef]
- Wang, F.; Shi, Y.; Liu, B.; Zuo, Y.; Fu, Z.; Jamsher, A. Health state estimation of lithium-ion batteries based on attention augmented BiGRU. Energy Storage Sci. Technol. 2021, 10, 2326–2333. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Wang, X. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health. Energy Storage Sci. Technol. 2022, 11, 240–245. [Google Scholar] [CrossRef]
- Feng, H.L.; Shi, G.L. SOH and RUL prediction of Li-ion batteries based on improved Gaussian process regression. J. Power Electron. 2021, 21, 1845–1854. [Google Scholar] [CrossRef]
- Cai, L.; Meng, J.H.; Stroe, D.I.; Peng, J.C.; Luo, G.Z.; Teodorescu, R. Multiobjective Optimization of Data-Driven Model for Lithium-Ion Battery SOH Estimation With Short-Term Feature. IEEE Trans. Power Electron. 2020, 35, 11855–11864. [Google Scholar] [CrossRef]
- Song, S.X.; Fei, C.; Xia, H.Y. Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction. Energies 2020, 13, 812. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, S.; Li, J.; Sun, K.; Wang, Z.; Yang, H.; Gao, B.; Yang, S. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network. Energy Storage Sci. Technol. 2021, 10, 2373–2384. [Google Scholar] [CrossRef]
- Park, M.S.; Lee, J.K.; Kim, B.W. SOH Estimation of Li-Ion Battery Using Discrete Wavelet Transform and Long Short-Term Memory Neural Network. Appl. Sci. 2022, 12, 3996. [Google Scholar] [CrossRef]
- Kaur, K.; Garg, A.; Cui, X.J.; Singh, S.; Panigrahi, B.K. Deep learning networks for capacity estimation for monitoring SOH of Li-ion batteries for electric vehicles. Int. J. Energy Res. 2021, 45, 3113–3128. [Google Scholar] [CrossRef]
- Khumprom, P.; Yodo, N. A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm. Energies 2019, 12, 660. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.; Falcomer, C.; Biondani, L.; Pontara, D. Genetically Optimized Extended Kalman Filter for State of Health Estimation Based on Li-Ion Batteries Parameters. Energies 2022, 15, 3404. [Google Scholar] [CrossRef]
- Jo, S.; Jung, S.; Roh, T. Battery State-of-Health Estimation Using Machine Learning and Preprocessing with Relative State-of-Charge. Energies 2021, 14, 7206. [Google Scholar] [CrossRef]
- Bhavsar, K.; Vakharia, V.; Chaudhari, R.; Vora, J.; Pimenov, D.Y.; Giasin, K. A Comparative Study to Predict Bearing Degradation Using Discrete Wavelet Transform (DWT), Tabular Generative Adversarial Networks (TGAN) and Machine Learning Models. Machines 2022, 10, 176. [Google Scholar] [CrossRef]
- Thenmozhi, R.; Nasir, A.W.; Sonthi, V.K.; Avudaiappan, T.; Kadry, S.; Pin, K.; Nam, Y. An Improved Sparrow Search Algorithm for Node Localization in WSN. CMC-Comput. Mat. Contin. 2022, 71, 2037–2051. [Google Scholar] [CrossRef]
- Ouyang, C.T.; Qiu, Y.X.; Zhu, D.L. Adaptive Spiral Flying Sparrow Search Algorithm. Sci. Program. 2021, 2021, 6505253. [Google Scholar] [CrossRef]
- Wang, W.C.; Xu, L.; Chau, K.W.; Xu, D.M. Yin-Yang firefly algorithm based on dimensionally Cauchy mutation. Expert Syst. Appl. 2020, 150, 113216. [Google Scholar] [CrossRef]
- Yuan, J.H.; Zhao, Z.W.; Liu, Y.P.; He, B.L.; Wang, L.; Xie, B.B.; Gao, Y.L. DMPPT Control of Photovoltaic Microgrid Based on Improved Sparrow Search Algorithm. IEEE Access 2021, 9, 16623–16629. [Google Scholar] [CrossRef]
- Huang, G.M.; Wu, L.F.; Ma, X.; Zhang, W.Q.; Fan, J.L.; Yu, X.; Zeng, W.Z.; Zhou, H.M. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. J. Hydrol. 2019, 574, 1029–1041. [Google Scholar] [CrossRef]
- Dhananjay, B.; Sivaraman, J. Analysis and classification of heart rate using CatBoost feature ranking model. Biomed. Signal Process. Control 2021, 68, 102610. [Google Scholar] [CrossRef]
- Fu, F.C.; Jiang, J.W.; Shao, Y.X.; Cui, B. An Experimental Evaluation of Large Scale GBDT Systems. Proc. VLDB Endow. 2019, 12, 1357–1370. [Google Scholar] [CrossRef] [Green Version]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Chakradar, M.; Bhatia, M.S.; Kumar, M.; Stephan, T.; Gupta, S.K.; Alsamhi, S.H.; Al-Dois, H. COVID-19 Risk Prediction for Diabetic Patients Using Fuzzy Inference System and Machine Learning Approaches. J. Healthc. Eng. 2022, 2022, 4096950. [Google Scholar] [CrossRef] [PubMed]
- Ge, D.D.; Zhang, Z.D.; Kong, X.D.; Wan, Z.P. Extreme Learning Machine Using Bat Optimization Algorithm for Estimating State of Health of Lithium-Ion Batteries. Appl. Sci. 2022, 12, 1398. [Google Scholar] [CrossRef]
- Li, Q.L.; Li, D.Z.; Zhao, K.; Wang, L.C.; Wang, K. State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression. J. Energy Storage 2022, 50, 104215. [Google Scholar] [CrossRef]
Item | Specifications | Item | Specifications | |
---|---|---|---|---|
Shell material | Nickel plated steel | charging method | standard | 0.5C_5A × 7.5 h |
Nominal capacity | 1300 mAh | (CC/CV) | fast | 1C_5A × 2.5 h |
Rated voltage | 3.7 V | charging | 0 °C~45 °C 32 °F~113 °F | |
Charging voltage (Max) | 4.2 V | |||
Discharge cutoff voltage | 2.7 V | discharging | −15 °C~60 °C 5 °F~140 °F | |
Charging current (Max) | 1 C5A | |||
Discharge current (Max) | 3 C5A | storage | −20 °C~60 °C −4 °F~113 °F | |
Internal resistance (Max at 1000 Hz) | ≤25 mΩ | working temperature |
Feature Value | Symbolic Representation | Feature Value | Symbolic Representation |
---|---|---|---|
Mean value | Mean | Mean absolute value | Mae |
Standard deviation | Std | Kurtosis | Kur |
Root mean square | Rms | Energy | En |
Maximum value | Max | Amplitude factor | Cre |
Minimum value | Min | Waveform factor | Sha |
Peak value | Peak | Impulse factor | Imp |
Skewness | Ske | Clearance factor | Cle |
Variance | Var | Root amplitude | Root |
Data | Method | Really Life | Predict Life | AE | R2 | RMSE | SSE | MSE (‰) |
---|---|---|---|---|---|---|---|---|
B0006 | CGTSSA-CatBoost | 113 | 113 | 0 | 0.9938 | 0.0268 | 0.1210 | 0.7202 |
SSA-CatBoost | 112 | 1 | 0.9918 | 0.0317 | 0.1689 | 1.0056 | ||
PSO-CatBoost | 110 | 3 | 0.9807 | 0.0531 | 0.4728 | 2.8144 | ||
CatBoost | 102 | 11 | 0.9561 | 0.0708 | 0.8418 | 5.0109 | ||
B0007 | CGTSSA-CatBoost | 126 | 126 | 0 | 0.9947 | 0.0118 | 0.0233 | 0.1386 |
SSA-CatBoost | 127 | 1 | 0.9926 | 0.0147 | 0.0362 | 0.2155 | ||
PSO-CatBoost | 128 | 2 | 0.9828 | 0.0263 | 0.1166 | 0.6941 | ||
CatBoost | 117 | 9 | 0.9412 | 0.0465 | 0.3631 | 2.1613 |
Data | Method | Really Life | Predict Life | AE | R2 | RMSE | SSE | MSE (‰) |
---|---|---|---|---|---|---|---|---|
B0006 | CGTSSA-CatBoost | 113 | 113 | 0 | 0.9938 | 0.0268 | 0.1210 | 0.7202 |
CGTSSA-SVM | 110 | 3 | 0.9901 | 0.0362 | 0.2206 | 1.3130 | ||
CGTSSA-ELM | 110 | 3 | 0.9750 | 0.0579 | 0.5632 | 3.3523 | ||
B0007 | CGTSSA-CatBoost | 126 | 126 | 0 | 0.9947 | 0.0118 | 0.0233 | 0.1386 |
CGTSSA-SVM | 129 | 3 | 0.9937 | 0.0178 | 0.0532 | 0.3169 | ||
CGTSSA-ELM | 104 | 22 | 0.9798 | 0.0447 | 0.3356 | 1.9977 |
Method | R2 | RMSE | SSE | MSE |
---|---|---|---|---|
CGTSSA-CatBoost | 0.9962 | 1.1905 | 113.3773 | 1.4172 |
SSA-CatBoost | 0.9961 | 1.8156 | 263.7207 | 3.2965 |
PSO-CatBoost | 0.9958 | 2.1051 | 354.504 | 4.4313 |
CatBoost | 0.9864 | 4.7566 | 1809.9964 | 22.625 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Chen, W.; Yin, J.; Feng, T. Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost. Energies 2022, 15, 5331. https://doi.org/10.3390/en15155331
Zhang M, Chen W, Yin J, Feng T. Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost. Energies. 2022; 15(15):5331. https://doi.org/10.3390/en15155331
Chicago/Turabian StyleZhang, Mei, Wanli Chen, Jun Yin, and Tao Feng. 2022. "Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost" Energies 15, no. 15: 5331. https://doi.org/10.3390/en15155331
APA StyleZhang, M., Chen, W., Yin, J., & Feng, T. (2022). Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost. Energies, 15(15), 5331. https://doi.org/10.3390/en15155331