Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review
Abstract
:1. Introduction
- The factors or parameters that must be taken into account like the highest performance in terms of solution accuracy, convergence speed, and robustness, with the highest success rate, when solving the CEED problem with the integration of RES in static and dynamic conditions are investigated.
- In order to solve the CEED problem including RES, a summary for different optimization techniques that have been widely used, such as traditional methods, non-conventional, and hybrid methods is considered in this paper.
- This paper also presents the advantages and disadvantages of many optimization techniques which have been used for solving the CEED problem with RES.
- Summary tables containing the techniques applied, the test networks used, the types of RES considered, the constraints respected, and the static or dynamic conditions of each paper which are reviewed.
- A discussion is explored at the end of this paper concerning the strengths and weaknesses of many optimization techniques have been used for solving the CEED problem with RES.
2. Problem Formulation
2.1. Cost Function
2.2. Emission Function
2.3. Equality and Inequality Constraints
2.3.1. Active Power Balance Constraint
2.3.2. Generation Capacity
2.3.3. Generating Unit Ramp Rate Limits (RRLs)
2.3.4. Prohibited Operating Zones (POZs)
2.3.5. Spinning Reserve Requirements (SRRs) Constraints
2.3.6. Line Flow Constraints
2.3.7. Emission Constraint
2.4. Dynamic CEED (DEED) Problem
3. Economic Dispatch with RES
3.1. Probabilistic Modeling of Wind Energy Integration
3.2. Probabilistic Modeling of PV Cell Power
4. Reviews for Various Optimization Techniques in Economic Dispatch Problem
4.1. Summary of Conventional Methods Related to CEED
4.2. Summary of the Nonconventional Methods Related to CEED
4.3. Summary of Hybrid Techniques Associated with the CEED Problem
4.4. Summary of CEED Problem Considering PV and Wind Energy
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CEED | Combined economic emission dispatch | BBO | Biogeography-based optimizer |
RES | Renewable energy systems | PSO | Particle swam optimization |
LR | Lagrange relaxation | MVMOS | Swarm based Mean-Variance Mapping Optimization |
GS | Gradient Search | ACO | Ant Colony Optimization |
BBA | Branch-and-bound algorithm | FPA | Flower pollination algorithm |
LI | Lambda Iteration | GA | Genetic algorithm |
PS | Pattern Search | NPGA | Niched Pareto GA |
QP | Quadratic Programming | ABC | Artificial bee colony |
CTBCE | Classical technique based on Coordination equations | BA | Bat-Inspired algorithm |
LP | Linear Programming | GSA | Gravitational search algorithm |
NLP | Non-Linear Programming | CS | Cuckoo search |
NLCNFP | New nonlinear convex network flow programming | EP | Evolutionary Programming |
HLP | Homogeneous Linear Programming | FL | Fuzzy logic |
NR | Newton-Raphson | SA | Simulated annealing |
WMM | Weighted mini-max | FFA | Firefly algorithm |
IPM | Interior point method | DE | Differential evolution |
ANN | Artificial Neural Networks | BFA | Bacterial foraging algorithm |
MHNN | Modified Hopfield neural network | FPA | Flower pollination algorithm |
AHNN | Adaptive Hopfield neural network | NSGA-II | Non-dominated sorting genetic algorithm |
ALO | Ant Lion optimization | ABC-LS | ABC-LS |
TS | Tabu Search | GCABC | GCABC |
GWO | Grey Wolf Optimization | POZs | Prohibited Operating Zones |
IGWO | Improved Grey Wolf Optimization | VPLE | Valve-point loading effects |
MICA | Modified Imperialist Competitive Algorithm | NSPSO-LS | Non-dominated sorting PSO with local |
NSMOOGSA | Non-dominated sorting multi objective opposition based gravitational search algorithm | DPO | Dynamic Programming optimization |
CSSA | Charged system search algorithm | CBBO | Improved biogeography-based optimization |
ECSSA | Enhanced CSSA | CSCA | Chaotic sine–cosine algorithm |
TLBO | Teaching learning based optimization | MOPSO | Multi-objective optimization |
SDP | Semi-definite programming | GA–WOA | Genetic algorithm–whale optimization algorithm |
SLFA | Shuffle Frog Leaping Algorithm | CHPEED | Combined Heat and Power Economic Emission Dispatch |
MSLFA | modified SLFA called | DEED | Dynamic Economic Emission Dispatch |
θ-MTLBO | θ-multiobjective-teaching–learning-based optimization algorithm | TVAC-PSO | Time-Varying Acceleration Coefficient-Particle Swarm Optimization combined |
MOALO | Multi-objective ant lion optimizer | QPSO | Quantum PSO |
TLBO | Teaching-Learning Based Optimization | DHS | Differential harmony search method |
BF-NM | Bacterial foraging (BF) and the Nelder-Mead (NM) | SDE | Shuffled differential algorithm |
CPSO | Chaotic particle swarm optimization | ED | Economic dispatch |
MFUs | Multiple fuel units | RRL | Ramp Rate Limits |
UR | Up-ramp limits | DR | Down-ramp limits |
SRRs | Spinning reserve requirements | HN | Here-and-now methodology |
EED | WES | Wind energy source | |
Probability distribution function | CDF | Cumulative distribution function | |
WP | Wind power | WPG | Wind power generator |
HLP | Homogeneous Linear Programming | PV | Photovoltaic |
NPGA | Niched Pareto genetic algorithm | SPEA | Strength Pareto evolutionary algorithm |
MOALO | Multi-objective ant lion optimizer | CPP | Conventional power plant |
SPVPPs | Solar PV power plants | MBA | Mine blast algorithm |
CMOPEO | Constrained multi-objective population extremal optimization | ELD | Economic load dispatch |
DE-CQPSO | Differential evolution-crossover quantum PSO | QBA | Quantum-behaved bat algorithm |
ANS | Across Neighborhood Search | MGSO | Modified group search optimizer |
CMOPEO | constrained multi-objective population extremal optimization | ||
NSMOOGSA | Non-dominated Sorting Multi Objective Opposition based Gravitational Search Algorithm |
References
- Boden, T.A.; Marland, G.; Andres, R.J. National CO2 Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring: 1751–2014; Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy: Washington, DC, USA, 2017.
- Ela, E.; Mark, O. Studying the variability and uncertainty impacts of variable generation at multiple timescales Power Systems. IEEE Trans. 2012, 27, 1324–1333. [Google Scholar]
- Miao, F.; Vijay, V.; Gerald, T.H.; Raja, A. Probabilistic power flow analysis with generation dispatch including photovoltaic resources. Power Syst. IEEE Trans. 2013, 28, 1797–1805. [Google Scholar]
- Karthik, N.; Arul, R.; Angalaeswari, S.; Natrayan, L.; Wubishet, D.M. Combined Economic Emission Dispatch of Microgrid with the Incorporation of Renewable Energy Sources Using Improved Mayfly Optimization Algorithm. Comput. Intell. Neurosci. 2022, 2022, 6461690. [Google Scholar]
- Patel, M.R. Wind and Solar Power Systems: Design, Analysis, and Operation; Taylor & Francis Group: Oxford, UK, 2006. [Google Scholar]
- Velamuri, S.; Sreejith, S.; Ponnambalam, P. Static economic dispatch incorporating wind farm using Flower pollination algorithm. Perspect. Sci. 2016, 8, 260–262. [Google Scholar] [CrossRef] [Green Version]
- Salameh, Z.M.; Bogdan, S.B.; Atia, R.A. Photovoltaic module-site matching based on the capacity factors. Energy Convers. IEEE Trans. 1995, 10, 326–332. [Google Scholar] [CrossRef]
- Jin, J.; Zhou, D.; Zhou, P.; Miao, Z. Environmental/economic power dispatch with wind power. Renew. Energy 2014, 71, 234–242. [Google Scholar] [CrossRef]
- Kuo, C.C. Wind energy dispatch considering environmental and economic factors. Renew. Energy 2010, 35, 2217–2227. [Google Scholar] [CrossRef]
- Xie, L.; Ilic, M.D. Model predictive economic/environmental dispatch of power systems with intermittent resources. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 June 2009. [Google Scholar]
- Bilil, H.; Aniba, G.; Maaroufi, M. Probabilistic Economic Emission Dispatch Optimization of Multi-Sources Power System. Energy Procedia 2014, 50, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Shalini, S.P.; Lakshmi, K. Solution to economic emission dispatch problem using Lagrangian relaxation method. In Proceedings of the International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), Coimbatore, India, 6–8 March 2014. [Google Scholar]
- Krishnamurthy, S.; Tzonova, R.I. Comparison of the Lagrange’s and Particule swarm optimization solutions of an economic emission dispatch with transmission constraints. In Proceedings of the 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems, Bengaluru, India, 16–19 December 2012. [Google Scholar]
- Li, H. Lagrange Multipliers and Their Applications; Department of Electrical Engineering and Computer Science, University of Tennessee: Knoxville, TN, USA, 2008. [Google Scholar]
- Dodu, J.C.; Martin, P.; Merlin, A.; Pouget, J. An optimal formulation and solution of short-range operating problems for a power system with flow constraints. IEEE Proc. 1972, 60, 54–63. [Google Scholar] [CrossRef]
- Chen, C.L.; Wang, S.C. Branch-and-bound scheduling for thermal generating units. IEEE Trans. Energy Convers. 1993, 8, 184–189. [Google Scholar] [CrossRef]
- Dike, D.O.; Adinfono, M.I.; Ogu, G. Economic dispatch of generated power using modified lambda-iteration method. IOSR J. Electr. Electron. Eng. 2013, 3331, 49–54. [Google Scholar] [CrossRef]
- Gaing, Z.L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 2003, 18, 1187–1195. [Google Scholar] [CrossRef]
- Muhammad Ramadan, B.M.S.; Logenthiran, T.; Naayagi, R.T.; Charles, S. Accelerated Lambda Iteration Method for Solving Economic Dispatch with Transmission Line Losses Management. In Proceedings of the IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), Melbourne, Australia, 28 November–1 December 2016. [Google Scholar]
- Ruey-Hsun, L. A neural-based redispatch approach to dynamic generation allocation. IEEE Trans. Power Syst. 1999, 14, 1388–1393. [Google Scholar] [CrossRef]
- Singhal, P.K.; Naresh, R.; Sharma, V. Enhanced lambda iteration algorithm for the solution of large scale economic dispatch problem. In Proceedings of the International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), 9–11 May 2014; pp. 1–6. [Google Scholar]
- Zhan, J.P.; Wu, Q.H.; Guo, C.X.; Zbou, X.X. Fast Lamda-iteration method for economic dispatch. IEEE Trans. Power Syst. 2014, 29, 990–991. [Google Scholar] [CrossRef]
- Aravindhababu, P.; Nayar, K.R. Economic dispatch based on optimal lambda using radial basis function network. Int. J. Electr. Power Energy Syst. 2002, 24, 551–556. [Google Scholar] [CrossRef]
- Pedro, P.; Vergara, H.R.; Shaker, B.N.; Jørgensen, L.C.; da Silva, P. Generalization of the λ-Method for Decentralized Economic Dispatch Considering Reactive Resources. In Proceedings of the 7th IEEE International Conference on Innovative Smart Grid Technologies, Torino, Italy, 26–29 September 2017. [Google Scholar]
- Muda, H.; Othman, A.; Julai, N. Economic dispatch strategy for solar hybrid system using lambda iteration method. J. Telecommun. Electron. Comput. Eng. 2017, 9, 85–89. [Google Scholar]
- Alsumait, J.S.; Qasem, M.; Sykulski, J.K.; Al-Othman, A.K. An improved pattern search based algorithm to solve the dynamic economic dispatch problem with valve point effect. Energy Convers. Manag. 2010, 51, 2062–2067. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.Y.; Zhang, L. Real-time economic dispatch with line flow and emission constraints using quadratic programming. IEEE Trans. Power Syst. 1998, 13, 320–325. [Google Scholar] [CrossRef]
- Reid, G.F.; Hasdorff, L. Economic dispatch using quadratic programming. IEEE Trans. Power Appar. Syst. 1973, 6, 2015–2023. [Google Scholar] [CrossRef]
- Rajanish, K.K.; Tilak, T.; Isarar, A. Combined Economic emission dispatch problem including line losses using quadratic programming. IJEEE 2017, 9, 328–334. [Google Scholar]
- El-Keib, A.A.; Ma, H.; Hart, J.L. Environmentally constrained economic dispatch using the lagrangian relaxation method. IEEE Trans. Power Syst. 1994, 9, 1723–1729. [Google Scholar] [CrossRef]
- Ashfaq, A.; Khan, A.Z. Optimization of economic load dispatch problem by linear programming modified methodology. In Proceedings of the 2nd International Conference on Emerging Trends in Engineering and Technology (ICETET’2014), London, UK, 30–31 May 2014. [Google Scholar]
- Parikh, J.; Chattopadhyay, D. A multi-area linear programming approach for analysis of economic operation of the Indian power system. IEEE Trans. Power Syst. 1996, 11, 52–58. [Google Scholar] [CrossRef]
- Nanda, J.; Hari, L.; Kothari, M.L. Economic emission load dispatch with line flow constraints using a classical technique. IEEE Proc. Gener. Transm. Distrib. 1994, 141, 1–10. [Google Scholar] [CrossRef]
- Zhu, J.; James, A. Multi-area power systems economic dispatch using nonlinear convex network flow programming. Electr. Power Syst. Res. 2001, 59, 13–20. [Google Scholar] [CrossRef]
- Jabr, R.; Coonick, A.H.; Cory, B.J. A homogeneous linear programming algorithm for the security constrained economic dispatch problem. IEEE Trans. Power Syst. 2000, 15, 930–936. [Google Scholar] [CrossRef]
- Chen, S.D.; Chen, J.F. A direct Newton-Raphson economic emission dispatch. Int. J. Electr. Power Energy Syst. 2003, 25, 411–417. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S. Multiobjective power dispatch with line flow constraints using the fast Newton-Raphson method. IEEE Trans. Energy Convers. 1997, 12, 86–93. [Google Scholar] [CrossRef]
- Dhillon, J.; Parti, S.; Kothari, D. Stochastic economic emission load dispatch. Electr. Power Syst. Res. 1993, 26, 179–186. [Google Scholar] [CrossRef]
- Bishe, H.M.; Kian, A.R.; Dual, M.S. Interior point method for Solving environmental/economic power dispatch. Int. Rev. Electr. Eng. 2011, 6, 1463–1473. [Google Scholar]
- Yalcinoz, T.; Short, M.J. Neural networks approach for solving economic dispatch problem with transmission capacity constraints. IEEE Trans Power Syst. 1998, 13, 307–313. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, Y.S.; Eom, I.K.; Lee, K.Y. Economic load dispatch for piecewise quadratic cost function using Hopfield neural network. IEEE Trans. Power Syst. 1993, 8, 1030–1038. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.Y.; Sode-Yome, A.; Park, J.H. Adaptive Hopfield neural network for economic load dispatch. IEEE Trans. Power Syst. 1998, 13, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Chattopadhyay, P. Application of biogeography-based optimization to solve different optimal power flow problems. IET Gener. Transm. Distrib. 2011, 5, 70–80. [Google Scholar] [CrossRef]
- Lohokare, M.R.; Panigrahi, B.K.; Pattnaik, S.S.; Devi, S.; Mohapatra, A. Neighborhood search-driven accelerated biogeography-based optimization for optimal load dispatch. IEEE Trans. Syst. Man Cybernet Part C Appl. Rev. 2012, 42, 641–652. [Google Scholar] [CrossRef]
- Shi, X.; Bao, G.; Ding, K.; Lu, L. Multi-objective optimal dispatch considering wind power and interactive load for power system. Energy Power Eng. 2018, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Chattopadhyay, P.K. Application of Biogeography-based Optimization for Solving Multi-objective economic emission load dispatch problems. Electr. Power Compon. Syst. 2010, 38, 340–365. [Google Scholar] [CrossRef]
- Zhao, B.; Cao, Y.J. Multiple objective particle swarm optimization technique for economic load dispatch. J. Zhejiang Univ. Sci. 2005, 6, 420–427. [Google Scholar]
- Park, J.B.; Lee, K.S.; Shin, J.R.; Lee, K.S. A particle swarm optimization for economic dispatch with non-smooth cost functions. IEEE Trans Power Syst. 2005, 20, 34–42. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, Y. Economic load dispatch with environmental emission using MRPSO. In Proceedings of the 2013 3rd IEEE International Advance Computing Conference (IACC), Ghaziabad, India, 22–23 February 2013; pp. 995–999. [Google Scholar]
- Mohammed, A.M.; Youssef, M.; Abdelghani, D. Comparative study of the price penalty factors approaches for Bi-objective dispatch problem via PSO. Int. J. Electr. Comput. Eng. 2020, 10, 3343–3349. [Google Scholar]
- Mahdi, F.P.; Vasant, P.; Kallimani, V.; Watada, J.; Fai, P.Y.S.; Al-Wadud, M.A. A holistic review on optimization strategies for combined economic emission dispatch problem. Renew. Sustain. Energy Rev. 2018, 81, 3006–3020. [Google Scholar] [CrossRef]
- Truong, K.H.; Vasant, P.; Balbir Singh, M.S.; Vo, D.N. Intelligent Information and Database Systems. In Proceedings of the 7th Asian Conference, ACIIDS 2015, Bali, Indonesia, 23–25 March 2015; Nguyen, T.N., Trawiński, B., Kosala, R., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–12. [Google Scholar]
- Hou, Y.H.; Wu, Y.W.; Lu, L.J.; Xiong, X.Y. Generalized ant colony optimization for economic dispatch of power systems. In Proceedings of the International Conference on Power System Technology, Kunming, China, 13–17 October 2002; Volume 1, pp. 225–229. [Google Scholar]
- Dorigo, M.; Brattain, M. Ant colony optimization. Encyclopedia of machine learning. In Ant Colony Optimization: A Component-Wise Overview; Martí, R., Ed.; Springer: Cham, Switzerland, 2016; Volume 1, pp. 1–28. [Google Scholar]
- Abdelaziz, A.Y.; Ali, E.S.; Abd Elazim, S.M. Combined Economic and Emission Dispatch Solution Using Flower Pollination Algorithm. Int. J. Electr. Power Energy Syst. 2016, 80, 264–274. [Google Scholar] [CrossRef]
- Ali, E.S.; Abd Elazim, S.M. Mine blast algorithm for environmental economic load dispatch with valve loading effect. Neural Comput. Applic. 2018, 30, 261–270. [Google Scholar] [CrossRef]
- Osman, S.; Abo-Sinna, M.A.; Mousa, A.A. A solution to the optimal power flow using genetic algorithm. Appl. Math. Comput. 2004, 155, 391–405. [Google Scholar] [CrossRef]
- Koridak, L.A.; Rahli, M. Optimization of the emission and economic dispatch by the genetic algorithm. Prz Elektrotech. 2013, 86, 363–366. [Google Scholar]
- Golpîra, H.; Bevrani, H. A framework for economic load frequency control design using modified multi-objective genetic algorithm. Electr. Power Compon. Syst. 2014, 42, 788–797. [Google Scholar] [CrossRef]
- Ling, S.H.; Lam, H.K.; Leung, H.F.; Lee, Y.S. Improved genetic algorithm for economic load dispatch with valve-point loadings. In Proceedings of the 29th Annual Conference of the IEEE Industrial Electronics Society, Roanoke, VI, USA, 2–6 November 2003. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2006, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zhang, S.; Liu, Q.; Xie, J.; Hu, J. Independent tasks scheduling based on genetic algorithm in cloud computing. In Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom’09), Beijing, China, 24–26 September 2009; pp. 1–4. [Google Scholar]
- Shahbaz, H.; Mohammed, A.; Salman, K.; Asif, H.; Muhammad, A.S. Implementation and Comparison of Particle Swarm Optimization and Genetic Algorithm Techniques in Combined Economic Emission Dispatch of an Independent Power Plant. Energies 2019, 12, 2037. [Google Scholar]
- Uidir, R.O.; Rahali, M.; Abdelhakim Oridak, L. Economic Dispatch using a Genetic Algorithm: Application to Western Algeria’s Electrical Power Network. J. Inf. Sci. Eng. 2005, 21, 659–668. [Google Scholar]
- Abido, M.A. A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch. Int. J. Electr. Power Energy Syst. 2003, 25, 97–105. [Google Scholar] [CrossRef]
- Aydin, D.; Ozyon, S.; Yasar, C.; Liao, T.J. Artificial bee colony algorithm with dynamic population size to combine economic and emission dispatch problems. Int. J. Electr. Power Energy Syst. 2014, 54, 144–153. [Google Scholar] [CrossRef]
- Akay, B.; Karaboga, D. A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 2010, 192, 120–142. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Akay, B.; Karaboga, D. Artificial bee colony algorithm for largescale problems and engineering design optimization. J. Intell. Manuf. 2012, 23, 1001. [Google Scholar] [CrossRef]
- Ramesh, B.; Chandra, V.; Mohan, J.; Veera Reddy, V.C. Application of bat algorithm for combined economic load emission dispatch. J. Electr. Eng. 2013, 13, 214–219. [Google Scholar]
- Mahdi, F.P.; Vasant, P.; Al-Wadud, M.A.; Kallimani, V.; Watada, J. Quantum-behaved bat algorithm for many-objective combined economic emission dispatch problem using cubic criterion function. Neural Comput. Appl. 2019, 31, 5857–5869. [Google Scholar] [CrossRef]
- Guvenç, U.; Sönmez, Y.; Duman, S. Combined economic and emission dispatch solution using gravitational search. Sci. Iran. 2012, 19, 1754–1762. [Google Scholar] [CrossRef] [Green Version]
- Duman, S.; Arsoy, A.B.; Yorukeren, N. Solution of Economic Dispatch Problem using Gravitational Search Algorithm. In Proceedings of the 7th International Conference on Electrical and Electronics Engineering, Bursa, Turkey, 1–4 December 2011. [Google Scholar]
- Siddik, N.; Adeli, H. Application of Gravitational Search Algorithm in engineering. J. Civ. Eng. Manag. 2016, 22, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, K.; Simon, S.P.; Padhy, N.P. Cuckoo search algorithm for emission reliable economic multi-objective dispatch. IETE J. Res. 2014, 60, 28–38. [Google Scholar] [CrossRef]
- Chandrasekaran, K.; Simon, S.P.; Padhy, N.P. Wind-Thermal Integrated Power System Scheduling Problem Using Cuckoo Search Algorithm. IETE J. Res. 2014, 60, 128–138. [Google Scholar] [CrossRef]
- Thao, N.T.P.; Thang, N.T. Improved Firefly Algorithm: A Novel Method for Optimal Operation of Thermal Generating Units. Complexity 2018, 2018, 7267593. [Google Scholar]
- Chiroma, H.; Herawan, T.; Fister, I., Jr.; Fister, I.; Abdulkaree, S.; Shuib, L.; Hamza, M.F.; Saadi, Y.; Abubakar, A. Bio-inspired computation: Recent development on the modifications of the cuckoo search algorithm. Appl. Soft Comput. 2017, 61, 149–173. [Google Scholar] [CrossRef]
- Yang, X.-S.; Deb, S. Cuckoo search: Recent advances and applications. Neur. Comput. 2014, 24, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Sinha, N.; Chakrabarti, R.; Chattopadhyay, P. Evolutionary Computation. IEEE Trans. 2003, 7, 83–94. [Google Scholar]
- Song, Y.H.; Wang, G.S.; Wang, P.Y.; Johns, A. Environmental/economic dispatch using fuzzy logic controlled genetic algorithms. IEE Proc. Generat. Transm. Distrib. 1997, 144, 377–382. [Google Scholar] [CrossRef]
- Zare, K.; Haque, M.T.; Davoodi, E. Solving non-convex economic dispatch problem with valve point effects using modified group search optimizer method. Electr. Power Syst. Res. 2012, 84, 83–89. [Google Scholar] [CrossRef]
- Basu, M. A simulated annealing-based goal-attainment method for economic emission load dispatch of fixed head hydrothermal power systems. Electr. Power Energy Syst. 2005, 27, 147–153. [Google Scholar] [CrossRef]
- Wong, K.P.; Fung, C.C. Simulated annealing based economic dispatch algorithm. IEE Proc. C 1993, 6, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Theofanis, A.; Aristidis, V. Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem. Int. J. Comb. 2011, 2011, 523806. [Google Scholar]
- Amsavalli, A.; Jayaraman, L.; Vigneswaran, D. Solving Combined Economic and Emission Dispatch using Firefly Algorithm. Int. J. Innov. Res. Sci. Eng. Technol. 2017, 2017, 11930–11935. [Google Scholar]
- Chandrasekaran, K.; Simon, S.P. Firely algorithm for reliable/emission/economic diaptch multiobjective problem. Int. Rev. Electr. Eng. 2012, 7, 3414–3425. [Google Scholar]
- Abedinia, O.; Amjady, N.; Naderi, M.S. Multi-objective Environmental/Economic Dispatch using firefly technique. In Proceedings of the 2012 11th International Conference on Environment and Electrical Engineering (EEEIC), Venice, Italy, 18–25 May 2012; pp. 461–466. [Google Scholar]
- Yang, X.-S.; He, X. Firefly algorithm: Recent advances and applications. Int. J. Swarm. Intell. 2013, 1, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Rughooputh, H.C.S.; Ah King, R.T.F. Environmental/economic dispatch of thermal units using an elitist multiobjective evolutionary algorithm. In Proceedings of the IEEE International Conference on Industrial Technology, Maribor, Slovenia, 10–12 December 2003; Volume 1, pp. 10–12. [Google Scholar]
- Abou El Ela, A.A.; Abido, M.A.; Spea, S.R. Differential evolution algorithm for emission constrained economic power dispatch. Electr. Power Syst. Res. 2010, 80, 1286–1292. [Google Scholar] [CrossRef]
- Yu, X.; Yu, X.; Lu, Y.; Sheng, J. Economic and Emission Dispatch Using Ensemble Multi-Objective Differential Evolution Algorithm. Sustainability 2018, 10, 418. [Google Scholar] [CrossRef] [Green Version]
- Pandit, N.; Tripathi, A.; Tapaswi, S.; Pandit, M. An improved bacterial foraging algorithm for combined static/dynamic environmental economic dispatch. Appl. Soft Comput. 2012, 12, 3500–3513. [Google Scholar] [CrossRef]
- Farhat, I.A.; El-Hawary, M.E. Bacterial Forging Algorithm for optimum Economic-Emission Dispatch. In Proceedings of the 2011 IEEE Electrical Power and Energy Conference, Winnipeg, MB, Canada, 3–5 October 2011. [Google Scholar]
- Abdelaziz, A.Y.; Ali, E.S.; Abd Elazim, S.M. Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems. Energy 2016, 101, 506. [Google Scholar] [CrossRef]
- Ah King, R.T.F.; Rughooputh, H.C.S. Elitist Multi-Objective Evolutionary Algorithm for Environmental/Economic Dispatch. Congr. Evol. Comput. 2003, 2, 1108–1114. [Google Scholar]
- Abido, M.A. Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans Power Syst. 2003, 18, 1529–1537. [Google Scholar] [CrossRef]
- Dinesh, T.; Varma, D.M.; Vinod, K. Multi-Objective Economic Emission Load Dispatch using Teacher-Learning-Based Optimization Technique. In Proceedings of the 3rd International Conference on Advances in Control and Optimization of Dynamical Systems, Kanpur, India, 13–15 March 2014. [Google Scholar]
- Chopra, N.; Mehta, S. Multi-objective optimum generation scheduling using Ant Lion Optimization. In Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India; 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Naama, B.; Bouzeboudja, H.; Allali, A. Solving the economic dispatch problem by using tabu search algorithm. Energy Proc. 2013, 36, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.P.; Fung, C.C. Generation, Transmission and Distribution. IEEE Proc. C 1993, 140, 509–515. [Google Scholar]
- Sharma, S.; Mehta, S.; Chopra, N. Economic Load Dispatch using Grey Wolf Optimization. Int. J. Eng. Res. Appl. 2015, 5, 128–132. [Google Scholar]
- Nitish, C.; Gourav, K.; Shivani, M. Multi-objective Economic Emission Load Dispatch using Grey Wolf Optimization. Int. J. Adv. Eng. Res. Sci. 2016, 3, 26–33. [Google Scholar]
- Prashar, G.M.S. Formulation of Improved Grey Wolf Optimization Methodology for ELD Problem. Int. J. Res. Advent Technol. 2016, 4, 2. [Google Scholar]
- Devibala, B.; Padmanabhan, K.K. Efficient Emission Reduction in Thermal Power Plant using Modified Imperialist Competitive Algorithm in Green Sigma Framework. Int. J. Control Theory Appl. 2017, 10, 291–305. [Google Scholar]
- Ratan Bhowmik, A.; Kumar Chakraborty, A. Solution of optimal power flow using non dominated sorting multiobjective opposition based gravitational search algorithm. Int. J. Electr. Power Energy Syst. 2015, 64, 1237–1250. [Google Scholar] [CrossRef]
- Özyön, S.; Temurtaş, H.; Kuvat, G. Charged system search algorithm for emission constrained economic power dispatch problem. Energy 2012, 46, 420–430. [Google Scholar] [CrossRef]
- Niknam, T.; Azizipanah-Abarghooee, R.; Narimani, M.R. Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints. Energy 2012, 47, 451–464. [Google Scholar] [CrossRef]
- Sumit, B.; Deblina, M.; Chandan, K.C. Teaching learning based optimization for economic load dispatch problem considering valve point loading effect. Int. J. Electr. Power Energy Syst. 2015, 73, 456–464. [Google Scholar]
- Jubril, A.M.; Olaniyan, O.A.; Komolafe, O.A.; Ogunbona, P.O. Economic-emission dispatch problem: A semi-definite programming approach. Appl. Energy 2014, 134, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Niknam, T.; Narimani, M.R.; Jabbari, M.; Malekpour, A.R. A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy 2011, 36, 6420–6432. [Google Scholar] [CrossRef]
- Niknam, T.; Golestaneh, F.; Sadeghi, M.S. θ-Multiobjective Teaching–Learning-Based Optimization for Dynamic Economic Emission Dispatch. IEEE Syst. J. 2012, 6, 341–352. [Google Scholar] [CrossRef]
- Mahdi, F.P.; Vasant, P.; Al-Wadud, M.A.; Watada, J.; Kallimani, V. A quantum-inspired particle swarm optimization approach for environmental/economic power dispatch problem using cubic criterion function. Int. Trans. Electr. Energ. Syst. 2018, 28, 2497. [Google Scholar] [CrossRef]
- Ismail, M.; Chefai, D.; Hsan Hadj, A. Dynamic Economic Emission Dispatch Optimization integrated wind and solar energy systems. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2020, 11, 1–18. [Google Scholar]
- Ismail, M.; Taoufik, G.; Hsan Hadj, A. ABC algorithm with local search applied to Economic Dispatch Problem. Int. J. Future Gener. Commun. Netw. 2020, 13, 2483–2490. [Google Scholar]
- Ismail, M.; Boudjemline, A.; Taoufik, G.; Hsan Hadj, A. A Modified Artificial Bee Colony for the NonSmooth Dynamic Economic/Environmental Dispatch. Eng. Technol. Appl. Sci. Res. 2018, 8, 3321–3328. [Google Scholar]
- Ismail, M.; Chefai, D.; Taoufik, G. Optimal cost of power system incorporating wind energy using Here-And-Now approach. ARPN J. Eng. Appl. Sci. 2020, 15, 1488–1496. [Google Scholar]
- Chefai, D.; Ismail, M.; Hsan Hadj, A. Unit Commitment Problem with Wind and Solar Energy Considering Emission Reduction using Dynamic Programming. Int. J. Adv. Sci. Technol. 2020, 29, 4152–4162. [Google Scholar]
- Ismail, M.; Taoufik, G.; Hsan Hadj, A. An improved Biogeography-Based Optimization for economic/Environmental dispatch. IIOABJ 2019, 10, 24–33. [Google Scholar]
- Taoufik, G.; Anouar, F.; Ismail, M.; Badr, A.; Hsan Hadj, A. Chaotic sine–cosine algorithm for chanceconstrained economic emission dispatch problem including wind energy. IET Renew. Power Gener. 2020, 14, 1808–1821. [Google Scholar]
- Ismail, M.; Chefai, D.; Hsan Hadj, A. Optimization Hydro-Thermal-Wind-PV Solar Using MOPSO Algorithm Applied to Economic/ Environmental Dispatch. Biosci. Biotechnol. Res. Commun. 2021, 14, 118–125. [Google Scholar]
- Edwin, C.R.; Selva, R.; Marsaline Beno, M.; Annrose, J. A Solution for Combined Economic and Emission Dispatch Problem using Hybrid Optimization Techniques. J. Electr. Eng. Technol. 2019, 2019, 1–10. [Google Scholar]
- Hossein, N.; Hamdi, A. Solving the multi-objective economic emission dispatch problems using Fast Non-Dominated Sorting TVAC-PSO combined with EMA. Appl. Soft Comput. J. 2019, 85, 105770. [Google Scholar]
- Xin-Gang, Z.; Ji, L.; Jin, M.; Ying, Z. An improved quantum particle swarm optimization algorithm for environmental economic dispatch. Expert Syst. Appl. 2020, 152, 113370. [Google Scholar] [CrossRef]
- Mohammad, J.M.; Taher, N.; Jamshid, A.; Miadreza, S.K.; Joao, P.S.; Catal, A. Hybrid Optimization Algorithm to Solve the Nonconvex Multiarea Economic Dispatch Problem. IEEE Syst. J. 2018, 10, 1109. [Google Scholar]
- Soheil, D.B.; Hamdi, A.; Massimo, L.S. Hybrid Gravitational Search Algorithm-Particle Swarm Optimization with Time Varying Acceleration Coefficients for Large Scale CHPED Problem. Energy 2017, 3, 54. [Google Scholar]
- Manzour, E.; Ghulam, A. A Hybrid Metaheuristic Approach for the Solution of Renewables-Incorporated Economic Dispatch Problemsx. IEEE Access 2020, 8, 3008570. [Google Scholar]
- Rahmat-Allah, H.; Moein, P.; Mohammad, J.M. Emission, reserve and economic load dispatch problem with non-smooth and non-convex cost functions using the hybrid bacterial foraging-Nelder–Mead algorithm. Appl. Energy 2012, 89, 1443–1453. [Google Scholar]
- Huijun, L.; Yungang, L.; Fengzhong, L.; Yanjun, S. A multiobjective hybrid bat algorithm for combined economic/emission dispatch. Int. J. Electr. Power Energy Syst. 2018, 101, 103–115. [Google Scholar]
- Murugan, R.; Mohan, M.R.; Christober, C.; Rajan, A.; Deiva, S.P.; Arunachalam, S. Hybridizing Bat Algorithm with Artificial Bee Colony for Combined Heat and Power Economic Dispatch. Appl. Soft Comput. 2018, 72, 189–217. [Google Scholar] [CrossRef]
- Tanuj, S.; Hitesh, D.M. A new approach to solve Economic Dispatch problem using a Hybrid ACO–ABC–HS optimization algorithm. Int. J. Electr. Power Energy Syst. 2016, 78, 735–744. [Google Scholar]
- Wang, L.; Li, L.P. An effective differential harmony search algorithm for solving non-convex economic load dispatch problems. Electr. Power Syst. Res. 2013, 44, 832–843. [Google Scholar] [CrossRef]
- Reddy, A.S.; Vaisakh, K. Shuffled differential evolution for large scale economic dispatch. Electr. Power Syst. Res. 2013, 96, 237–245. [Google Scholar] [CrossRef]
- Sayah, S.; Hamouda, A. A hybrid differential evolution algorithm based on PSO for non convex economic dispatch problems. Appl. Soft Comput. 2013, 13, 1608–1619. [Google Scholar] [CrossRef]
- Jiang, S.; Ji, Z.; Shen, Y. A novel hybrid PSO and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints. Electr. Power Syst. Res. 2014, 55, 628–644. [Google Scholar] [CrossRef]
- Victoire, T.A.A.; Jeyakumar, A.E. Hybrid PSO-SQP for economic dispatch with valve-point effect. Electr. Power Syst. Res. 2004, 71, 51–59. [Google Scholar] [CrossRef]
- Jiejin, C.; Qiong, L.; Lixiang, L.; Haipeng, P.; Yixian, Y. A hybrid CPSO-SQP method for economic dispatch considering the valve-point effects. Int. J. Energy Convers. Manag. 2012, 53, 175–181. [Google Scholar]
- Aniruddha, B.; Pranab, K.C. Solving economic emission load dispatch problems using hybrid differential evolution. Appl. Soft Comput. 2011, 11, 2526–2537. [Google Scholar]
- Alsumait, J.S.; Sykulski, J.K.; Al-Othman, A.K. A hybrid GAePSeSQP method to solve power system valve-point economic dispatch problems. Appl. Energy 2010, 87, 1773–1781. [Google Scholar] [CrossRef] [Green Version]
- Abdelaziz, A.Y. Flower pollination algorithm to solve combined economic and emission dispatch problems. Eng. Sci. Technol. Int. J. 2016, 19, 980–990. [Google Scholar] [CrossRef] [Green Version]
- Devi, A.L.; Krishna, O.V. Combined economic and emission dispatch using evolutionary algorithms—A case study. ARPN J. Eng. Appl. Sci. 2008, 3, 28–35. [Google Scholar]
- Sangiamvibool, W.; Pothiya, S.; Ngamroo, I. Multiple tabu search algorithm for economic dispatch problem considering valve-point effects. Int. J. Electr. Power Energy Syst. 2011, 4, 846–854. [Google Scholar] [CrossRef]
- Xiong, G.; Shi, D. Orthogonal learning competitive swarm optimizer for economic dispatch problems. Appl. Soft Comput. 2018, 66, 134–148. [Google Scholar] [CrossRef]
- Cai, J.; Li, Q.; Li, L.; Peng, H.; Yang, Y. A hybrid FCASO-SQP method for solving the economic dispatch problems with valve point effects. Energy 2012, 38, 346–353. [Google Scholar] [CrossRef]
- Park, J.B.; Jeong, Y.M.; Shin, J.R.; Lee, K.Y. An improved particle swarm optimization for nonconvex economic dispatch problems. IEEE Trans. Power Syst. 2010, 25, 156–166. [Google Scholar] [CrossRef]
- Subbaraj, P.; Rengaraj, R.; Salivahanan, S. Enhancement of Self-adaptive real-coded genetic algorithm using Taguchi method for Economic dispatch problem. Appl. Soft Comput. 2011, 11, 83–92. [Google Scholar] [CrossRef]
- Fraga, E.S.; Yang, L.; Papageorgiou, L.G. On the modelling of valve point loadings for power electricity dispatch. Appl. Energy 2012, 91, 301–303. [Google Scholar] [CrossRef] [Green Version]
- Talaq, J.H.; Ferial, F.; EI-Hawary, M.E. A summary of environmental/economic dispatch algorithms. IEEE Trans. Power Syst. 1994, 9, 1508–1516. [Google Scholar] [CrossRef]
- Bo, Z.; Guo, C.; Cao, Y. Dynamic economic dispatch in electricity market using particle swarm optimization algorithm. In Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China, 15–19 June 2004; pp. 5050–5054. [Google Scholar]
- Yalcinoz, T.; Altun, H. Environmentally constrained economic dispatch via a genetic algorithm with arithmetic crossover. In Proceedings of the 6th Africon Conference in Africa, Abuja, Nigeria, 23–26 September 2019. [Google Scholar]
- Tarek, B.; Labdani, R.; Slimani, L. Economic power dispatch of power system with pollution control using multi objective particle swarm optimization. Univ. Sharjah J. Pure Appl. Sci. 2007, 4, 57–76. [Google Scholar]
- Abido, M.A. Multiobjective particle swarm optimization for environmental/ economic dispatch problem. In Proceedings of the 8th International Power Engineering Conference (IPEC-2007), Singapore, 3–6 December 2007; pp. 1385–1390. [Google Scholar]
- Gent, M.R.; Lamont, J.W. Minimum emission dispatch. IEEE Trans. Power Appar. Syst. 1972, 6, 2650–2660. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, J.; Zhou, Y. Two modified artificial bee colony algorithms inspired by grenade explosion method. Neurocomputing 2015, 151, 1198–1207. [Google Scholar] [CrossRef]
- Torres, G.; Quintana, V. On a nonlinear multiple centrality corrections interior-point method for optimal power flow. IEEE Trans Power Syst. 2011, 16, 222–228. [Google Scholar] [CrossRef]
- Nitin, T.; Hari, M.D.; Manjaree, P. Economic load dispatch of wind-solar-thermal system using backtracking search algorithm. Int. J. Eng. Sci. Technol. 2016, 8, 16–27. [Google Scholar]
- Miranda, V.; Hang, P.S. Economic dispatch model with fuzzy constraints and attitudes of dispatchers. IEEE Trans. Power Syst. 2005, 20, 2143–2145. [Google Scholar] [CrossRef] [Green Version]
- Fadaee, M.; Radzi, M. Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renew. Sustain. Energy Rev. 2012, 16, 3364–3369. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W. Economic load dispatch constrained by wind power availability: A here-and-now approach. IEEE Trans. Sustain. Energy 2010, 1, 2–9. [Google Scholar] [CrossRef]
- Hetzer, J.; Yu, D.C.; Bhattarai, K. An economic dispatch model incorporating wind power. IEEE Trans. Energy Convers. 2008, 23, 603–611. [Google Scholar] [CrossRef]
- Chen, S.X.; Gooi, H.B.; Wang, M.Q. Sizing of energy storage for microgrids. IEEE Trans. Smart Grid 2012, 3, 142–151. [Google Scholar] [CrossRef]
- Deshmukh, M.; Deshmukh, S. Modeling of hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2008, 12, 235–249. [Google Scholar] [CrossRef]
- Karaki, S.H.; Chedid, R.B.; Ramadan, R. Probabilistic performance assessment of autonomous solar wind energy conversion systems. IEEE Trans. Energy Convers. 1999, 14, 766–772. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, J.; Yuan, X.; Shi, D. A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China. Complexity 2018, 2018, 2591341. [Google Scholar] [CrossRef]
- Wang, L.; Singh, C. Balancing risk and cost in fuzzy economic dispatch including wind power penetration based on particle swarm optimization. Electr. Power Syst. Res. 2008, 78, 1361–1368. [Google Scholar] [CrossRef]
- Muthuswamy, R.; Krishnan, M.; Subramanian, K.; Subramanian, B. Environmental and economic power dispatch of thermal generators using modified NSGA-II algorithm. Int. Trans. Electr. Energy Syst. 2015, 25, 1552–1569. [Google Scholar] [CrossRef]
- Al-Sumait, J.S.; AL-Othman, A.K.; Sykulski, J.K. Application of pattern search method to power system valve-point economic load dispatch. Electr. Power Energy Syst. 2007, 29, 720–730. [Google Scholar] [CrossRef] [Green Version]
- Nanda, J.; Kothari, O.F.; Linyamurthy, K.S. Economic-Emission load dispatch through goal programming techniques. IEEE Trans. Energy Convers. 1988, 3, 26–33. [Google Scholar] [CrossRef]
- Abdullah, M.N.; Sim, G.Y.; Azmi, A.; Shamsudin, S.H. Combined Economic and Emission Dispatch Solution using Artificial Bee Colony Algorithm with Fuzzy Approach. Int. J. Eng. Technol. 2018, 7, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Prasad, D.G.; Mohan, D.H.; Pandit, M.; Panigrahi, B.K. Artificial Bee Colony Optimization for Combined Economic Load and Emission Dispatch. In Proceedings of the Second International Conference on Sustainable Energy and Intelligent System (SEISCON 2011), Chennai, India, 20–22 July 2011; pp. 340–346. [Google Scholar]
- Serdar, O.; Dog, A. Incremental artificial bee colony with local search to economic dispatch problem with ramp rate limits and prohibited operating zones. Energy Convers. Manag. 2013, 65, 397–407. [Google Scholar]
- Lili, A.; Wulandhari, A.; Siti, S.; Wisnu, W. Bat Algorithm Implementation on Economic Dispatch Optimization Problem. Procedia Comput. Sci. 2018, 135, 275–282. [Google Scholar]
- Thang, T.; Nguyen, S.; Dang, H. Bat Algorithm for Economic Emission Load Dispatch Problem. Int. J. Adv. Sci. Technol. 2016, 86, 51–60. [Google Scholar]
- Roy, P.K.; Paul, C.; Sultana, S. Oppositional teaching learning based optimization approach for combined heat and power dispatch. Electr. Power Syst Res. 2014, 57, 392–403. [Google Scholar] [CrossRef]
- Basu, M. Modified particle swarm optimization for non-smooth non-convex combined Heat and power economic dispatch. Electr. Power Compon. Syst. 2015, 43, 2146–2155. [Google Scholar] [CrossRef]
- Mohammadi-Ivatloo, B.; Moradi-Dalvand, M.; Rabiee, A. Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients. Electr. Power Syst Res. 2013, 95, 9–18. [Google Scholar] [CrossRef]
- Derafshi, B.S.; Abdi, H.; La Scala, M. Combined heat and power economic dispatch problem using gravitational search algorithm. Electr. Power Syst Res. 2016, 133, 160–172. [Google Scholar]
- Subham, K.; Provas, K.R.; Barun, M. Renewable Energy-Based Economic Load Dispatch Using Two-Step Biogeography-Based Optimization and Butterfly Optimization Algorithm. Int. J. Swarm Intell. Res. 2020, 11, 24–61. [Google Scholar]
- Kameswara, K.; Kumar, P.; Nirmala, S.; Latif, A.; Chandra, D.D.; Suhail, H.S.M.; Al-Durra, A.; Ustun, T.S. Day-Ahead DSM-Integrated Hybrid-Power Management Incorporated CEED of Solar Thermal/Wind/Wave/BESS System Using HFPSO. Sustainability 2022, 14, 1169. [Google Scholar]
- Abdurazaq, E.; Muhammet, T.G. Multi-objective Optimization of Combined Economic Emission Dispatch Problem in Solar PV Energy Using a Hybrid Bat-Crow Search Algorithm. Int. J. Renew. Energy 2021, 11, 383–391. [Google Scholar]
- MohanDubey, H.; Manjaree, P.; Panigrahi, B.K. Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch. Renew. Energy 2015, 83, 188–202. [Google Scholar]
- Krishnasamy, U.; Nanjundappan, D. Hybrid weighted probabilistic neural network and biogeography based optimization for dynamic economic dispatch of integrated multiple-fuel and wind power plants. Int. J. Electr. Power Energy Syst. 2016, 77, 385–394. [Google Scholar] [CrossRef]
- Niknam, T.; Mohammad, R.N.; A-Abarghooee, R. A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect. Energy Convers. Manag. 2012, 58, 197–206. [Google Scholar] [CrossRef]
- Joshi, P.M.; Verma, H. An improved TLBO based economic dispatch of power generation through distributed energy resources considering environmental constraints. Sustain. Energy Grids Netw. 2019, 18, 100207. [Google Scholar] [CrossRef]
- Ran, L.; Zhengyu, L.; Zhen, C. Economic dispatch of off-grid photovoltaic generation system with hybrid energy storage. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018. [Google Scholar]
- Gupta, A.; Anand, H. Analysis of scheduling of solar sharing for economic/environmental dispatch using PSO. In Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015. [Google Scholar]
- Wadhawan, A.; Verma, P.; Grover, S.; Anand, H. Economic environmental dispatch with PV generation including transmission losses using PSO. In Proceedings of the 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, India, 25–27 November 2016. [Google Scholar]
- Xiaoyan, Y.; Chunlin, G.; Xuan, X.; Dequan, H.; Zhou, M. Research on large scale electric vehicles participating in the economic dispatch of wind and thermal power system. In Proceedings of the 2017 China International Electrical and Energy Conference (CIEEC), Beijing, China, 25–27 October 2017. [Google Scholar]
- Wibowo, R.S.; Firmansyah, K.R.; Aryani, N.K.; Soeprijanto, A. Dynamic economic dispatch of hybrid micro grid with energy storage using quadratic programming. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016. [Google Scholar]
- Chen, M.-R.; Zeng, G.-Q.; Lu, K.-D. Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources. Renew. Energy 2019, 143, 277–294. [Google Scholar] [CrossRef]
- Dey, B.; Roy, S.K.; Bhattacharyya, B. Solving multi-objective economic emission dispatch of a renewable integrated micro grid using latest bio-inspired algorithms. Eng. Sci. Technol. Int. J. 2019, 22, 55–66. [Google Scholar]
- Santillán-Lemus, F.D.; Minor-Popocatl, H.; Aguilar-Mejía, O.; Tapia-Olvera, R. Optimal economic dispatch in micro grids with renewable energy sources. Energies 2019, 12, 181. [Google Scholar] [CrossRef] [Green Version]
- Elattar, E.E. Modified harmony search algorithm for combined economic emission dispatch of micro grid incorporating renewable sources. Energy 2018, 159, 496–507. [Google Scholar] [CrossRef]
- Sarfi, V.; Livani, H.; Yliniemi, L. A new multi-objective economic-emission dispatch in micro grids. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017. [Google Scholar]
- Shilaja, C.; Ravi, K. Optimization of emission/economic dispatch using Euclidean affine flower pollination algorithm (eFPA) and binary FPA (BFPA) in solar photo voltaic generation. Renew. Energy 2017, 107, 550–566. [Google Scholar] [CrossRef]
- Farag, A.; Al-Baiyat, S.; Cheng, T. Economic load dispatch multiobjective optimization procedures using linear programming techniques. IEEE Trans. Power Syst. 1995, 10, 731–738. [Google Scholar] [CrossRef]
- Mohan, M.; Kuppusamy, K.; Khan, M.A. Optimal short-term hydrothermal scheduling using decomposition approach and linear programming method. Int. J. Electr. Power Energy Syst. 1992, 14, 39–44. [Google Scholar] [CrossRef]
- Pothiya, S.; Ngamroo, I.; Kongprawechnon, W. Ant colony optimisation for economic dispatch problem with non-smooth cost functions. Int. J. Electr. Power Energy Syst. 2010, 32, 478–487. [Google Scholar] [CrossRef]
- Abbas, G.; Gu, J.; Farooq, U.; Raza, A.; Asad, M.U.; El-Hawary, M.E. Solution of an economic dispatch problem through particle swarm optimization: A detailed survey—Part II. IEEE Access 2017, 5, 24426–24445. [Google Scholar] [CrossRef]
- Afandi, A.; Fadlika, I.; Sendari, S.; Miyauchi, H.; Fujita, G.; Tutkun, N. Comparison of ABC and genetic algorithms on economic power dispatch. In Proceedings of the 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 24–26 July 2018. [Google Scholar]
- Panigrahi, C.K.; Chattopadhyay, P.K.; Chakrabarti, R.N.; Basu, M. Simulated annealing technique for dynamic economic dispatch. Electr. Power Compon. Syst. 2006, 34, 577–586. [Google Scholar] [CrossRef]
- Schlünz, E.; Van-Vuuren, J. An investigation into the effectiveness of simulated annealing as a solution approach for the generator maintenance scheduling problem. Int. J. Electr. Power Energy Syst. 2013, 53, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Naderi, E.; Azizivahed, A.; Narimani, H.; Fathi, M.; Narimani, M.R. A comprehensive study of practical economic dispatch problems by a new hybrid evolutionary algorithm. Appl. Soft Comput. 2017, 61, 1186–1206. [Google Scholar] [CrossRef]
- Motaeb, E.A.; Makbul, A.M.R.; Ibrahim, M.M. A New Chaotic Artificial Bee Colony for the Risk-Constrained Economic Emission Dispatch Problem Incorporating Wind Power. Energies 2021, 14, 4014. [Google Scholar]
- Fister, I.; Strnad, D.; Yang, X.S.; Fister, J.I. Adaptation and hybridization in nature inspired algorithms. In Adaptation and Hybridization in Computational Intelligence; Springer: Cham, Switzerland, 2015; pp. 3–50. [Google Scholar]
- Ting, T.; Yang, X.S.; Cheng, S.; Huang, K. Hybrid metaheuristic algorithms: Past, present, and future. In Recent Advances in Swarm Intelligence and Evolutionary Computation; Springer: Cham, Switzerland, 2015; pp. 71–83. [Google Scholar]
- Golmohamadi, H.; Reza, K.; Keypour, R.; Pouya, M. Multi-objective co-optimization of power and heat in urban areas considering local air pollution. Eng. Sci. Technol. Int. J. 2021, 24, 2372–2383. [Google Scholar] [CrossRef]
- Bodha, K.D.; Yadav, V.K.; Mukherjee, V. A novel quantum inspired hybrid metaheuristic for dispatch of power system including solar photovoltaic generation. Energy Sources Part B Econ. Plan. Policy 2021, 16, 558–583. [Google Scholar] [CrossRef]
Test System | Number of Thermal Generation Units |
---|---|
Test system 1 | 3 thermal units-IEEE-3Units ELD test system |
Test system 2 | 4 thermal generation units |
Test system 3 | 5 thermal units-IEEE 14 bus test system |
Test system 4 | 6 thermal units-IEEE 30 bus test system |
Test system 5 | 6 thermal units-IEEE 26 bus test system |
Test system 6 | 7 thermal units-IEEE 57 bus test system - |
Test system 7 | 8 thermal units-IEEE 25 bus test system |
Test system 8 | 10 thermal units-IEEE 39 bus test system - |
Test system 9 | 10 thermal units-IEEE 24 bus test system |
Test system 10 | 13 thermal units-IEEE-13Units ELD test system |
Test system 11 | 14 thermal generation units |
Test system 12 | 15 thermal generation units |
Test system 13 | 19 thermal units-IEEE 118 bus test system |
Test system 14 | 20 thermal generation units |
Test system 15 | 26 thermal generation units |
Test system 16 | 30 thermal generation units |
Test system 17 | 38 thermal generation units |
Test system 18 | 40 thermal units-IEEE-13Units ELD test system |
Test system 19 | 54 thermal generation units |
Test system 20 | 57 thermal generation units |
Test system 21 | 69 thermal units-IEEE 300 bus test system |
Test system 22 | 110 thermal generation units |
Test system 23 | 120 thermal generation units |
Test system 24 | 140 thermal generation units |
Refs | Method | Test Case | Condition | Constraints | |
---|---|---|---|---|---|
St | D | ||||
[33] | LR | Test system 1 | √ | A,B,L,LF | |
[12] | Test system 4 | √ | A,B,L | ||
[13] | Test system 8 | √ | A,B,L | ||
[16] | BBA | Test system 8 and 14 | √ | √ | A,B |
[23] | LI | Test system 1and 10 | √ | A,B,L | |
[17] | Test system 5 | √ | A,B,L | ||
[26] | PS | Test system 3 | √ | A,B,L,V | |
[67] | Test system 1,10,18 | √ | A,B,L,V | ||
[27] | QP | Test system 3,8 | √ | A,B,L,N | |
[28] | Test system 3,11,13,16,20 | √ | A,B,L,LF | ||
[33] | CTBCE | Test system 3,4 | √ | A,B,L | |
[30] | Test system 4 | √ | A,B,L | ||
[32] | LP | SEBs in india | √ | √ | A,B,L |
[33] | Test system 3,4 | √ | A,B,L | ||
[168] | NLP | Test system 4 | √ | A,B,L,M | |
[34] | NLCNFP | Test system 4 | √ | A,B,L | |
[35] | HLP | Test system 9,19 | √ | A,B,L | |
[36] | NR | Test system 3,4,7 | √ | A,B,L | |
[38] | WMM | Test system 4 | √ | A,B,L | |
[39] | IPM | Test system 10,12,17,18 | √ | A,B,L,V,R,P |
Refs | Method | Test Case | Condition | Constraints | |
---|---|---|---|---|---|
St | D | ||||
[40] | ANN | Test system 1,2,18,23 | √ | A,B,LF | |
[41] | MHNN | Test system 1,8 | √ | A,B,L,M | |
[42] | AHNN | Test system 1 | √ | A,B,LF,N,T,S | |
[43] | BBO | Test system 4 | √ | A,B,S,SV | |
[44] | Test system 5,10,14,18,22 | √ | A,B,V,R | ||
[46] | Test system 1,4 | √ | A,B,V,LF | ||
[119] | CBBO | Test system 18 | √ | √ | A,B,V,L,R |
[47] | PSO | Test system 4 | √ | A,B,S | |
[49] | Test system 5 | √ | A,B | ||
[48] | Test system 1,9,18 | √ | A,B,V,M | ||
[50] | Test system 6 | √ | A,B | ||
[51] | Test system 2 and 4 heat units | √ | A,B,V,L | ||
[53] | ACO | Test system 1,3 | √ | A,B,LF,V | |
[55] | MBA | Test system 4,9 | √ | A,B,V | |
[56] | FPA | Test system 1,9,18 | √ | A,B,L,V | |
[58] | GA | Test system 4,13 | √ | A,B | |
[57] | Test system 4 | √ | A,B,T | ||
[59] | Test system 1 | √ | √ | A,B,LF,R | |
[63] | Test system 4 | √ | A,B,L | ||
[64] | Electrical network in western Algeria | √ | A,B,L | ||
[90] | NSGA-II | Test system 1,4 | √ | A,B,L,LF | |
[97] | SPEA | Test system 4 | √ | A,B,L | |
[98] | NSGA | Test system 4 | √ | A,B,L | |
[65] | NPGA | Test system 4 | √ | A,B,L | |
[169] | ABC | Test system 4,8 | √ | A,B,L | |
[170] | Test system 1,4 | √ | A,B,L | ||
[171] | IABC | Test system 1,3,4,18 | √ | A,B,L,V | |
[171] | IABC-LS | √ | |||
[116] | GCABC | Test system 4,8 | √ | √ | A,B,L,V,R,P |
[115] | ABC-LS | Test system 9 | √ | A,B,L,V,R,P | |
[172] | BA | Test system 4 | √ | A,B | |
[173] | BA | Test system 4 | √ | A,B | |
[71] | QBA | Test system 4 | √ | A,B | |
[73] | GSA | Test system 1,8 | √ | A,B | |
[80] | EP | Test system 1,10 | √ | A,B,V | |
[81] | FL | Test system 4 | √ | A,B.L | |
[82] | MGSO | Test system 1,10,18 | √ | A,B,V | |
[84] | SA | Test system 1 | √ | √ | A,B,L |
[83] | Test system 2 and two hydro | √ | A,B,L | ||
[85] | Test system 4 | √ | A,B,L | ||
[88] | Test system 4 | √ | A,B,L,N | ||
[86] | Test system 5 | √ | A,B,L | ||
[91] | DE | Test system 4 | √ | A,B,C,L,S | |
[92] | Test system 5 | √ | A,B,L | ||
[94] | BFA | Test system 4 | √ | A,B,L | |
[95] | FPA | Test system 1,9,18 | √ | A,B,L,V | |
[99] | ALO | Test system 1,4 | √ | A,B,L | |
[100] | TS | Test system 6 | √ | A,B,L | |
[102] | GWO | Test system 1,4 | √ | A,B,L | |
[103] | Test system 1,4 | √ | A,B,L | ||
[104] | IGWO | Test system 5,9 | √ | A,B,L | |
[111] | SFLA | Test system 4 | √ | A,B,L,N | |
MSFLA | Test system 4 | √ | A,B,L,N | ||
[107] | CSSA | Test system 4 | √ | A,B,L,V | |
[108] | ECSSA | Test system 4,13 | √ | A,B,L,V,R,S,P,M | |
[109] | TLBO | Test system 1,10,18 | √ | A,B,L,V,M | |
[106] | NSMOOGS | Test system 4 | √ | A,B,T,S,SV | |
[105] | MICA | Test system 1,3 | √ | A,B | |
[112] | θ-MTLBO | Test system 3;8;23 | √ | A,B,L,V,R |
Refs | Method | Test Case | Condition | Constraints | |
---|---|---|---|---|---|
St | D | ||||
[122] | GA–WOA | Test system 1,3,8,18,20 | √ | A,B,L,V | |
[123] | TVAC-PSO-EMA | Test system 4 | √ | A,B,L,V,R,S,P,M | |
[124] | DE-CQPSO | Test system 4,9 | √ | A,B,V,R | |
[125] | JAYA–TLBO | Test system 5,9,18 | √ | A,B,L,V,R,P,M | |
[128] | BF–NM | Test system 10 | √ | A,B,L,P,V,S,R,PP | |
[129] | MHBA (NSGAII-BA) | Test system 4,13,21 | √ | R and P | |
[130] | CSA-BA-ABC | Test system 2,10 | √ | A,B,L,P | |
[131] | ACO–ABC–HS | Test system 8 | √ | A,B,C,L,V,R | |
[132] | DHS | Test system1 4,8,10,15 | √ | A,B,L,V,R,P,M | |
[133] | SDE | Test system 10,18 | √ | A,B,L,V | |
[134] | DEPSO | Test system 1,10,18 | √ | A,B,L,V,R | |
[135] | HPSO-GSA | Test system 1,10,18 | √ | A,B,L,V,R | |
[136] | PSO-SQP | Test system 1,10,18 | √ | A,B,L,V | |
[137] | CPSO-SQP | Test system 1,10,18 | √ | A,B,L,V | |
[138] | DE-BBO | Test system 1,4 | √ | A,B,L,V | |
[139] | GA-PS-SQP | Test system 1,10,18 | √ | A,B,L,V | |
[183] | SFLA-SA | Test system 4 | √ | A,B,L,V,P |
Ref | Method | Objectives | Test Case | Constraints | ||||
---|---|---|---|---|---|---|---|---|
Cost | Emission | CEED | Thermal Unit | RES | ||||
PV | Wind | |||||||
[24] | LI | √ | √ | √ | A,B,L,P | |||
[25] | √ | √ | √ | A,B,C,L,P,V,R,M | ||||
[189] | QP | √ | √ | A,B | ||||
[186] | PSO | √ | √ | √ | √ | √ | A,B | |
[187] | √ | √ | √ | √ | √ | A,B | ||
[185] | √ | √ | A,B | |||||
[121] | MOPSO | √ | √ | √ | √ | √ | √ | A,B,L,V |
[117] | NSPSO-LS | √ | √ | √ | √ | A,B,L,V | ||
[113] | MOALO | √ | √ | √ | √ | √ | A,B,L,V,R | |
[114] | √ | √ | √ | √ | √ | A,B,L,V,R | ||
[118] | DPO | √ | √ | √ | √ | √ | A,B,L,V,R | |
[188] | NSGA-II | √ | √ | √ | √ | √ | A,B,L,N | |
[191] | WOA | √ | √ | √ | √ | √ | A,B | |
[192] | ED | √ | √ | √ | A,B,R. | |||
[107] | CSCA | √ | √ | √ | √ | A,B,L | ||
[193] | MHS | √ | √ | √ | √ | A,B | ||
[190] | CMOPEO | √ | √ | √ | √ | A,B,S | ||
[194] | PaCcET | √ | √ | √ | √ | A,B | ||
[181] | HPFA | √ | √ | √ | √ | A,B,L,V,R,S,P | ||
[127] | BA-PSO | √ | √ | √ | A,B,L,V,R | |||
[180] | HBCSA | √ | √ | √ | √ | A,B,L,R | ||
[179] | HFPSO | √ | √ | √ | √ | √ | A,B,L,S | |
[178] | hBBO-BOA | √ | √ | √ | A,B,L,V,S | |||
[182] | WPNN-BBO | √ | √ | A,B,L,V,M | ||||
[195] | eFPA-BFPA | √ | √ | √ | √ | √ | A,B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marouani, I.; Guesmi, T.; Hadj Abdallah, H.; Alshammari, B.M.; Alqunun, K.; Alshammari, A.S.; Rahmani, S. Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review. Energies 2022, 15, 4472. https://doi.org/10.3390/en15124472
Marouani I, Guesmi T, Hadj Abdallah H, Alshammari BM, Alqunun K, Alshammari AS, Rahmani S. Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review. Energies. 2022; 15(12):4472. https://doi.org/10.3390/en15124472
Chicago/Turabian StyleMarouani, Ismail, Tawfik Guesmi, Hsan Hadj Abdallah, Badr M. Alshammari, Khalid Alqunun, Ahmed S. Alshammari, and Salem Rahmani. 2022. "Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review" Energies 15, no. 12: 4472. https://doi.org/10.3390/en15124472
APA StyleMarouani, I., Guesmi, T., Hadj Abdallah, H., Alshammari, B. M., Alqunun, K., Alshammari, A. S., & Rahmani, S. (2022). Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review. Energies, 15(12), 4472. https://doi.org/10.3390/en15124472