Hydrological and Environmental Conditions and Implications of the Operation of a Thermal Power Plant with an Open Cooling System—An Example from Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey
- Acceptable water abstraction according to the water permit;
- actual water consumption;
- source or sources of water abstraction;
- type of water abstraction;
- amount of water collected and discharged into surface waters;
- type, location, and amount of discharged sewage;
- qualitative and quantitative assessment of surface waters;
- water demand forecasts until 2030 and 2050.
2.2. Characteristics of the Analyzed Power Plants with an Open Cooling Circuit
2.3. Hydrological Basics, Measurement Data, Methodology of Their Use
2.4. Climate Change and Its Impact on Hydrological Conditions until 2030
3. Results
3.1. Survey Results
3.2. Hydrological Analyses
3.2.1. General Characteristics
3.2.2. Analyses of Cross-Sections of Water Intake Location for Power Plants in the Multi-Year Period 2010–2020
Połaniec Power Plant—Szczucin Water Gauge Station
- 2012: 93 days;
- 2013: 8 days;
- 2015: 38 days;
- 2017: 1 day;
- 2019: 3 days.
Dolna Odra Power Plant—Gozdowice Water Gauge Station
- 2015: 144 days;
- 2016: 106 days;
- 2018: 138 days;
- 2019: 172 days;
- 2020: 116 days.
Kozienice Power Plant—Dęblin Water Gauge Station
- 2012: 38 days;
- 2013: 8 days;
- 2015: 53 days;
- 2016: 13 days;
- 2017: 4 days;
- 2018: 22 days;
- 2019: 27 days;
- 2020: 6 days.
Ostrołęka Power Plant—Nowogród Water Gauge Station
- 2015: 124 days;
- 2016: 19 days;
- 2018: 59 days;
- 2019: 95 days;
- 2020: 33 days.
3.2.3. Detailed Analysis of the Połaniec Power Plant
- WWQ—the highest high flow—5780 m3 s−1;
- SWQ—medium-high flow—1872 m3 s−1;
- SSQ—medium flow from the medium annual flows—233 m3 s−1;
- SNQ—medium-low flow—78.6 m3 s−1;
- NNQ—the lowest low flow—40.5 m3 s−1.
Summer Period of 2015
Summer Period of 2020
3.3. The Impact of Climate Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis—Summary for Policymakers; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/#SPM (accessed on 10 March 2022).
- Wereski, S.; Pawelec, W. (Eds.) Bulletin of the National Hydrological and Meteorological Service Year 2019; Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy: Warszawa, Poland, 2019. [Google Scholar]
- Bronk, L.; Czarnecki, B.; Magulski, R. Elastyczność Krajowego Systemu Elektroenergetycznego; Diagnoza, Potencjał, Rozwiązania; Forum Energii: Warszawa, Poland, 2019; Available online: https://www.cire.pl/pliki/1/2019/elastycznosc_kse.pdf (accessed on 10 March 2022).
- Li, Z.; Su, S.; Jin, X.; Chen, H.; Li, Y.; Zhang, R. A hierarchical scheduling method of active distribution network considering flexible loads in office buildings. Int. J. Electr. Power Energy Syst. 2021, 131, 106768. [Google Scholar] [CrossRef]
- Majewski, W. Woda w Inżynierii Środowiska; Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy: Warszawa, Poland, 2017. [Google Scholar]
- Statistics Poland (GUS). Environment 2020; GUS: Warszawa, Poland, 2020. Available online: https://stat.gov.pl/en/topics/environment-energy/environment/environment-2020,1,12.html (accessed on 10 March 2022).
- Statistics Poland (GUS). Local Data Bank; GUS: Warszawa, Poland, 2022. Available online: https://bdl.stat.gov.pl/BDL/start (accessed on 10 March 2022).
- Wawręty, R.; Cebula, M. Identyfikacja Głównych Problemów Prawnych w Zakresie Odprowadzania wód Pochłodniczych w Polsce; Towarzystwo na Rzecz Ziemi: Oświęcim, Poland, 2020. [Google Scholar]
- PEP 2040. Energy Policy of Poland until 2040; Ministry of Climate and Environment: Dubai, United Arab Emirates, 2021. Available online: https://www.gov.pl/web/klimat/polityka-energetyczna-polski-do-2040-r-przyjeta-przez-rade-ministrow (accessed on 10 March 2022).
- PGE Dystrybucja S.A. Ograniczenia w Dostarczaniu i Poborze Energii Elektrycznej. Available online: https://pgedystrybucja.pl/o-spolce/aktualnosci/Lodz/Ograniczenia-w-dostarczaniu-i-poborze-energii-elektrycznej (accessed on 10 March 2022).
- Węglewski, M. Moc nie Będzie z Nami. 2018. Available online: https://www.newsweek.pl/biznes/rynek-energii-ogarnelo-szalenstwo-beda-wyzsze-rachunki/dwpb4vq (accessed on 10 March 2022).
- Byers, E.A.; Coxon, G.; Freer, J.; Hall, J.W. Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain. Nat. Commun. 2020, 11, 2239. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.W.; Hall, J.W.; Hanasaki, N.; Lim, W.H.; Paltan, H. Water shortage risks for China’s coal power plants under climate change. Environ. Res. Lett. 2021, 16, 044011. [Google Scholar] [CrossRef]
- Whieldon, E.; Taylor, K. Climate Change Poses Big Water Risks for Nuclear, Fossil-Fueled Plants. 2020. Available online: https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/climate-change-poses-big-water-risks-for-nuclear-fossil-fueled-plants-60669992 (accessed on 10 March 2022).
- Baca-Pogrzelska, K. As Poland Faces Another Drought, Its Energy Sector Is Better Prepared to Avoid Outages. 2020. Available online: https://notesfrompoland.com/2020/06/15/as-poland-faces-another-drought-its-energy-sector-is-better-prepared-to-avoid-outages/ (accessed on 10 March 2022).
- IMGW-PIB, Public Data. Available online: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/dane_hydrologiczne/dobowe/ (accessed on 10 March 2022).
- World Meteorological Organization (WMO). Manual on Stream Gauging Volume I—Fieldwork WMO-No. 1044; WMO: Geneva, Switzerland, 2010; Available online: https://library.wmo.int/doc_num.php?explnum_id=219 (accessed on 10 March 2022).
- Product Data Sheet PDB AO 19. 2020. Available online: https://www.lawa.de/documents/lawa_empfehlung_mindestwasserfuehrung_ausleitungsstrecken_wasserkraftanlagen_2_1610718961.pdf (accessed on 10 March 2022).
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF (accessed on 10 March 2022).
- Hirji, R.; Davis, R. Environmental Flows in Water Resources Policies, Plans, and Projects: Findings and Recommendations; The World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Kostrzewa, H. Weryfikacja Kryteriów i Wielkości Przepływu Nienaruszalnego dla rzek Polski; Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy: Warszawa, Poland, 1977. [Google Scholar]
- Majewski, W.; Walczykiewicz, T. (Eds.) Zrównoważone Gospodarowanie Zasobami Wodnymi Oraz Infrastrukturą Hydrotechniczną w Świetle Prognozowanych Zmian Klimatycznych; Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy: Warszawa, Poland, 2012. [Google Scholar]
- Bulletins of the National Hydrological and Meteorological Service, Years 2010–2020; Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy: Warszawa, Poland, 2020.
- ENEA S.A. Website—Information about Company. Available online: https://www.enea.pl/pl/grupaenea/o-grupie/spolki-grupy-enea/polaniec/informacje-o-spolce/wstep (accessed on 10 March 2022).
- Zapała, B. Osiem Turbin Wytwarza Ponad 5 Procent Energii w Polsce. Wisła w Połańcu. 2017. Available online: https://www.radio.kielce.pl/pl/post-60208 (accessed on 10 March 2022).
- Regulation (EU) No 1227/2011 of the European Parliament and of the Council of 25 October 2011 on Wholesale Energy Market Integrity and Transparency. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1227&from=PL (accessed on 10 March 2022).
- ENTSOE Transparency Platform. Available online: https://transparency.entsoe.eu/ (accessed on 10 March 2022).
- PSE S.A. Polish Power System Operation—Production. Available online: https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-dobowe-z-pracy-kse/generacja-mocy-jednostek-wytworczych (accessed on 10 March 2022).
- Dynowska, I.; Maciejewski, M. (Eds.) Dorzecze Górnej Wisły; PWN: Warszawa-Kraków, Poland, 1991. [Google Scholar]
- Piskozub, A. Wisła: Monografia Rzeki; WKiŁ: Warszawa, Poland, 1982. [Google Scholar]
- Witkowski, K. The Galician Canal—An unrealized project that changed the rivers in the northern part of the Carpathians. River Res. Appl. 2021, 37, 1343–1356. [Google Scholar] [CrossRef]
- ENEA, S.A. Information for the Water Tourists. Available online: https://www.enea.pl/pl/grupaenea/o-grupie/spolki-grupy-enea/polaniec/informacja-dla-turystow-wodnych (accessed on 10 March 2022).
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, ‘Fit for 55’: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0550&from=PL (accessed on 10 March 2022).
- World Nuclear Association. Cooling Power Plants. 2020. Available online: https://www.world-nuclear.org/information-library/current-and-future-generation/cooling-power-plants.aspx (accessed on 10 March 2022).
- Kiełbasa, W. Lokalizacja Elektrowni Jądrowych w Polsce; Hydroenergo: Wejherowo, Poland, 2009; Available online: http://www.if.pw.edu.pl/~pluta/pl/dyd/mtj/zal2/CD_II_SZKOLA/III.%20MOZLIWOSCI_I_ZADANIA/7_W_Kielbasa_lokalizacja_elektrowni.pdf (accessed on 10 March 2022).
Power Plant | Achievable Power (MW) | Source of Surface Water Intake |
---|---|---|
Połaniec | 1882 | Wisła River |
Kozienice | 4016 | Wisła River |
Dolna Odra | 908 | Odra River |
Ostrołęka | 690 | Narew River |
Power Plant | Name of the Water Gauge Station | Code of the Water Gauge Station | River | SNQ (m3 s−1) | Calculation Period for Flow Characteristics |
---|---|---|---|---|---|
Połaniec | Szczucin | 150210020 | Wisła | 78.6 | 1951–2020 |
Kozienice | Dęblin | 151210120 | Wisła | 183 | 1971–2020 |
Dolna Odra | Gozdowice | 152140020 | Odra | 242 | 1951–2020 |
Ostrołęka | Nowogród | 153210210 | Narew | 38.4 | 1951–2020 |
Month in the Hydrological Year | Average Monthly Flow in the Hydrological Year (m3 s−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
XI | 1282 | 1354 | 587 | 678 | 787 | 702 | 527 | 1040 | 1620 | 530 | 491 |
XII | 925 | 1431 | 627 | 555 | 887 | 678 | 692 | 1160 | 1660 | 576 | 472 |
I | 1065 | 2563 | 777 | 803 | 869 | 1018 | 592 | 865 | 1550 | 943 | 699 |
II | 918 | 2082 | 866 | 1500 | 1185 | 1032 | 1120 | 858 | 1510 | 1130 | 871 |
III | 2529 | 1524 | 1366 | 1490 | 1234 | 1089 | 1450 | 1950 | 1130 | 1120 | 983 |
IV | 1917 | 1371 | 1260 | 2220 | 1026 | 1060 | 963 | 1310 | 1410 | 773 | 567 |
V | 2877 | 1030 | 914 | 1680 | 1480 | 801 | 853 | 1550 | 817 | 1070 | 508 |
VI | 3170 | 684 | 837 | 1860 | 1064 | 859 | 541 | 702 | 509 | 1160 | 928 |
VII | 1106 | 1320 | 699 | 1190 | 932 | 458 | 510 | 608 | 654 | 446 | 928 |
VIII | 1479 | 1684 | 514 | 630 | 954 | 368 * | 584 | 530 | 628 | 401 * | 493 |
IX | 2201 | 782 | 459 | 590 | 751 | 328 * | 433 | 836 | 432 | 338 * | 505 |
X | 1276 | 613 | 522 | 723 | 741 | 439 | 768 | 1270 | 423 | 422 | 1040 |
Month in the Hydrological Year | Average Monthly Flow in the Hydrological Year (m3 s−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
XI | 458 | 734 | 318 | 390 | 391 | 403 | 222 * | 397 | 718 | 225 * | 223 * |
XII | 454 | 947 | 353 | 437 | 439 | 350 | 265 | 490 | 720 | 257 | 237 * |
I | 458 | 1412 | 555 | 551 | 453 | 524 | 303 | 454 | 839 | 440 | 269 |
II | 496 | 1134 | 566 | 778 | 454 | 494 | 369 | 401 | 759 | 473 | 361 |
III | 1008 | 796 | 813 | 781 | 406 | 421 | 525 | 701 | 551 | 507 | 444 |
IV | 881 | 652 | 556 | 809 | 443 | 455 | 482 | 528 | 522 | 346 | 280 |
V | 929 | 461 | 424 | 746 | 440 | 311 | 323 | 628 | 347 | 334 | 215 * |
VI | 1592 | 321 | 321 | 1070 | 459 | 235 * | 245 * | 313 | 227 * | 327 | 291 |
VII | 429 | 440 | 413 | 794 | 286 | 200 * | 244 * | 295 | 208 * | 160 * | 291 |
VIII | 621 | 616 | 301 | 402 | 291 | 152 * | 265 | 361 | 179 * | 144 * | 235 * |
IX | 701 | 397 | 299 | 365 | 384 | 146 * | 205 * | 383 | 171 * | 174 * | 281 |
X | 853 | 346 | 301 | 429 | 409 | 170 * | 312 | 553 | 202 * | 218 * | 581 |
Nature | Unavailability Period | Unit Name | Capacity | |
---|---|---|---|---|
Start–End (CET/CEST) | Installed (MW) | Available (MW) | ||
Forced Outage | 9 June 2015 04:41–9 June 2015 11:01 | Połaniec B4 | 242 | 0 |
11 June 2015 20:43–12 June 2015 01:30 | Połaniec B2 | 242 | 0 | |
12 June 2015 07:11–14 June 2015 22:30 | Połaniec B4 | 242 | 0 | |
17 June 2015 17:14–20 June 2015 18:31 | Połaniec B4 | 242 | 0 | |
22 June 2015 15:03–23 June 2015 18:16 | Połaniec B2 | 242 | 0 | |
20 June 2015 00:00–26 July 2015 04:31 | Połaniec B3 | 242 | 0 | |
23 June 2015 13:45–23 July 2015 15:00 | Połaniec B2 | 242 | 120 | |
25 June 2015 03:13–25 July 2015 13:00 | Połaniec B5 | 225 | 0 | |
25 June 2015 14:31–25 June 2015 17:00 | Połaniec B7 | 239 | 129 | |
25 June 2015 19:00–25 June 2015 21:01 | Połaniec B6 | 242 | 0 | |
25 June 2015 20:55–26 June 2015 08:48 | Połaniec B6 | 242 | 0 | |
8 August 2015 18:54–8 August 2015 22:00 | Połaniec B7 | 239 | 0 | |
9 August 2015 02:26–9 August 2015 04:00 | Połaniec B3 | 242 | 105 | |
10 August 2015 06:31–11 August 2015 01:31 | Połaniec B4 | 242 | 0 | |
12 August 2015 20:51–12 August 2015 22:15 | Połaniec B6 | 242 | 0 | |
30 August 2015 20:54–31 August 2015 06:28 | Połaniec B2 | 242 | 0 |
Nature | Unavailability Period | Unit Name | Capacity | |
---|---|---|---|---|
Start–End (CET/CEST) | Installed (MW) | Available (MW) | ||
Forced outage | 22 February 2020 00:01–17 March 2021 06:00 | Połaniec B6 | 242 | 0 |
13 June 2020 07:01–13 June 2020 19:45 | Połaniec B3 | 242 | 130 | |
17 June 2020 14:55–21 June 2020 01:01 | Połaniec B4 | 242 | 0 | |
21 June 2020 17:31–21 June 2020 21:31 | Połaniec B4 | 242 | 0 | |
1 July 2020 00:34–4 July 2020 00:53 | Połaniec B4 | 242 | 0 | |
1 July 2020 09:11–1 July 2020 13:01 | Połaniec B5 | 225 | 0 | |
10 July 2020 07:01–11 July 2020 00:48 | Połaniec B3 | 242 | 0 | |
22 August 2020 09:31–22 August 2020 11:45 | Połaniec B3 | 225 | 142 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walczykiewicz, T.; Żelazny, M. Hydrological and Environmental Conditions and Implications of the Operation of a Thermal Power Plant with an Open Cooling System—An Example from Poland. Energies 2022, 15, 3600. https://doi.org/10.3390/en15103600
Walczykiewicz T, Żelazny M. Hydrological and Environmental Conditions and Implications of the Operation of a Thermal Power Plant with an Open Cooling System—An Example from Poland. Energies. 2022; 15(10):3600. https://doi.org/10.3390/en15103600
Chicago/Turabian StyleWalczykiewicz, Tomasz, and Mateusz Żelazny. 2022. "Hydrological and Environmental Conditions and Implications of the Operation of a Thermal Power Plant with an Open Cooling System—An Example from Poland" Energies 15, no. 10: 3600. https://doi.org/10.3390/en15103600