Vector-Field Visualization of the Total Reflection of the EM Wave by an SRR Structure at the Magnetic Resonance
Abstract
:1. Introduction
2. Metamaterial Unit Cell
3. Simulation Procedure
- Determining from the results of a scattering matrix S, the coefficients for absorption, transmission, and reflection, as well as the effective composite electric permittivity and magnetic permeability of the studied metasurface,
- Determining the electric and magnetic field distributions in 3D space bounded by the computation area defined in CST studio.
4. Parameters of the Incident Electromagnetic Plane Wave
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kennedy, D. Breakthrough of the year: The runners-up. Science 2004, 302, 2033–2034. [Google Scholar] [CrossRef] [Green Version]
- Capolino, F. Applications of Metamaterials; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Gay-Balmaz, P.; Martin, O.J. Electromagnetic resonances in individual and coupled split-ring resonators. J. Appl. Phys. 2002, 92, 2929–2936. [Google Scholar] [CrossRef]
- Oliveri, G.; Werner, D.H.; Massa, A. Reconfigurable electromagnestics through metamaterials—A review. Proc. IEEE 2015, 103, 1034–1056. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhao, Q.; Lan, C.; Zhou, J. Isotropic Mie resonance-based metamaterial perfect absorber. Appl. Phys. Lett. 2013, 103, 031910. [Google Scholar] [CrossRef]
- Xiong, X.; Jiang, S.C.; Hu, Y.H.; Peng, R.W.; Wang, M. Structured metal film as a perfect absorber. Adv. Mater. 2013, 25, 3994–4000. [Google Scholar] [CrossRef] [PubMed]
- Guangsheng, D.; Hanxiao, S.; Kun, L.; Jun, Y.; Zhiping, Y.; Baihong, C. 3D-Printed Multiband Absorber Based on Stereo Frequency Selective Structures. Phys. Status Solidi 2021, 218, 7. [Google Scholar]
- Qinyu, Q.; Chinhua, W.; Li, F.; Liwen, C.; Haitao, C.; Liang, Z. An ultra-broadband metasurface perfect absorber based on the triple Mie resonances. Opt. Mater. 2021, 116, 111103. [Google Scholar]
- Niu, T.; Qiu, B.; Zhang, Y.; Hirakawa, K. Control of absorption properties of ultra-thin metal–insulator–metal metamaterial terahertz absorbers. Jpn. J. Appl. Phys. 2020, 59, 12. [Google Scholar] [CrossRef]
- Jianli, C.; Hongcheng, X.; Xiaohua, Y.; Guirong, S.; Huixia, S. A Novel Encoding Strategy of Enhanced Broadband and Absorption Conformable Metamaterial for MW Applications. IEEE Access 2020, 8, 100458–100468. [Google Scholar]
- Feng, L.; Huo, P.; Liang, Y.; Xu, T. Photonic Metamaterial Absorbers: Morphology Engineering and Interdisciplinary Applications. Adv. Mater. 2019, 32, 27. [Google Scholar] [CrossRef]
- Nahvi, E.; Liberal, I.; Engheta, N. Nonlinear metamaterial absorbers enabled by photonic doping of epsilon-near-zero metastructures. Phys. Rev. B 2020, 102, 3. [Google Scholar] [CrossRef]
- Zahra, S.; Ma, L.; Wang, W.; Li, J.; Chen, D.; Liu, Y.; Zhou, Y.; Li, N.; Huang, Y.; Wen, G. Electromagnetic Metasurfaces and Reconfigurable Metasurfaces: A Review. Front. Phys. 2021, 8, 615. [Google Scholar] [CrossRef]
- Haixia, M.; Wang, X. Wide-angle broadband near-perfect all-dielectric metamaterial reflector. Opt. Eng. 2018, 57, 017102. [Google Scholar]
- Slovick, B.; Yu, Z.G.; Berding, M.; Krishnamurthy, S. Perfect dielectric-metamaterial reflector. Phys. Rev. B 2013, 88, 165116. [Google Scholar] [CrossRef]
- Xu, W.; Sonkusale, S. Microwave diode switchable metamaterial reflector/absorber. Appl. Phys. Lett. 2013, 103, 031902. [Google Scholar] [CrossRef]
- Badloe, T.; Mun, J.; Rho, J. Metasurfaces-based absorption and reflection control: Perfect absorbers and reflectors. J. Nanomater. 2017, 2017, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Keshavarz, A.; Vafapour, Z. Sensing avian influenza viruses using terahertz metamaterial reflector. IEEE Sens. J. 2019, 19, 5161–5166. [Google Scholar] [CrossRef]
- Suakaew, J.; Pijitrojana, W. A Dynamic Wireless Power Transfer Using Metamaterial-Based Transmitter. Prog. Electromagn. Res. C 2021, 110, 151–165. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, S.; Kim, D.-H.; Kim, H.; Song, C.; Kong, S.; Park, J.; Seo, C.; Kim, J. Thin hybrid metamaterial slab with negative and zero permeability for high efficiency and low electromagnetic field in wireless power transfer systems. IEEE Trans. Ind. Electron. 2018, 60, 4. [Google Scholar] [CrossRef]
- Wang, B.; Nishino, T.; Teo, K.H. Wireless Power Transmission Efficiency Enhancement with Metamaterials. In Proceedings of the 2010 IEEE International Conference on Wireless Information Technology and Systems, Honululu, HI, USA, 28 August–3 September 2010. [Google Scholar]
- Wang, B.; Teo, K.H.; Nishino, T.; Yerazunis, W.; Barnwell, J.; Zhang, J. Wireless Power Transfer with Metamaterials. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011. [Google Scholar]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Almoneef, T.S.; Ramahi, O.M. Metamaterial electromagnetic energy harvester with near unity efficiency. Appl. Phys. Lett. 2015, 106, 153902. [Google Scholar] [CrossRef]
- Zhong, H.T.; Yang, X.X.; Tan, C.; Yu, K. Triple-band polarization-insensitive and wide-angle metamaterial array for electromagnetic energy harvesting. Appl. Phys. Lett. 2016, 109, 253904. [Google Scholar] [CrossRef]
- Zhong, H.T.; Yang, X.X.; Song, X.T.; Guo, Z.Y.; Yu, F. Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer. Appl. Phys. Lett. 2017, 111, 213902. [Google Scholar] [CrossRef]
- Fang, N.; Zhang, X. Imaging Properties of a Metamaterial Superlens. In Proceedings of the 2nd IEEE Conference on Nanotechnology, Washington, DC, USA, 28 August 2002. [Google Scholar]
- Wong, Z.J.; Wang, Y.; O’Brien, K.; Rho, J.; Yin, X.; Zhang, S.; Zhang, X. Optical and acoustic metamaterials: Superlens, negative refractive index and invisibility cloak. J. Opt. 2017, 19, 084007. [Google Scholar] [CrossRef] [Green Version]
- Haxha, S.; AbdelMalek, F.; Ouerghi, F.; Charlton, M.D.B.; Aggoun, A.; Fang, X.J.S.R. Metamaterial superlenses operating at visible wavelength for imaging applications. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, Y.; He, L. Tunable Filters Based on the Varactor-Loaded Spilt-Ring Resonant Structure Coupled to the Micropstrip Line. In Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT ‘08), Nanjing, China, 21–24 April 2008. [Google Scholar]
- Bouyge, D.; Crunteanu, A.; Pothier, A.; Martin, P.O.; Blondy, P.; Velez, A.; Bonache, J.; Orlianges, J.C.; Martin, F. Reconfigurable 4 Pole Bandstop Filter Based on RF-MEMS-Loaded Split Ring Resonators. In Proceedings of the IEEE MTT-S International Microwave Symposium (MTT ‘10), Anaheim, CA, USA, 23–28 May 2010. [Google Scholar]
- Ghafari, S.; Forouzeshfard, M.R.; Vafapour, Z. Thermo optical switching and sensing applications of an infrared metamaterial. IEEE Sens. J. 2019, 20, 3235–3241. [Google Scholar] [CrossRef]
- Vafapour, Z. Polarization-independent perfect optical metamaterial absorber as a glucose sensor in Food Industry applications. IEEE Trans. Nanobiosci. 2019, 18, 622–627. [Google Scholar] [CrossRef]
- Xia, L.; Wang, Y.; Wang, G.; Long, X.; Huang, S.; Tan, Y.; Yan, W.; Dang, S.; Yiun, S.; Cui, H. Graphene based terahertz amplitude modulation with metallic tortuous ring enhancement. Opt. Commun. 2019, 440, 190–193. [Google Scholar] [CrossRef]
- Vafapour, Z. Slow light modulator using semiconductor metamaterial. Proc. SPIE 2018, 10535, 105352A. [Google Scholar]
- Wang, G.; Lu, H.; Liu, X. Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency. Opt. Express 2012, 20, 19. [Google Scholar] [CrossRef] [PubMed]
- Pekka, A.; Tretyakov, S. Electromagnetic cloaking with metamaterials. Mater. Today 2009, 12, 22–29. [Google Scholar]
- Yang, S.; Liu, P.; Yang, M.; Wang, Q.; Song, J.; Dong, L. From flexible and stretchable meta-atom to metamaterial: A wearable microwave meta-skin with tunable frequency selective and cloaking effects. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montoya, J.A.; Tian, Z.B.; Krishna, S.; Padilla, W.J. Ultra-thin infrared metamaterial detector for multicolor imaging applications. Opt. Express 2017, 25, 23343–23355. [Google Scholar] [CrossRef] [PubMed]
- Mohamadi, T.; Yousefi, L. Metamaterial-based energy harvesting for detectivity enhanced infrared detectors. Plasmonics 2019, 14, 815–822. [Google Scholar] [CrossRef]
- Tao, H.; Padilla, W.J.; Zhang, X.; Averitt, R.D. Recent progress in electromagnetic metamaterial devices for terahertz applications. IEEE J. Selected Topics Quantum Electron. 2011, 17, 1. [Google Scholar] [CrossRef]
- Langley, R.; Liu, L.; Lee, H.-J.; Ford, L. Tunable Antennas and AMC Structures. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Toronto, ON, Canada, 11–17 July 2010. [Google Scholar]
- Yan, L.B.; Zhu, W.M.; Wu, P.C. Adaptable metasurface for dynamic anomalous reflection. Appl. Phys. Lett. 2017, 110, 20. [Google Scholar] [CrossRef]
- Grigonienė, J.; Karnauskas, M. Mathematical modeling of optimal tilt angles of solar collector and sunray reflector. Energetika 2009, 1, 41–46. [Google Scholar]
- Zhu, B.; Feng, Y.; Zhao, J.; Huang, C.; Jiang, T. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Appl. Phys. Lett. 2010, 97, 5. [Google Scholar] [CrossRef] [Green Version]
- ETSI EN 302 217-1 V1.1.4. Fixed Radio Systems; Characteristics and Requirements for Point-to-Point Equipment and Antennas, European Standard (Telecommunications Series); European Telecommunications Standards Institute: Sophia Antipolis, France, 2005. [Google Scholar]
- Pendry, J.B.; Holden, A.J.; Stewart, W.J.; Youngs, I. Extremely low frequency plasmons in metallic mesostructured. Phys. Rev. Lett. 1996, 76, 4773. [Google Scholar] [CrossRef] [Green Version]
- Pendry, J.B.; Holden, A.J.; Stewart, W.J.; Youngs, I. Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter 1998, 10, 4785–4809. [Google Scholar] [CrossRef]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental Verification of a Negative Index of Refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, Y.J.; Yi, C.; Hwang, J.S.; Kim, Y.J.; Park, S.Y.; Kim, K.W.; Lee, Y. Experimental realization of tunable metamaterial hyper-transmitter. Sci. Rep. 2016, 6, 1–8. [Google Scholar]
- Cakir, M.; Cakir, G.; Sevgi, L. A Two-Dimensional FDTD-Based Virtual Visualization Tool for Metamnaterial-Wave Interaction. IEEE Antennas Propag. Mag. 2008, 50, 166–175. [Google Scholar] [CrossRef]
- Grande, A.; González, O.; Pereda, J.A.; Vegas, Á. Educational Computer Simulations for Visualizing and Understanding the Interaction of Electromagnetic Waves with Metamaterials. In Proceedings of the IEEE EDUCON 2010 Conference, Madrid, Spain, 14–16 April 2010; pp. 543–547. [Google Scholar]
- Wielichowski, M.; Mosig, J.R. A MATLAB-Based Virtual Tool for Visualizing the Plane Wave Propagation in Multilayer Structures Containing Metamaterials. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 1–4. [Google Scholar]
- Pekmezci, A.; Sevgi, L. FDTD-based Metamaterial (MTM) Modeling and Simulation. IEEE Antennas Propag. Mag. 2014, 56, 289–303. [Google Scholar] [CrossRef]
- Katsarakis, N.; Koschny, T.; Kafesaki, M. Electric coupling to the magnetic resonance of split ring resonators. Appl. Phys. Lett. 2004, 84, 2943–2945. [Google Scholar] [CrossRef] [Green Version]
- CST Studio Suite. Available online: www.cst.com (accessed on 5 November 2021).
- Nicolson, A.M.; Ross, G.F. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 1970, 19, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Weir, W.B. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 1974, 62, 33–36. [Google Scholar] [CrossRef]
- Rothwell, E.J.; Frasch, J.L.; Ellison, S.M.; Chahal, P.; Ouedraogo, R.O. Analysis of the Nicolson-Ross-Weir Method for Characterizingthe Electromagnetic Properties of Engineered Materials. Prog. Electromagn. Res. 2016, 157, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Caloz, C.; Itoh, T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Micr. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Min-Yeong, Y.; Sungjoon, L. Switchable Electromagnetic Metamaterial Reflector/Absorber. In Proceedings of the Asia Pacific Microwave Conference Proceedings, Kaohsiung, Taiwan, 4–7 December 2012; pp. 445–447. [Google Scholar]
- Tingting, L. Active Manipulation of Electromagnetically Induced Transparency in a Terahertz Hybrid Metamaterial. Opt. Commun. 2018, 426, 629–634. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budnarowska, M.; Rafalski, S.; Mizeraczyk, J. Vector-Field Visualization of the Total Reflection of the EM Wave by an SRR Structure at the Magnetic Resonance. Energies 2022, 15, 111. https://doi.org/10.3390/en15010111
Budnarowska M, Rafalski S, Mizeraczyk J. Vector-Field Visualization of the Total Reflection of the EM Wave by an SRR Structure at the Magnetic Resonance. Energies. 2022; 15(1):111. https://doi.org/10.3390/en15010111
Chicago/Turabian StyleBudnarowska, Magdalena, Szymon Rafalski, and Jerzy Mizeraczyk. 2022. "Vector-Field Visualization of the Total Reflection of the EM Wave by an SRR Structure at the Magnetic Resonance" Energies 15, no. 1: 111. https://doi.org/10.3390/en15010111
APA StyleBudnarowska, M., Rafalski, S., & Mizeraczyk, J. (2022). Vector-Field Visualization of the Total Reflection of the EM Wave by an SRR Structure at the Magnetic Resonance. Energies, 15(1), 111. https://doi.org/10.3390/en15010111