Estimation of Methane Production and Electrical Energy Generation from Municipal Solid Waste Disposal Sites in Pakistan
Abstract
:1. Introduction
2. Study Area—Pakistan
2.1. Municipal Solid Waste Management Situation in Pakistan
2.1.1. MSW Generation
2.1.2. MSW Composition
2.1.3. MSW Disposal
3. Greenhouse Gas Emissions Inventory of Pakistan
4. Materials and Methods
5. Results and Discussion
5.1. Estimation of Methane Emissions from Waste Disposal Sites
5.2. Estimation of Electrical Energy Generation from Waste Disposal Sites
5.3. Estimation of Financial Outcome from Waste Service Fee
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cetrulo, T.B.; Marques, R.C.; Cetrulo, N.M.; Pinto, F.S.; Moreira, R.M.; Mendizábal-Cortés, A.D.; Malheiros, T.F. Effectiveness of solid waste policies in developing countries: A case study in Brazil. J. Clean. Prod. 2018, 205, 179–187. [Google Scholar] [CrossRef]
- Aleluia, J.; Ferrão, P. Characterization of urban waste management practices in developing Asian countries: A new analytical framework based on waste characteristics and urban dimension. Waste Manag. 2016, 58, 415–429. [Google Scholar] [CrossRef]
- Ziraba, A.K.; Haregu, T.N.; Mberu, B. A review and framework for understanding the potential impact of poor solid waste management on health in developing countries. Arch. Public Health 2016, 74, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ayodele, T.R.; Alao, M.A.; Ogunjuyigbe, A.S.O. Effect of collection efficiency and oxidation factor on greenhouse gas emission and life cycle cost of landfill distributed energy generation. Sustain. Cities Soc. 2020, 52, 101821. [Google Scholar] [CrossRef]
- Gautam, M.; Agrawal, M. Greenhouse gas emissions from municipal solid waste management: A review of global scenario. In Carbon Footprint Case Studies; Muthu, S.S., Ed.; Springer: Singapore, 2021; pp. 123–160. [Google Scholar]
- Mir, I.S.; Cheema, P.P.S.; Singh, S.P. Implementation analysis of solid waste management in Ludhiana city of Punjab. Environ. Chall. 2021, 2, 100023. [Google Scholar] [CrossRef]
- The World Bank. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Available online: https://openknowledge.worldbank.org/handle/10986/30317 (accessed on 6 April 2021).
- Scarlat, N.; Motola, V.; Dallemand, J.F.; Monforti-Ferrario, F.; Mofor, L. Evaluation of energy potential of Municipal Solid Waste from African urban areas. Renew. Sustain. Energy Rev. 2015, 50, 1269–1286. [Google Scholar] [CrossRef]
- Yan, M.; Agamuthu, P.; Waluyo, J. Challenges for Sustainable Development of Waste to Energy in Developing Countries. Waste Manag. Res. 2020, 38, 229–231. [Google Scholar] [CrossRef]
- Weng, Y.C.; Fujiwara, T.; Houng, H.J.; Sun, C.H.; Li, W.Y.; Kuo, Y.W. Management of landfill reclamation with regard to biodiversity preservation, global warming mitigation and landfill mining: Experiences from the Asia-Pacific region. J. Clean. Prod. 2015, 104, 364–373. [Google Scholar] [CrossRef]
- Sohoo, I.; Ritzkowski, M.; Kuchta, K. Evaluation of behavior of waste disposal sites in Karachi, Pakistan and effects of enhanced leaching on their emission potential. Detritus 2019, 7, 96–103. [Google Scholar] [CrossRef]
- Bin Yousuf, T.; Rahman, M.M. Transforming an open dump into a sanitary landfill: A development effort in waste management. J. Mater. Cycles Waste Manag. 2009, 11, 277–283. [Google Scholar] [CrossRef]
- Osra, F.A.; Ozcan, H.K.; Alzahrani, J.S.; Alsoufi, M.S. Municipal solid waste characterization and landfill gas generation in kakia landfill, makkah. Sustainability 2021, 13, 1462. [Google Scholar] [CrossRef]
- Korai, M.S.; Mahar, R.B.; Uqaili, M.A. The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan. Renew. Sustain. Energy Rev. 2017, 72, 338–353. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; ISBN 110705799X. [Google Scholar]
- Ritzkowski, M. Clean Development Mechanism (CDM) in Landfilling. In Solid Waste Landfilling; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1141–1152. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2020, 19, 1433–1456. [Google Scholar] [CrossRef]
- Omar, H.; Rohani, S. Treatment of landfill waste, leachate and landfill gas: A review. Front. Chem. Sci. Eng. 2015, 9, 15–32. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Sohoo, I.; Ritzkowski, M.; Heerenklage, J.; Kuchta, K. Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan. Renew. Sustain. Energy Rev. 2021, 135, 110175. [Google Scholar] [CrossRef]
- Sohoo, I.; Ritzkowski, M.; Kuchta, K.; Cinar, S.Ö. Environmental Sustainability Enhancement of Waste Disposal Sites in Developing Countries through Controlling Greenhouse Gas Emissions. Sustainability 2021, 13, 151. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities. Ind. Biotechnol. 2017, 13, 15–17. [Google Scholar] [CrossRef]
- Lee, U.; Han, J.; Wang, M. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways. J. Clean. Prod. 2017, 166, 335–342. [Google Scholar] [CrossRef]
- United Nation, World Economic Situation and Prospects. J. Chem. Inf. Model. 2020, 53, 1689–1699.
- UNFCCC. The People’s Republic of China Second Biennial Update Report on Climate Change Unofficial Translation for Reference Use Only; UNFCC: Bonn, Germany, 2018. [Google Scholar]
- United States Environmental Protection Agency (EPA). Greenhouse Gas Reporting Program (GHGRP). Available online: https://www.epa.gov/ghgreporting/ghgrp-waste (accessed on 6 February 2021).
- Watch, C. Global Historical Emissions. Available online: https://www.climatewatchdata.org/ghg-emissions?end_year=2016&start_year=1990 (accessed on 12 November 2020).
- Ministry of Environment, Forest and Climate Change, Government of India. India: Second Biennial Update Report to the UNFCCC; Ministry of Environment, Forest and Climate Change, Government of India: New Delhi, India, 2018; ISBN 9788193853122.
- USAID. Greenhouse Gas Emissions in Brazil; USAID: Washington, DC, USA, 2019. [Google Scholar]
- United Nations Climate Change Secretariat. Summary of GHG Emissions for Russian Federation; United Nation Climate Change Secretariat: Bonn, Germany, 2012. [Google Scholar]
- Department of Environmental Affairs Republic of South Africa GHG. NATIONAL INVENTORY REPORT South Africa 2000–2015; Department of Environmental Affairs Republic of South Africa: Pretoria, South Africa, 2018; pp. 1–296.
- Ministry of Environment and Urbanization, Republic of Turkey. Fourth Biennial Report of Turkey; Ministry of Environment and Urban Planning: Ankara, Turkey, 2019.
- Ministry of Environment, Egyptian Environmental Affairs Agency. Egypt’s First Biennial Update Report to the United Nations Framework Convention on Climate Change; Egyptian Environmental Affairs Agency: Cairo, Egypt, 2018; ISBN 2022524616.
- USAID. Greenhouse Gas Emissions in Mexico; Fact Sheet; USAID: Washington, DC, USA, 2017; pp. 2015–2017. [Google Scholar]
- UNFCCC. Colombia’s INDC. UN. 2015, pp. 1–10. Available online: https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Colombia%20First/Colombia%20iNDC%20Unofficial%20translation%20Eng.pdf (accessed on 24 December 2020).
- USAID. Greenhouse Gas (GHG) Emissions by Sector in Bangladesh; USAID: Washington, DC, USA, 2016; pp. 2015–2017. [Google Scholar]
- USAID. Greenhouse Gas (GHG) Emissions by Sector 1 Change in GHG Emissions in Mexico (1990–2013); USAID: Washington, DC, USA, 2015; pp. 8–9. [Google Scholar]
- USAID. Greenhouse Gas Emissions in the Philippines; USAID: Washington, DC, USA, 2014; pp. 2015–2016. [Google Scholar] [CrossRef]
- Ministry of Climate Change Government of Pakistan. Pakistan’s Second National Communication On Climate Change-To United Nations Framework Convention On Climate Change (UNFCCC); Ministry of Climate Change: Islamabad, Pakistan, 2018.
- Ministry of Natural Resources and Environment Malaysia. Malaysia Biennial Update Report to the United Nations Framework Convention on Climate Change (UNFCCC); Ministry of Natural Resources and Environment Malaysia: Putrajaya, Malaysia, 2015; ISBN 9789670250236.
- Ministry of Natural Resources and Environment, (Thailand). Thailand’s Third National Communication (TNC) to the United Nations Framework Convention on Climate Change; Ministry of Natural Resources and Environment: Bangkok, Thailand, 2013.
- USAID. Greenhouse Gas Emissions in Sri Lanka; USAID: Washington, DC, USA, 2015; pp. 2014–2015. [Google Scholar]
- USAID. Greenhouse Gas Emissions in Indonesia; USAID: Washington, DC, USA, 2017; pp. 2016–2017. [Google Scholar]
- Cossu, R.; Morello, L.; Stegmann, R. Biochemical Processes in Landfill. In Solid Waste Landfilling; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Ritzkowski, M.; Stegmann, R. Landfill In Situ Aeration. In Solid Waste Landfilling; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Christensen, T.H.; Kjeldsen, P. Basic Biochemical Processes in Landfills. In Sanitary Landfilling: Process, Technology and Environmental Impact; Academic Press: London, UK, 2012. [Google Scholar]
- Önen, S.; Nsair, A.; Kuchta, K. Innovative operational strategies for biogas plant including temperature and stirring management. Waste Manag. Res. 2019, 37, 237–246. [Google Scholar] [CrossRef]
- GMI Landfill Methane: Reducing Emissions, Advancing Recovery and Use Opportunities. Glob. Methane Initiat. 2011, 2030, 1–4. Available online: https://www.globalmethane.org/documents/landfill_fs_eng.pdf. (accessed on 1 January 2021).
- Kristanto, G.A.; Koven, W. Estimating greenhouse gas emissions from municipal solid waste management in Depok, Indonesia. City Environ. Interact. 2019, 4, 100027. [Google Scholar] [CrossRef]
- Pariatamby, A.; Tanaka, M.; Islam, A.; Rasul, G.; Manandhar, P.; Parveen, J.A.; Ahmed, N. Municipal Solid Waste Management in Asia and the Pacific Islands; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kumar, A.; Samadder, S.R. A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag. 2017, 69, 407–422. [Google Scholar] [CrossRef]
- Ritzkowski, M.; Heyer, K.U.; Stegmann, R. Fundamental processes and implications during in situ aeration of old landfills. Waste Manag. 2006, 26, 356–372. [Google Scholar] [CrossRef]
- Wu, C.; Shimaoka, T.; Nakayama, H.; Komiya, T.; Chai, X. Stimulation of waste decomposition in an old landfill by air injection. Bioresour. Technol. 2016, 222, 66–74. [Google Scholar] [CrossRef]
- Sohoo, I.; Ritzkowski, M.; Kuchta, K. Influence of moisture content and leachate recirculation on oxygen consumption and waste stabilization in post aeration phase of landfill operation. Sci. Total Environ. 2021, 773, 145584. [Google Scholar] [CrossRef]
- Pakistan Bureau of Statistics, Government of Pakistan. 6th Pakistan Population and Housing Census 2017; Pakistan Bureau of Statistics, Government of Pakistan: Islamabad, Pakistan, 2017.
- Qasim, M.; Kotani, K. An empirical analysis of energy demand in Pakistan. Econ. Bull. 2014, 34, 452–458. [Google Scholar]
- Safar, K.M.; Bux, M.R.; Faria, U.; Pervez, S. Integrated model of municipal solid waste management for energy recovery in Pakistan. Energy 2021, 219, 119632. [Google Scholar] [CrossRef]
- Korai, M.S.; Ali, M.; Lei, C.; Mahar, R.B.; Yue, D. Comparison of MSW management practices in Pakistan and China. J. Mater. Cycles Waste Manag. 2019, 22, 443–453. [Google Scholar] [CrossRef]
- Shahid, M.; Nergis, Y.; Siddiqui, S.A.; Choudhry, A.F. Environmental impact of municipal solid waste in Karachi city. World Appl. Sci. J. 2014, 29, 1516–1526. [Google Scholar] [CrossRef]
- Zuberi, M.J.S.; Ali, S.F. Greenhouse effect reduction by recovering energy from waste landfills in Pakistan. Renew. Sustain. Energy Rev. 2015, 44, 117–131. [Google Scholar] [CrossRef]
- Pakistan Environmental Protection Agency. (Draft) Guideline for Solid Waste Management; Pakistan Environmental Protection Agency: Islamabad, Pakistan, 2005; pp. 1–7.
- Hoornweg, D.; Perinaz, B.-T. What a Waste: A Global Review of Solid Waste Management; World Bank: Washington, DC, USA, 2012; p. 93. [Google Scholar] [CrossRef]
- Korai, M.S.; Mahar, R.B.; Uqaili, M.A.; Brohi, K.M. Assessment of municipal solid waste management practices and energy recovery potential in Pakistan. In Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, Greece, 3–5 September 2015. [Google Scholar]
- Sarwar, S.G.; Naeem, M.A.; Abbas, Z.; Waheed, A. Assessing the Site Selection, Operation and Management of Waste Disposal Site in Islamabad. Tech. J. 2018, 23, 9–20. [Google Scholar]
- Abdel-Shafy, H.I.; Mansour, M.S.M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Assamoi, B.; Lawryshyn, Y. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Manag. 2012, 32, 1019–1030. [Google Scholar] [CrossRef]
- Mahar, A.; Malik, R.N.; Qadir, A.; Ahmed, T.; Khan, Z.; Khan, M.A. Review and analysis of current solid waste management situation in urban areas of Pakistan. In Proceedings of the International Conference on Sustainable Solid Waste Management, Tamil Nadu, India, 5–7 September 2007; Volume 8, p. 36. [Google Scholar]
- Masood, M.; Barlow, C.Y.; Wilson, D.C. An assessment of the current municipal solid waste management system in Lahore, Pakistan. Waste Manag. Res. 2014, 32, 834–847. [Google Scholar] [CrossRef]
- Safar, K.M.; Sahito, A.R. Characterization and Aerobic Biological Treatment of MSW: A Case Study of Hyderabad City. Mehran Univ. Res. J. Eng. Technol. 2014, 33, 322–329. [Google Scholar]
- Aslam, S.; Ali, F.; Naseer, A.; Sheikh, Z. Application of material flow analysis for the assessment of current municipal solid waste management in Karachi, Pakistan. Waste Manag. Res. 2021. [Google Scholar] [CrossRef]
- City District Government, Multan. Establishing Integrated Solid Waste Management in the Large Cities of Pakistan Comprehensive Scope Evaluation Report; World Bank: Washington, DC, USA, 2010; Volume 2010.
- Express Tribune, CDA, MCI Collect Almost 700 Tons of Solid Waste on Daily Basis. Published on 19 August 2018. Available online: https://tribune.com.pk/story/1784246/cda-mci-collect-almost-700-tons-solid-waste-daily-basis (accessed on 6 February 2021).
- Ashraf, U.; Hameed, I.; Chaudhary, M.N. Solid waste management practices under public and private sector in Lahore, Pakistan. Bull. Environ. Stud. 2016, 1, 98–105. [Google Scholar]
- Mir, K.A.; Ijaz, M. Greenhouse Gas Emission Inventory of Pakistan for the Year 2011–2012; Global Change Impact Studies Centre (GCISC), Ministry of Climate Change: Islamabad, Pakistan, 2016; GCISC-RR-19; ISBN 9789699395208. [Google Scholar]
- IPCC. 2006 IPCC—Guidelines for National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; c/o Institute for Global Environmental Strategies 2108-11: Kanagawa, Japan, 2006; ISBN 4-88788-032-4. [Google Scholar]
- Machado, S.L.; Carvalho, M.F.; Gourc, J.P.; Vilar, O.M.; do Nascimento, J.C.F. Methane generation in tropical landfills: Simplified methods and field results. Waste Manag. 2009, 29, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Johari, A.; Ahmed, S.I.; Hashim, H.; Alkali, H.; Ramli, M. Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 2907–2912. [Google Scholar] [CrossRef]
- Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Alao, M.A. Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies. Renew. Sustain. Energy Rev. 2017, 80, 149–162. [Google Scholar] [CrossRef]
- IPCC, Intergovernmental Panel on Climate Change. Conceptual Basis for Uncertainty Analysis. In Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; 2000. Available online: http://documentacion.ideam.gov.co/openbiblio/bvirtual/018673/gp/english/A1_Conceptual.pdf (accessed on 6 March 2021).
- Houhton, E. Climate Change 1995: The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 1996; Volume 2, ISBN 0521564360. [Google Scholar]
- Singh, C.S.; Kumar, A.; Roy, S.S. Estimating Potential Methane Emission from Municipal Solid Waste and a Site Suitability Analysis of Existing Landfills in Delhi, India. Technologies 2017, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Islam, K.M.N. Municipal Solid Waste to Energy Generation in Bangladesh: Possible Scenarios to Generate Renewable Electricity in Dhaka and Chittagong City. J. Renew. Energy 2016, 2016, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Thorneloe, S. Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills; Citeseer; Pennsylvania State University: State College, PA, USA, 2008. [Google Scholar]
- United States Environmental Protection Agency (EPA). LFG Energy Project Development Handbook; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2017.
- Khartchenko, N.V.; Kharchenko, V.M. Advanced Energy Systems; CRC Press: Boca Raton, FL, USA, 2013; ISBN 143988658X. [Google Scholar]
- IPCC, Intergovernmental Panel on Climate Change; Houghton, J.T. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Greenhouse Gas Inventory Workbook; OECD, 1996. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html (accessed on 15 January 2021).
- Lahore Electric Supply Company Schedule of Electricity Tariff W.E.F 2019. Available online: https://lescobillonline.net/lesco-tariff/ (accessed on 1 February 2021).
Country | GHG Emissions from MSW Sector Million Tones CO2-Eq (Mt CO2-Eq) | Year | Reference |
---|---|---|---|
China | 104 | 2014 | [24,25] |
USA | 91.03 | 2019 | [26] |
European Union (EU-27) | 108.7 | 2018 | [27] |
India | 14.86 | 2014 | [28] |
Brazil | 45.52 | 2014 | [29] |
Russia | 53.41 | 2012 | [24,30] |
South Africa | 15.76 | 2015 | [31] |
Turkey | 9.1 | 2017 | [32] |
Egypt | 13.19 | 2015 | [33] |
Mexico | 30.9 | 2013 | [34] |
Colombia | 13.71 | 2010 | [35] |
Bangladesh | 18.28 | 2012 | [36] |
Cambodia | 0.39 | 2013 | [37] |
The Philippines | 10.4 | 2012 | [38] |
Pakistan | 12.45 | 2015 | [39] |
Malaysia | 34.32 | 2011 | [40] |
Thailand | 11.82 | 2013 | [41] |
Sri Lanka | 12.47 | 2011 | [42] |
Indonesia | 64.7 | 2013 | [43] |
Global | 1560 | 2016 | [27] |
No. | City | Population (Million) [55] | MSW Generation Rate (k/c/d) [63] | MSW Quantity (t/day) | MSW Quantity (Mt/year) |
---|---|---|---|---|---|
1. | Karachi | 14.91 | 0.761 | 11,347 | 4.14 |
2. | Lahore | 11.12 | 0.75 | 8340 | 3.04 |
3. | Faisalabad | 3.20 | 0.48 | 1538 | 0.56 |
4. | Rawalpindi | 2.09 | 0.453 | 950 | 0.35 |
5. | Gujranwala | 2.07 | 0.51 | 1034 | 0.38 |
6. | Peshawar | 1.97 | 0.489 | 963 | 0.35 |
7. | Multan | 1.87 | 0.32 | 599 | 0.22 |
8. | Hyderabad | 1.72 | 0.7 | 1213 | 0.44 |
9. | Islamabad | 1.01 | 0.81 [63] | 822 | 0.3 |
10. | Quetta | 1.00 | 0.378 | 378 | 0.14 |
Remaining urban areas | 34.63 | 0.612 | 21,193 | 7.74 | |
Rural areas | 132.184 | 0.283 | 37,408 | 13.65 | |
Total | 207.77 | 85,425 | 31.18 | ||
Including 5% Hazardous waste | 4271 | 1.56 | |||
Grand total | 89,696 | 32.74 |
Administrative Unit | Population | Share in Pakistani Population | Share in Urban Population | MSW Generation | Share in Pakistani Waste Generation | Share in the Urban Waste Generation | MSW Generation | MSW Generation |
---|---|---|---|---|---|---|---|---|
(million) | (%) | (%) | (million tonnes/year) | (%) | (%) | (kg/c/y) | (kg/c/d) | |
Pakistan | 207.77 | 100 | 0 | 31.18 | 100 | 0 | 150 | 0.41 |
Top ten populated cities | 40.96 | 20 | 54 | 9.78 | 31 | 56 | 238 | 0.65 |
Remaining urban areas | 34.63 | 17 | 46 | 7.74 | 25 | 44 | 223 | 0.61 |
Total Urban | 75.59 | 36.38 | 100 | 17.51 | 56 | 100 | 232 | 0.63 |
Rural areas | 132.184 | 63.62 | 0 | 13.65 | 44 | 0 | 103 | 0.28 |
Hazardous waste | 1.56 | 5 | ||||||
Total waste quantity | 32.74 |
MSW Components | Karachi | Lahore | Faisalabad | Gujranwala | Peshawar | Multan | Hyderabad | Quetta | Islamabad |
---|---|---|---|---|---|---|---|---|---|
[%] | [59] | [68] | [61] | [61] | [61] | [59] | [69] | [61] | [63] |
Plastics & Rubber | 8 | 12.6 | 4.8 | 5 | 3.7 | 4.3 | 9.85 | 8.2 | 3 |
Metals | 1.1 | 0.1 | 0.2 | 0.3 | 0.3 | 0.3 | 3.66 | 0.2 | |
Paper | 8 | 2.4 | 2.1 | 2.5 | 2.1 | 2.4 | 5.89 | 2.2 | 10 |
Cardboard | 1.6 | 1.8 | 1.9 | - | 6.70 | 1.3 | |||
Textile | 7.6 | 9.1 | 5.2 | 3.2 | 4.3 | 6.9 | 2.07 | 5.1 | 5 |
Hazardous waste | 1.5 | ||||||||
Glass | 5.6 | 0.8 | 1.3 | 1.5 | 1.3 | 0.8 | 6.08 | 1.5 | 3 |
Bones | 2.9 | 3.2 | 1.7 | 1.3 | - | 2 | |||
Food waste | 26.1 | 17.2 | 14.7 | 13.8 | 32.4 | 30.82 | 14.3 | 58 | |
Organics | 64.8 | ||||||||
Animal waste | 0.8 | 1 | 7.5 | 2.7 | - | 1.7 | |||
Combustibles | 2.1 | ||||||||
Green waste | 17 | 15.6 | 12.8 | 13.6 | 20.2 | 13.85 | 10.2 | ||
Tetra Pack | 10 | 1 | |||||||
Wood | 3.1 | 0.7 | 0.8 | 0.6 | 1.3 | 1.84 | 1.5 | 20 | |
Fine | 3.7 | 43 | 47.5 | 42 | 18.13 | 44 | |||
Stones | 4.6 | 5.7 | 7.2 | 27.4 | - | 7.8 | |||
E-waste | 0.3 | ||||||||
Others | 9.8 | 5.3 | 1.11 | 1 | |||||
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
City | MSW Generation | MSW Collection Rate | MSW Collection | MSW Collection |
---|---|---|---|---|
(tonns/day) * | (%) † | (tonnes/day) | (tonnes/year) | |
Karachi | 11,347 | 75 ** | 8510 | 3,106,241 |
Lahore | 8345 | 68 | 5675 | 2,071,229 |
Faisalabad | 1538 | 54 | 830 | 303,109 |
Gujranwala | 1034 | 52 | 538 | 196,210 |
Peshawar | 963 | 61 | 588 | 214,490 |
Multan | 599 | 56 ‡ | 335 | 122,434 |
Hyderabad | 1213 | 51 | 619 | 225,779 |
Quetta | 378 | 50 | 189 | 69,068 |
Islamabad | 822 | 85.2 | 700** | 255,500 |
Sector | 1994 | 2008 | 2012 | 2015 |
---|---|---|---|---|
Energy | 85.816 | 156.821 | 171.44 | 184.0 |
Industry | 13.297 | 17.866 | 19.595 | 21.85 |
Agriculture | 71.632 | 120.284 | 162.86 | 174.56 |
Land Use Change and Forestry (LUCF) | 6.527 | 8.92 | 9.671 | 10.39 |
Waste | 4.457 | 5.505 | 10.554 | 15.65 |
Total | 181.7 | 309.4 | 374.1 | 406.45 |
Waste Type | Default Value | Range |
---|---|---|
Food waste | 0.15 | 0.08–0.20 |
Garden | 0.2 | 0.18–0.22 |
Paper | 0.4 | 0.36–0.45 |
Wood and straw | 0.43 | 0.39–0.46 |
Textiles | 0.24 | 0.20–0.40 |
Disposable nappies | 0.24 | 0.18–0.32 |
Sewage sludge | 0.05 | 0.04–0.05 |
Rubber | 0.39 | 0.39 |
Bulk MSW waste | 0.18 | 0.12–0.28 |
Industrial waste | 0.15 | 0–0.54 |
City | MSWt * (Mt/year) | MSWf ** | MCF | DOC † | DOCf | F | (16/12) | CH4 t/year ‡ | Mt CO2-eq/year |
---|---|---|---|---|---|---|---|---|---|
Karachi | 4.14 | 0.75 | 0.6 | 0.14 | 0.77 | 0.5 | 1.33 | 135,970 | 3.4 |
Lahore | 3.04 | 0.68 | 0.6 | 0.54 | 0.77 | 0.5 | 1.33 | 340,976 | 8.5 |
Faisalabad | 0.56 | 0.54 | 0.6 | 0.09 | 0.77 | 0.5 | 1.33 | 8129 | 0.2 |
Gujranwala | 0.37 | 0.52 | 0.6 | 0.08 | 0.77 | 0.5 | 1.33 | 4580 | 0.11 |
Peshawar | 0.35 | 0.61 | 0.6 | 0.08 | 0.77 | 0.5 | 1.33 | 5061 | 0.13 |
Multan | 0.21 | 0.56 | 0.6 | 0.12 | 0.77 | 0.5 | 1.33 | 4540 | 0.11 |
Hyderabad | 0.44 | 0.51 | 0.6 | 0.14 | 0.77 | 0.5 | 1.33 | 9515 | 0.24 |
Quetta | 0.13 | 0.5 | 0.6 | 0.07 | 0.77 | 0.5 | 1.33 | 1582 | 0.04 |
Islamabad | 0.3 | 0.85 | 0.6 | 0.23 | 0.77 | 0.5 | 1.33 | 17,629 | 0.44 |
Total | 9.27 | 507,326 | 12.7 |
City | Methane Potential | Power Generation (MWh) | ||
---|---|---|---|---|
CH4 Recovery 25% | CH4 Recovery 50% | CH4 Recovery 75% | ||
(Tonnes/Year) | ||||
Karachi | 135970 | 16.61 | 33.22 | 49.84 |
Lahore | 340976 | 41.66 | 83.32 | 124.98 |
Faisalabad | 8129 | 0.99 | 1.99 | 2.98 |
Gujranwala | 4580 | 0.56 | 1.12 | 1.68 |
Peshawar | 5061 | 0.62 | 1.24 | 1.85 |
Multan | 4540 | 0.55 | 1.11 | 1.66 |
Hyderabad | 9515 | 1.16 | 2.32 | 3.49 |
Quetta | 1582 | 0.19 | 0.39 | 0.58 |
Islamabad | 17692 | 2.15 | 4.31 | 6.46 |
Total | 510352 | 62.4 | 124.7 | 187.1 |
City | Electric Power | Revenue Generation | ||||
---|---|---|---|---|---|---|
Units | Units | Unit Price | Daily | Annual | ||
MWh | kWh | (PKRs) | (Million PKRs) | (Million PKRs) | (Million USD) | |
Karachi | 16.6 | 16612 | 291381 | 6.99 | 2552.5 | 16.3 |
Lahore | 41.7 | 41659 | 730702 | 17.54 | 6400.9 | 40.9 |
Faisalabad | 1.0 | 993 | 17420 | 0.42 | 152.6 | 1.0 |
Gujranwala | 0.6 | 560 | 9814 | 0.24 | 86.0 | 0.5 |
Peshawar | 0.6 | 618 | 10845 | 0.26 | 95.0 | 0.6 |
Multan | 0.6 | 555 | 9729 | 0.23 | 85.2 | 0.5 |
Hyderabad | 1.2 | 1162 | 20390 | 0.49 | 178.6 | 1.1 |
Quetta | 0.2 | 193 | 3390 | 0.08 | 29.7 | 0.2 |
Islamabad | 2.2 | 2154 | 37779 | 0.91 | 330.9 | 2.1 |
Total | 62.4 | 62353 | 1093671 | 26.25 | 9580.6 | 61.1 |
Technology | Av. Elec. Efficiency ηe (%) * | Power Generation (MW) † | Cost of Machine ($/kW) * | Annual O & M cost ($/kW) * | Overall Cost Power Gen. (Million $/year) |
---|---|---|---|---|---|
I.C Engine | 30 | 62.4 | 1800 | 250 | 127.8 |
Gas Turbine | 24 | 49.9 | 1500 | 160 | 82.8 |
Micro Turbine | 42 | 87.3 | 3000 | 280 | 286.3 |
City | Population | Households | Residents | MSW Fee | MSW Fee Collection | MSW Fee Collection | MSW Fee Collection |
---|---|---|---|---|---|---|---|
(Million) * | (Million) [55] | persons/house | (PKRs./house/month) | (Million PKRs/month) | (Billion PKRs/year) | (Million USD/year) | |
Karachi | 14.91 | 2.58 | 6 | 180 | 463.7 | 5.6 | 35.5 |
Lahore | 11.12 | 1.76 | 6 | 180 | 316.4 | 3.8 | 24.2 |
Faisalabad | 3.20 | 0.59 | 5 | 150 | 89.1 | 1.1 | 6.8 |
Rawalpindi | 2.09 | 0.47 | 4 | 120 | 56.5 | 0.7 | 4.3 |
Gujranwala | 2.07 | 0.45 | 5 | 150 | 66.9 | 0.8 | 5.1 |
Peshawar | 1.97 | 0.24 | 8 | 240 | 56.7 | 0.7 | 4.3 |
Multan | 1.87 | 0.33 | 6 | 180 | 59.6 | 0.7 | 4.6 |
Hyderabad | 1.72 | 0.36 | 5 | 150 | 54.5 | 0.7 | 4.2 |
Islamabad | 1.01 | 0.17 | 6 | 180 | 30.8 | 0.4 | 2.4 |
Quetta | 1.00 | 0.13 | 8 | 240 | 30.9 | 0.4 | 2.4 |
Total | 40.96 | 7.07 | 1224.9 | 14.7 | 93.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohoo, I.; Ritzkowski, M.; Sohu, Z.A.; Cinar, S.Ö.; Chong, Z.K.; Kuchta, K. Estimation of Methane Production and Electrical Energy Generation from Municipal Solid Waste Disposal Sites in Pakistan. Energies 2021, 14, 2444. https://doi.org/10.3390/en14092444
Sohoo I, Ritzkowski M, Sohu ZA, Cinar SÖ, Chong ZK, Kuchta K. Estimation of Methane Production and Electrical Energy Generation from Municipal Solid Waste Disposal Sites in Pakistan. Energies. 2021; 14(9):2444. https://doi.org/10.3390/en14092444
Chicago/Turabian StyleSohoo, Ihsanullah, Marco Ritzkowski, Zubair Ahmed Sohu, Senem Önen Cinar, Zhi Kai Chong, and Kerstin Kuchta. 2021. "Estimation of Methane Production and Electrical Energy Generation from Municipal Solid Waste Disposal Sites in Pakistan" Energies 14, no. 9: 2444. https://doi.org/10.3390/en14092444
APA StyleSohoo, I., Ritzkowski, M., Sohu, Z. A., Cinar, S. Ö., Chong, Z. K., & Kuchta, K. (2021). Estimation of Methane Production and Electrical Energy Generation from Municipal Solid Waste Disposal Sites in Pakistan. Energies, 14(9), 2444. https://doi.org/10.3390/en14092444