Performance Comparison of Ferrite and Nanocrystalline Cores for Medium-Frequency Transformer of Dual Active Bridge DC-DC Converter
Abstract
:1. Introduction
2. DAB DC-DC Converter in This Study
3. Design and Construction of the MF Transformers
4. Core Loss Evaluation
5. Operating Performance of the MF Transformers with the DAB DC-DC Converter
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ríos, S.J.; Pagano, D.J.; Lucas, K.E. Bidirectional Power Sharing for DC Microgrid Enabled by Dual Active Bridge DC-DC Converter. Energies 2021, 14, 404. [Google Scholar] [CrossRef]
- Abu-Siada, A.; Budiri, J.; Abdou, A.F. Solid State Transformers Topologies, Controllers, and Applications: State-of-the-Art Literature Review. Electronics 2018, 7, 298. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, F.; Perez, M.A.; Espinosa, J.R.; Gajowik, T.; Stynski, S.; Malinowski, M. Surveying Solid-State Transformer Structures and Controls: Providing Highly Efficient and Controllable Power Flow in Distribution Grids. IEEE Ind. Electron. Mag. 2020, 14, 56–70. [Google Scholar] [CrossRef]
- Rahman, M.A.; Islam, M.R.; Muttaqi, K.M.; Sutanto, D. Modeling and Control of SiC-Based High-Frequency Magnetic Linked Converter for Next Generation Solid State Transformers. IEEE Trans. Energy Convers. 2020, 35, 549–559. [Google Scholar] [CrossRef]
- Xue, L.X.; Shen, Z.Y.; Boroyevich, D.; Mattavelli, P.; Diaz, D. Dual Active Bridge-based Battery Charger for Plug-in Hybrid Electric Vehicle with Charging Current Containing Low Frequency Ripple. IEEE Trans. Power Electron. 2015, 30, 7299–7307. [Google Scholar] [CrossRef] [Green Version]
- Claesens, M.; Dujic, D.; Canales, F.; Steinke, J.K.; Stefanutti, P.; Veterli, C. Traction Transformation: A Power-Electronic Traction Transformer (PETT). In Proceedings of the 7th International Power Electronics and Motion Control Conference, Harbin, China, 2–5 June 2012; pp. 11–17. [Google Scholar]
- Adamowicz, M.; Szewczyk, J. SiC-Based Power Electronic Traction Transformer (PETT) for 3 kV DC Rail Traction. Energies 2020, 13, 5573. [Google Scholar] [CrossRef]
- Buticchi, G.; Costa, L.; Liserre, M. Improving System Efficiency for the More Electric Aircraft: A Look at DC-DC Converters for the Avionic Onboard dc Microgrid. IEEE Ind. Electron. Mag. 2017, 11, 26–36. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Liu, W.; Sun, Y. A Synthetic Discrete Design Methodology of High-Frequency Isolated Bidirectional DC/DC Converter for Grid-Connected Battery Energy Storage System Using Advanced Components. IEEE Trans. Ind. Electron. 2014, 61, 5402–5410. [Google Scholar] [CrossRef]
- Jeong, D.K.; Ryu, M.H.; Kim, H.G.; Kim, H.J. Optimized Design of Bi-Directional Dual Active Bridge Converter for Low-Voltage Battery Charger. J. Power Electron. 2014, 14, 468–477. [Google Scholar] [CrossRef] [Green Version]
- Kazerani, M.; Tehrani, K. Grid of Hybrid AC/DC Microgrids: A New Paradigm for Smart City of Tomorrow. In Proceedings of the IEEE International Conference of System of Systems Engineering (SoSE), Budapest, Hungary, 2–4 June 2020. [Google Scholar] [CrossRef]
- Tehrani, K.; Weber, M.; Rasoanarivo, I. Design of High Voltage Pulse Generator With Back to Back Multilevel Boost Buck Converters Using Sic-Mosfet Switches. In Proceedings of the IEEE International Conference of System of Systems Engineering (SoSE), Budapest, Hungary, 2–4 June 2020. [Google Scholar] [CrossRef]
- Voss, J.; Engel, S.P.; Doncker, R.W.D. Control Method for Avoiding Transformer Saturation in High-Power Three-Phase Dual-Active Bridge DC–DC Converters. IEEE Trans. Power Electron. 2020, 35, 4332–4341. [Google Scholar] [CrossRef]
- Leary, A.M.; Ohodnicki, P.R.; Mchenry, M.E. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications. JOM 2012, 64, 772–781. [Google Scholar] [CrossRef]
- Soltau, N.; Eggers, D.; Hameyer, K.; Doncker, R.W.D. Iron Losses in a Medium-Frequency Transformer Operated in a High-Power DC–DC Converter. IEEE Trans. Magn. 2014, 50, 953–956. [Google Scholar] [CrossRef]
- Kauder, T.; Belgrand, T.; Lemaître, R.; Thul, A.; Hameyer, K. Medium-Frequency Power Transformer using GOES for A Three-Phase Dual Active Bridge. J. Magn. Magn. Mater. 2020, 504, 166672. [Google Scholar] [CrossRef]
- Moonem, M.A.; Pechacek, C.L.; Hernandez, R.; Krishnaswami, H. Analysis of a Multilevel Dual Active Bridge (ML-DAB) DC-DC Converter Using Symmetric Modulation. Electronics 2015, 4, 239–260. [Google Scholar] [CrossRef] [Green Version]
- Balci, S.; Sefa, I.; Altin, N. An Investigation of Ferrite and Nanocrystalline Core Materials for Medium-Frequency Power Transformers. J. Electron. Mater. 2016, 45, 3811–3821. [Google Scholar] [CrossRef]
- Garcia-Bediaga, A.; Villar, I.; Rujas, A.; Mir, L.; Rufer, A. Multiobjective Optimization of Medium-Frequency Transformers for Isolated Soft-Switching Converters Using a Genetic Algorithm. IEEE Trans. Power Electron. 2017, 32, 2995–3006. [Google Scholar] [CrossRef]
- Bin, C. Design Optimisation of An Inductor-Integrated MF Transformer for A High-Power Isolated Dual-Active-Bridge DC–DC Converter. IET Power Electron. 2019, 12, 2912–2922. [Google Scholar] [CrossRef]
- Ruiz-Robles, D.; Ortíz-Marín, J.; Venegas-Rebollar, V.; LMoreno-Goytia, E.; Granados-Lieberman, D.; R Rodríguez-Rodriguez, J. Nanocrystalline and Silicon Steel Medium-Frequency Transformers Applied to DC-DC Converters: Analysis and Experimental Comparison. Energies 2019, 12, 2062. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Mao, C.; Wang, D.; Wang, L.; Duan, Y.; Qiu, J.; Xu, G.; Cai, H. Optimal Design and Implementation of High-Voltage High-Power Silicon Steel Core Medium-Frequency Transformer. IEEE Trans. Ind. Electron. 2017, 64, 4391–4401. [Google Scholar] [CrossRef]
- Balci, S.; Sefa, I.; Altin, N. Design and Analysis of A 35 kVA Medium Frequency Power Transformer with the Nanocrystalline Core Material. Int. J. Hydrog. Energy 2017, 42, 17895–17909. [Google Scholar] [CrossRef]
- Ruiz-Robles, D.; Figueroa-Barrera, C.; Moreno-Goytia, E.L.; Venegas-Rebollar, V. An Experimental Comparison of the Effects of Nanocrystalline Core Geometry on the Performance and Dispersion Inductance of the MFTs Applied in DC-DC Converters. Electronics 2020, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Bahmani, M.A.; Thiringer, T.; Kharezy, M. Design Methodology and Optimization of a Medium-Frequency Transformer for High-Power DC–DC Applications. IEEE Trans. Ind. Appl. 2016, 52, 4225–4233. [Google Scholar] [CrossRef]
- Mogorovic, M.; Dujic, D. 100 kW, 10 kHz Medium-Frequency Transformer Design Optimization and Experimental Verification. IEEE Trans. Power Electron. 2019, 34, 1696–1708. [Google Scholar] [CrossRef] [Green Version]
- Mogorovic, M.; Dujic, D. FEM-Based Statistical Data-Driven Modeling Approach for MFT Design Optimization. IEEE Trans. Power Electron. 2020, 35, 10863–10872. [Google Scholar] [CrossRef]
- Oggier, G.G.; Garc, G.O.; Oliva, A.R. Switching Control Strategy to Minimize Dual Active Bridge Converter Losses. IEEE Trans. Power Electron. 2009, 24, 1826–1838. [Google Scholar] [CrossRef]
- Ferrites and Accessories SIFERRIT Material N87; EPCOS AG: Munich, Germany, 2006.
- Tape Wound Core Specialist; MK Magnetics: Adelanto, CA, USA, 2017.
- Nanocrystalline and Amorphous Cores and Components; King Magnetics: Zhuhai, Guangdong, China, 2017.
- Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics, 2nd ed.; Kluwer Academic: New York, NY, USA, 2001; pp. 565–586. [Google Scholar]
- Mu, M. High Frequency Magnetic Core Loss Study. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2013. [Google Scholar]
- Wang, Y. Modelling and Characterisation of Losses in Nanocrystalline Cores. Ph.D. Thesis, University of Manchester, Manchester, UK, 2015. [Google Scholar]
- Muhlethaler, J.; Biela, J.; Kolar, J.W.; Ecklebe, A. Improved Core-Loss Calculation for Magnetic Components Employed in Power Electronic Systems. IEEE Trans. Power Electron. 2012, 27, 964–973. [Google Scholar] [CrossRef]
- Cougo, B.; Tuysüz, A.; Mühlethaler, J.; Kolar, J.W. Increase of Tape Wound Core Losses due to Interlamination Short Circuits and Orthogonal Flux Components. In Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society (IECON2011), Melbourne, Australia, 7–10 November 2011. [Google Scholar] [CrossRef]
- WT3000E Series Precision Power Analyzers; Yokogawa: Tokyo, Japan, 2004.
- Kirkup, L.; Frenkel, R.B. An Introduction to Uncertainty in Measurement: Using the GUM (Guide to the Expression of Uncertainty in Measurement); Cambridge University Press: Cambridge, UK, 2006; pp. 35–63. [Google Scholar]
- Venkatachalam, K.; Sullivan, C.R.; Abdallah, T.; Tacca, H. Accurate Pediction of Ferrite Core Loss with Nonsinusoidal Waveforms using Only Steinmetz Parameters. In Proceeding of the 2002 IEEE Workshop on Computers in Power Electronics, Mayaguez, PR, USA, 3–4 June 2002. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Wang, P.; Li, X.; Xiao, H.; Peng, T. Investigation on the Parasitic Capacitance of High Frequency and High Voltage Transformers of Multi-Section Windings. IEEE Access 2020, 8, 14065–14073. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, P.S.; Ali, M.U.; Lee, H.Y.; Khan, M.A.; Park, G.S.; Kim, H.J. High Frequency Transformer’s Parasitic Capacitance Minimization for Photovoltaic (PV) High-Frequency Link-Based Medium Voltage (MV) Inverter. Electronics 2018, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Wang, F.; Boroyevich, D.; Tipton, C.W. Loss Characterization and Calculation of Nanocrystalline Cores for High-Frequency Magnetics Applications. IEEE Trans. Power Electron. 2008, 23, 475–484. [Google Scholar] [CrossRef]
- Tan, N.M.L.; Abe, T.; Akagi, H. Design and Performance of A Bidirectional Isolated DC-DC Converter for a Battery Energy Storage System. IEEE Trans. Power Electron. 2012, 27, 1237–1248. [Google Scholar] [CrossRef]
- Qin, Z.; Shen, Y.; Loh, P.C.; Wang, H.; Blaabjerg, F. A Dual Active Bridge Converter With an Extended High-Efficiency Range by DC Blocking Capacitor Voltage Control. IEEE Trans. Power Electron. 2018, 33, 5949–5966. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, G.; Fässler, L.; Kolar, J.W.; Apeldoorn, O. Flux Balancing of Isolation Transformers and Application of “The Magnetic Ear” for Closed-Loop Volt–Second Compensation. IEEE Trans. Power Electron. 2014, 29, 4078–4090. [Google Scholar] [CrossRef]
- Dutta, S.; Bhattacharya, S. A Method to Measure the DC bias in High Frequency Isolation Transformer of the Dual Active Bridge DC to DC Converter and Its Removal using Current Injection and PWM Switching. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014. [Google Scholar] [CrossRef]
- Assadi, S.A.; Matsumoto, H.; Moshirvaziri, M.; Nasr, M.; Zaman, M.S.; Trescases, O. Active Saturation Mitigation in High-Density Dual-Active-Bridge DC–DC Converter for On-Board EV Charger Applications. IEEE Trans. Power Electron. 2020, 35, 4376–4387. [Google Scholar] [CrossRef]
- Ruiz-Robles, D.; Venegas-Rebollar, V.; Anaya-Ruiz, A.; Moreno-Goytia, E.L.; Rodríguez-Rodríguez, J.R. Design and Prototyping Medium-Frequency Transformers Featuring a Nanocrystalline Core for DC–DC Converters. Energies 2018, 11, 2081. [Google Scholar] [CrossRef] [Green Version]
Parameters | Values |
---|---|
Battery voltage, | 42–54 V |
Nominal battery voltage, | 48 V |
DC bus voltage, | 400 V |
Switching frequency, | 20 kHz |
Nominal power at | 1100 W |
Maximum power at = 54 V | 1200 W |
Phase shift angle, | 0–60° |
Duty ratio, | 0.7–1.0 |
Total inductance referred to | 808 µH |
Nominal primary RMS current, at and = 1.0 | 30.3 A |
Input capacitor, | 3 mF |
DC bus capacitor, | 3.3 mF |
LV bridge MOSFETs | IXYS IXFN 140N20P |
HV bridge IGBTs | Infineon FF50R12RT4 |
Parameters | Core Materials | ||
---|---|---|---|
N87 Ferrite | Nanocrystalline, MK Magnetics | Nanocrystalline, King Magnetics | |
Saturation flux density, | 0.39 T | 1.23 T | 1.25 T |
Coercivity | 21 A/m | Not given | 1.2 A/m |
Initial permeability | 2200 | 60,000 | 80,000 |
Physical density | 4850 kg/m3 | 7300 kg/m3 | 7250 kg/m3 |
Curie temperature | >210 °C | 570 °C | 560 °C |
Steinmetz parameter, | 2.10 | 2.10 | 2.38 |
Steinmetz parameter, | 1.36 | 1.44 | 1.64 |
Steinmetz parameter, [W/(m3HzαTβ)] | 1.766 | 0.6472 | 0.101 |
Parameters | Transformers | ||
---|---|---|---|
A | B | C | |
Material | EPCOS N87 ferrite | MK Magnetics nanocrystalline | King Magnetics nanocrystalline |
Core structure | 1 set of E65/32/27 | 2 sets of cut C-cores, SC2043M1 | Toroid, KMN503220T |
Total core area, | 5.29 cm2 | 3.12 cm2 | 1.4 cm2 |
Magnetic length, | 14.7 cm | 12.8 cm | 12.9 cm |
Primary winding | 6 turns 2 Litz wires (500 × AWG40) | 7 turns 1 Litz wire (800 × AWG40) | 10 turns 2 Litz wires (265 × AWG36) |
Secondary winding | 50 turns 2 Litz wires (40 × AWG36) | 59 turns 1 Litz wires (128 × AWG40) | 83 turns 1 Litz wires (128 × AWG40) |
at 48 V/54 V | 0.19 T/0.21 T | 0.27 T/0.31 T | 0.43 T/0.48 T |
Est. at 48 V/54 V | 3.3 W/4.8 W | 3.8 W/5.5 W | 4.0 W/5.8 W |
Est. at 48 V/54 V | 6.7 W/9.2 W | 2.7 W/3.5 W | 2.7 W/3.6 W |
Est. at 48 V/54 V | 10.0 W/15.0 W | 6.5 W/9.0 W | 6.7 W/9.4 W |
0.26 mH | 0.16 mH | 5.46 mH | |
22 µH | 9 µH | 43 µH |
Parameters | Prototype Transformers | ||
---|---|---|---|
A | B | C | |
Nominal power at 48 V | 1054 W | 1132 W | 1170 W |
Maximum power at 54 V | 1201 W | 1277 W | 1230 W |
Power density | 6 W/cm3 | 9 W/cm3 | 12 W/cm3 |
at nominal power | 24.2 W | 16.3 W | 17.3 W |
at nominal power | 5.0 W | 3.5 W | 1.9 W |
at nominal power | 97.8% | 98.6% | 98.5% |
with SPS, 42–54 V, at | 97.6–98.5% | 98.4–99.0% | 98.5–99.1% |
with EPS, , at 48, 54 V | 97.6–98.8% | 98.4–99.1% | 98.5–99.2% |
Maximum temperature | 78.5 °C | 71.0 °C | 60.1 °C |
Total core cost | 28 USD | 250 USD | 6 USD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somkun, S.; Sato, T.; Chunkag, V.; Pannawan, A.; Nunocha, P.; Suriwong, T. Performance Comparison of Ferrite and Nanocrystalline Cores for Medium-Frequency Transformer of Dual Active Bridge DC-DC Converter. Energies 2021, 14, 2407. https://doi.org/10.3390/en14092407
Somkun S, Sato T, Chunkag V, Pannawan A, Nunocha P, Suriwong T. Performance Comparison of Ferrite and Nanocrystalline Cores for Medium-Frequency Transformer of Dual Active Bridge DC-DC Converter. Energies. 2021; 14(9):2407. https://doi.org/10.3390/en14092407
Chicago/Turabian StyleSomkun, Sakda, Toshiro Sato, Viboon Chunkag, Akekachai Pannawan, Pornnipa Nunocha, and Tawat Suriwong. 2021. "Performance Comparison of Ferrite and Nanocrystalline Cores for Medium-Frequency Transformer of Dual Active Bridge DC-DC Converter" Energies 14, no. 9: 2407. https://doi.org/10.3390/en14092407
APA StyleSomkun, S., Sato, T., Chunkag, V., Pannawan, A., Nunocha, P., & Suriwong, T. (2021). Performance Comparison of Ferrite and Nanocrystalline Cores for Medium-Frequency Transformer of Dual Active Bridge DC-DC Converter. Energies, 14(9), 2407. https://doi.org/10.3390/en14092407