Assessment of Concentration of Mineral Oil in Synthetic Ester Based on the Density of the Mixture and the Capacitance of the Capacitor Immersed in It
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
3.1. Assessment of MO Concentration Based on the Density of the Mixture
- -
- ∆ρ—absolute error of density measurement, equal to ±1 g/cm3;
- -
- ∆T—absolute error of temperature measurement, equal to ±0.1 °C.
3.2. Assessment of MO Concentration Based on the Electric Capacity of a Capacitor Immersed in a Mixture
- ∆C—absolute error of capacitance measurement, equal to ±10 pF;
- ∆T—absolute temperature measurement error, equal to ±0.1 °C;
- C—capacity of the trimmer immersed in the mixture, in pF;
- T—temperature of the mixture, in °C.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Przybylek, P.; Moranda, H.; Moscicka-Grzesiak, H.; Szczesniak, D. Application of Synthetic Ester for Drying Distribution Transformer Insulation—The Influence of Cellulose Thickness on Drying Efficiency. Energies 2019, 12, 3874. [Google Scholar] [CrossRef] [Green Version]
- Przybylek, P.; Moscicka-Grzesiak, H.; Moranda, H. An innovative method of drying cellulose insulation of transformers. Przeglad Elektrotechniczny 2019, 8, 61–64. (In Polish) [Google Scholar]
- Liu, Q.; Lv, L.; Zuo, H.; Wang, S.; Mao, C.; Zhang, Y. Research on transformer drying technology based on low-frequency heating principle. In Proceedings of the Materials of 3rd International Conference on Mechatronics and Computer Technology Engineering, Changsha, China, 18–20 September 2020; Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1678. [Google Scholar]
- Guo, H.; Chen, J.; Cai, S.; Yin, J.; Shao, M.; Zhao, Z. On-site drying technology of disassembly-transportated UHV AC transformer. In Proceedings of the Materials of 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 6–10 September 2020; pp. 1–4. [Google Scholar]
- Qiao, B.; Ma, Z.; Qiao, M. A new option for on-site drying of power transformer: Mobile vapor phase drying. IEEE Trans. Power Deliv. 2019, 34, 2254–2256. [Google Scholar] [CrossRef]
- MIDEL 7131 Premium Performance Since the 1970s. Available online: https://www.midel.com/midel-range/midel-7131/ (accessed on 15 April 2020).
- Rao, U.M.; Fofana, I.; Jaya, T.; Rodriguez-Celis, E.M.; Jalbert, J.; Picher, P. Alternative dielectric fluids for transformer insulation system: Progress, challenges, and future prospects. IEEE Access 2019, 7, 184552–184571. [Google Scholar]
- Joyce, J.; Preetha, P.; Sindhu, T.K. Review on natural ester and nanofluids as an environmental friendly alternative to transformer mineral oil. IET Nanodielectr. 2020, 3, 33–43. [Google Scholar]
- Rafiq, M.; Shafique, M.; Azam, A.; Ateeq, M.; Ahmad Khan, I.; Hussain, A. Sustainable, renewable and environmental-friendly insulation systems for high voltages applications. Molecules 2020, 25, 3901. [Google Scholar] [CrossRef]
- Contreras, J.E.; Rodríguez-Díaz, J.; Rodriguez, E.A. Environmentally friendly fluids for high-voltage applications. In Handbook of Ecomaterials; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3081–3106. [Google Scholar]
- Rozga, P.; Beroual, A.; Przybylek, P.; Jaroszewski, M.; Strzelecki, K. A review on synthetic ester liquids for transformer applications. Energies 2020, 13, 6429. [Google Scholar] [CrossRef]
- Fofana, I.; Wasserberg, V.; Borsi, H.; Gockenbach, E. Retrofilling conditions of high-voltage transformers. IEEE Electr. Insul. Mag. 2001, 17, 17–30. [Google Scholar] [CrossRef]
- McShane, C.P.; Luksich, J.; Rapp, K.J. Retrofilling aging transformers with natural ester based dielectric coolant for safety and life extension. In Proceedings of the IEEE-IAS/PCA Cement Industry Technical Conference, Dallas, TX, USA, 4–9 May 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 141–147. [Google Scholar]
- Insulect-Energy Blog. Available online: https://insulect.com/energy-blog/can-i-use-midel-fluids-to-retrofilltransformers-at-high-voltages (accessed on 16 March 2021).
- Daghrah, M.; Wang, Z.; Liu, Q.; Hilker, A.; Gyore, A. Experimental study of the influence of different liquids on the transformer cooling performance. IEEE Trans. Power Deliv. 2019, 34, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Moranda, H.; Fatyga, P. Evaluation of the mineral oil and synthetic ester percentage composition after replacing oil with ester fluid in power transformer. In Proceedings of the Materials of International Conference on Power Transformers “Transformer ’19”, Torun, Poland, 9–11 May 2017; pp. 233–242. (In Polish). [Google Scholar]
- Przybylek, P. Water saturation limit of insulating liquids and hygroscopicity of cellulose in aspect of moisture determination in oil-paper insulation. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1886–1893. [Google Scholar] [CrossRef]
- Przybylek, P. Water solubility in synthetic ester and mixture of ester with mineral oil in aspect of cellulose insulation drying. Przeglad Elektrotechniczny 2016, 10, 92–95. (In Polish) [Google Scholar]
- Grob, R.L.; Barry, E.F. Modern Practice of Gas Chromatography; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Blumberg, I.M. Temperature-Programmed Gas Chromatography; John Wiley & Sons: Weinheim, Germany, 2011. [Google Scholar]
- Ford, D.C. Application of Gas Chromatography in the Petroleum Industry. In Developments in Applied Spectroscopy. Developments in Applied Spectroscopy; Baer, W.K., Perkins, A.J., Grove, E.L., Eds.; Springer: Boston, MA, USA, 1968; Volume 6, pp. 373–380. [Google Scholar]
- Moreda, W.; Perez-Camino, M.C.; Cert, A. Gas and liquid chromatography of hydrocarbons in edible vegetable oils. J. Chromatogr. A 2001, 936, 159–171. [Google Scholar] [CrossRef]
- Stuart, B.H. Infrared Spectroscopy. In Handbook of Instrumental Techniques for Analytical Chemistry; Settle, F.A., Ed.; John Wiley & Sons; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Gunzler, H.; Gremlich, H.U.; Heise, H. IR Spectroscopy; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar]
- Hasegawa, T. Quantitative Infrared Spectroscopy for Understanding of a Condensed Matter; Springer: Tokyo, Japan, 2017. [Google Scholar]
- Maciejewski, H.; Karasiewicz, J.; Dutkiewicz, A.; Dutkiewicz, M.; Dopierala, K.; Prochaska, K. Synthesis and properties of polysiloxanes containing mixed functional groups. React. Funct. Polym. 2014, 83, 144–154. [Google Scholar] [CrossRef]
- Stachowiak, H.; Kazmierczak, J.; Kucinski, K.; Hreczycho, G. Catalyst-free and solvent-free hydroboration of aldehydes. Green Chem. 2018, 20, 1738–1742. [Google Scholar] [CrossRef]
- Ye, J.Y.; Jiang, Y.X.; Sheng, T.; Sun, S.G. In-situ FTIR spectroscopic studies of electrocatalytic reactions and processes. Nano Energy 2016, 29, 414–427. [Google Scholar] [CrossRef]
- Januszewski, R.; Kownacki, I.; Maciejewski, H.; Marciniec, B. Transition metal-catalyzed hydrosilylation of polybutadiene—The effect of substituents at silicon on efficiency of silylfunctionalization process. J. Catal. 2019, 371, 27–34. [Google Scholar] [CrossRef]
- Januszewski, R.; Dutkiewicz, M.; Franczyk, A.; Kownacki, I. Pt(0)-Catalysed synthesis of new bifunctional silanes. Dalton Trans. 2020, 49, 7697–7700. [Google Scholar] [CrossRef]
- Januszewski, R.; Grzelak, M.; Orwat, B.; Dutkiewicz, M.; Kownacki, I. Simple catalytic approach to highly regioselective synthesis of monofunctionalized disiloxanes decorated with metalloids. J. Catal. 2020, 390, 103–108. [Google Scholar] [CrossRef]
- Rohman, A. Infrared spectroscopy for quantitative analysis and oil parameters of olive oil and virgin coconut oil: A review. Int. J. Food Prop. 2017, 20, 1447–1456. [Google Scholar] [CrossRef]
- Rohman, A.; Ghazali, M.A.B.; Windarsih, A.; Irnawati; Riyanto, S.; Yusof, F.M.; Mustafa, S. Comprehensive review on application of FTIR spectroscopy coupled with chemometrics for authentication analysis of fats and oils in the food products. Molecules 2020, 25, 5485. [Google Scholar] [CrossRef] [PubMed]
- Rohman, A.; Kuwat, T.; Retno, S.; Sismindari; Yuny, E.; Tridjoko, W. Fourier transform infrared spectroscopy applied for rapid analysis of lard in palm oil. Int. Food Res. J. 2012, 19, 1161–1165. [Google Scholar]
- Nadolny, Z.; Dombek, G.; Przybylek, P. Thermal Properties of a Mixture of Mineral Oil and Synthetic Ester in Terms of Its Application in the Transformer. In Proceedings of the Materials of 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 857–860. [Google Scholar]
- PN-EN ISO 3675:2004, Crude Petroleum and Liquid Petroleum Products—Laboratory Determination of Density—Hydrometer Method; Polski Komitet Normalizacyjny: Warsaw, Poland, 2004. (In Polish)
- Fluids Comparison. Available online: https://www.midel.com/blog/fluids-comparison (accessed on 22 April 2020).
- DE-5000 LCR Meter. Available online: https://www.deree.com.tw/de-5000-lcr-meter.html (accessed on 5 May 2020).
Temperature, °C | Mineral Oil Concentration, % | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.0 | 2.0 | 4.0 | 6.0 | 8.0 | 10.0 | 12.8 | 16.0 | 20.0 | |
23.0 | 966 | 964 | 962 | 960 | 958 | 956 | 953 | 951 | 947 |
35.4 | 958 | 956 | 954 | 952 | 949 | 947 | 945 | 942 | 938 |
45.1 | 952 | 949 | 947 | 945 | 943 | 941 | 938 | 934 | 930 |
54.9 | 944 | 942 | 940 | 938 | 936 | 934 | 930 | 927 | 922 |
65.0 | 936 | 934 | 932 | 931 | 928 | 926 | 924 | 920 | 916 |
Temperature, °C | Parameter a | Parameter b |
---|---|---|
23.0 | −0.9495 | 965.76 |
35.4 | −1.0037 | 957.79 |
45.1 | −1.0802 | 951.57 |
54.9 | −1.0988 | 944.40 |
65.0 | −0.9986 | 936.19 |
Temperature, °C | Mineral Oil Concentration, % | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.0 | 2.0 | 4.0 | 6.0 | 8.0 | 10.0 | 12.8 | 16.0 | 20.0 | |
30.0 | 1829.8 | 1809.1 | 1782.8 | 1772.3 | 1740.5 | 1736.1 | 1701.6 | 1687.0 | 1666.8 |
40.0 | 1810.6 | 1791.9 | 1766.1 | 1756.0 | 1723.9 | 1717.0 | 1684.1 | 1669.4 | 1651.2 |
50.0 | 1792.2 | 1771.9 | 1748.7 | 1725.7 | 1703.7 | 1699.5 | 1666.0 | 1651.6 | 1634.8 |
60.0 | 1775.0 | 1747.2 | 1734.2 | 1719.8 | 1692.1 | 1681.7 | 1651.5 | 1637.2 | 1619.3 |
Temperature, °C | Parameter a | Parameter b |
---|---|---|
30.0 | −8.33 | 1820.23 |
40.0 | −8.26 | 1802.35 |
50.0 | −8.06 | 1781.03 |
60.0 | −7.91 | 1764.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moranda, H.; Gielniak, J.; Kownacki, I. Assessment of Concentration of Mineral Oil in Synthetic Ester Based on the Density of the Mixture and the Capacitance of the Capacitor Immersed in It. Energies 2021, 14, 1839. https://doi.org/10.3390/en14071839
Moranda H, Gielniak J, Kownacki I. Assessment of Concentration of Mineral Oil in Synthetic Ester Based on the Density of the Mixture and the Capacitance of the Capacitor Immersed in It. Energies. 2021; 14(7):1839. https://doi.org/10.3390/en14071839
Chicago/Turabian StyleMoranda, Hubert, Jaroslaw Gielniak, and Ireneusz Kownacki. 2021. "Assessment of Concentration of Mineral Oil in Synthetic Ester Based on the Density of the Mixture and the Capacitance of the Capacitor Immersed in It" Energies 14, no. 7: 1839. https://doi.org/10.3390/en14071839
APA StyleMoranda, H., Gielniak, J., & Kownacki, I. (2021). Assessment of Concentration of Mineral Oil in Synthetic Ester Based on the Density of the Mixture and the Capacitance of the Capacitor Immersed in It. Energies, 14(7), 1839. https://doi.org/10.3390/en14071839