Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Characterization
2.2. HTL Experiments
2.3. Product Characterization
3. Results
3.1. Product Yield
3.2. Elemental Analysis of Bio-Crude
3.3. Elemental Analysis of Solid Residue
3.4. Organic Compound Composition of Bio-Crude
3.5. Carbon Recovery in the HTL Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, M.; Oyedun, A.O.; Kumar, A. A review on the current status of various hydrothermal technologies on biomass feedstock. Renew. Sustain. Energy Rev. 2018, 81, 1742–1770. [Google Scholar] [CrossRef]
- Akhtar, J.; Amin, N.A.S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2011, 15, 1615–1624. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Bezergianni, S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renew. Sustain. Energy Rev. 2017, 68, 113–125. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Kishore, N.; Gu, S. A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2018, 98, 515–517. [Google Scholar] [CrossRef]
- Castello, D.; Pedersen, T.H.; Rosendahl, L.A. Continuous hydrothermal liquefaction of biomass: A critical review. Energies 2018, 11, 3165. [Google Scholar] [CrossRef] [Green Version]
- Seehar, T.H.; Toor, S.S.; Shah, A.A.; Nielsen, A.H.; Pedersen, T.H.; Rosendahl, L. Catalytic hydrothermal liquefaction of contaminated construction wood waste for biocrude production and investigation of fate of heavy metals. Fuel Process Technol. 2021, 212, 106621. [Google Scholar] [CrossRef]
- Toor, S.S.; Rosendahl, L.; Rudolf, A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 2011, 36, 2328–2342. [Google Scholar] [CrossRef]
- Zhu, Z.; Rosendahl, L.; Toor, S.S.; Yu, D.; Chen, G. Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation. Appl. Energy 2015, 137, 183–192. [Google Scholar] [CrossRef]
- Sintamarean, I.M.; Grigoras, I.F.; Jensen, C.U.; Toor, S.S.; Pedersen, T.H.; Rosendahl, L.A. Two-stage alkaline hydrothermal liquefaction of wood to biocrude in a continuous bench-scale system. Biomass Convers. Biorefin. 2017, 7, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, T.H.; Hansen, N.H.; Pérez, O.M.; Cabezas, D.E.V.; Rosendahl, L.A. Renewable hydrocarbon fuels from hydrothermal liquefaction: A techno-economic analysis. Biofuels Bioprod. Biorefin. 2018, 12, 213–223. [Google Scholar] [CrossRef]
- Mathanker, A.; Pudasainee, D.; Kumar, A.; Gupta, R. Hydrothermal liquefaction of lignocellulosic biomass feedstock to produce biofuels: Parametric study and products characterization. Fuel 2020, 271, 117534. [Google Scholar] [CrossRef]
- Tungal, R.; Shende, R.V. Hydrothermal liquefaction of pinewood (Pinus ponderosa) for H2, biocrude and bio-oil generation. Appl. Energy 2014, 134, 401–412. [Google Scholar] [CrossRef]
- Jensen, C.U.; Rosendahl, L.A.; Olofsson, G. Impact of nitrogenous alkaline agent on continuous HTL of lignocellulosic biomass and biocrude upgrading. Fuel Process. Technol. 2017, 159, 376–385. [Google Scholar] [CrossRef]
- Li, Z.; Hong, Y.; Cao, J.; Huang, Z.; Huang, K.; Gong, H.; Li, Y. Effects of Mild Alkali Pretreatment and Hydrogen-Donating Solvent on Hydrothermal Liquefaction of Eucalyptus Woodchips. Energy Fuels 2015, 29, 7335–7342. [Google Scholar] [CrossRef]
- Wu, X.F.; Zhang, J.J.; Huang, Y.H.; Li, M.F.; Bian, J.; Peng, F. Comparative investigation on bio-oil production from eucalyptus via liquefaction in subcritical water and supercritical ethanol. Ind. Crop. Prod. 2019, 140, 111695. [Google Scholar] [CrossRef]
- Seehar, T.H.; Toor, S.S.; Shah, A.A.; Pedersen, T.H.; Rosendahl, L.A. Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction. Energies 2020, 13, 3114. [Google Scholar] [CrossRef]
- Brilman, D.W.F.; Drabik, N.; Wądrzyk, M. Hydrothermal co-liquefaction of microalgae, wood, and sugar beet pulp. Biomass Convers. Bioref. 2017, 7, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Biller, P.; Johannsen, I.; Passos, J.S.D.; Ottosen, L.D.M. Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction. Water Res. 2018, 130, 58–68. [Google Scholar] [CrossRef]
- Leng, L.; Li, J.; Yuan, X.; Li, J.; Han, P.; Hong, Y.; Zhou, W. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 2018, 251, 49–56. [Google Scholar] [CrossRef]
- Shah, A.A.; Toor, S.S.; Seehar, T.H.; Sadetmahaleh, K.K.; Pedersen, T.H.; Nielsen, A.H.; Rosendahl, L.A. Bio-crude production through co-hydrothermal processing of swine manure with sewage sludge to enhance pumpability. Fuel 2021, 288, 119407. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Lin, G.; Guo, S.; Wang, S.; Wu, Z. Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: Ash effects on bio-oil production. Renew Energy 2019, 138, 1143–1151. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhang, Y.; Zhang, J.; Schideman, L.; Yu, G.; Zhang, P.; Minarick, M. Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Appl. Energy 2014, 128, 209–216. [Google Scholar] [CrossRef]
- Mishra, S.; Mohanty, K. Co-HTL of domestic sewage sludge and wastewater treatment derived microalgal biomass—An integrated biorefinery approach for sustainable biocrude production. Energy Convers. Manag. 2020, 204, 112312. [Google Scholar] [CrossRef]
- Pedersen, T.H.; Grigoras, I.F.; Hoffmann, J.; Toor, S.S.; Daraban, I.M.; Jensen, C.U.; Iversen, S.B.; Madsen, R.B.; Glasius, M.; Arturi, K.R.; et al. Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation. Appl. Energy 2016, 162, 1034–1041. [Google Scholar] [CrossRef] [Green Version]
- Xiu, S.; Shahbazi, A.; Wallace, C.W.; Wang, L.; Cheng, D. Enhanced bio-oil production from swine manure co-liquefaction with crude glycerol. Energy Convers. Manag. 2011, 52, 1004–1009. [Google Scholar] [CrossRef]
- Sintamarean, I.M.; Pedersen, T.H.; Zhao, X.; Kruse, A.; Rosendahl, L.A. Application of Algae as Cosubstrate to Enhance the Processability of Willow Wood for Continuous Hydrothermal Liquefaction. Ind. Eng. Chem. Res. 2017, 56, 4562–4571. [Google Scholar] [CrossRef] [Green Version]
- Jensen, C.U.; Guerrero, J.K.R.; Karatzos, S.; Olofsson, G.; Iversen, S.B. Fundamentals of HydrofactionTM: Renewable crude oil from woody biomass. Biomass Convers. Biorefin. 2017, 7, 495–509. [Google Scholar] [CrossRef]
- Seehar, T.H.; Toor, S.S.; Sharma, K.; Nielsen, A.H.; Pedersen, T.; Rosendahl, L.A. Influence of Process Conditions on Hydrothermal Liquefaction of Eucalyptus Biomass for Biocrude Production and Investigation of the Inorganics Distribution. Sustain. Energy Fuels 2021, 5, 1477–1487. [Google Scholar] [CrossRef]
- Conti, F.; Toor, S.S.; Pedersen, T.H.; Nielsen, A.H.; Rosendahl, L.A. Biocrude production and nutrients recovery through hydrothermal liquefaction of wastewater irrigated willow. Biomass Bioenergy 2018, 11, 824–831. [Google Scholar] [CrossRef]
- Channiwala, S.A.; Parikh, P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellul. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Herng, Y.; Yusup, S.; Quitain, A.T.; Uemura, Y. Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction. J. Supercrit. Fluids 2014, 95, 407–412. [Google Scholar]
- Scarsella, M.; Caprariis, B.D.; Damizia, M.; De Filippis, P. Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review. Biomass Bioenerg. 2020, 140, 105662. [Google Scholar] [CrossRef]
- Zhu, Z.; Toor, S.S.; Rosendahl, L.; Chen, G. Analysis of product distribution and characteristics in hydrothermal liquefaction of barley straw in subcritical and supercritical water. Environ. Prog. Sustain. Energy 2014, 33, 737–743. [Google Scholar] [CrossRef]
- Peterson, A.A.; Vogel, F.; Lachance, R.P.; Fröling, M.; Antal, M.J.; Tester, J.W. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. 2008, 1, 32–65. [Google Scholar] [CrossRef]
- Shah, A.A.; Toor, S.S.; Conti, F.; Nielsen, A.H.; Rosendahl, L.A. Hydrothermal liquefaction of high ash containing sewage sludge at sub and supercritical conditions. Biomass Bioenergy 2020, 135, 105504. [Google Scholar] [CrossRef]
- Shah, A.A.; Toor, S.S.; Seehar, T.H.; Nielsen, R.S.; Nielsen, A.H.; Pedersen, T.H.; Rosendahl, L.A. Bio-Crude Production through Aqueous Phase Recycling of Hydrothermal Liquefaction of Sewage Sludge. Energies 2020, 13, 493. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; He (Sophia), Q.; Yang, L. A review on hydrothermal co-liquefaction of biomass. Appl. Energy 2019, 250, 926–945. [Google Scholar] [CrossRef]
- Biller, P.; Madsen, R.B.; Klemmer, M.; Becker, J.; Iversen, B.B.; Glasius, M. Effect of hydrothermal liquefaction aqueous phase recycling on bio-crude yields and composition. Bioresour. Technol. 2016, 220, 190–199. [Google Scholar] [CrossRef]
- Li, C.; Yang, X.; Zhang, Z.; Zhou, D.; Zhang, L.; Zhang, S.; Chen, J. Hydrothermal liquefaction of desert shrub salix psammophila to high value-added chemicals and hydrochar with recycled processing water. Bioresour. Technol. 2013, 8, 2981–2997. [Google Scholar] [CrossRef]
Feedstocks | Cellulose | Hemicellulose | Lignin | Ash |
---|---|---|---|---|
WS | 37.9 | 26.8 | 18.3 | 6.2 |
EU | 43.2 | 22.5 | 25.0 | 1.6 |
PW | 43.6 | 24.9 | 25.6 | 0.7 |
Samples | Moisture | Ash | Elemental Analysis (wt.%) a | H/C | O/C | HHV (MJ/kg) | |||
---|---|---|---|---|---|---|---|---|---|
C | H | N | O b | ||||||
WS | 5.39 | 6.92 | 42.15 | 6.21 | 0.82 | 50.82 | 1.76 | 0.91 | 16.53 |
EU | 5.88 | 1.15 | 47.85 | 5.81 | 0.10 | 46.23 | 1.45 | 0.72 | 18.14 |
PW | 6.71 | 0.59 | 49.90 | 6.30 | 0.30 | 42.80 | 1.51 | 0.64 | 19.50 |
WS + EU | 5.64 | 4.04 | 45.00 | 6.01 | 0.46 | 48.53 | 1.61 | 0.82 | 17.34 |
EU + PW | 6.30 | 0.87 | 48.88 | 6.06 | 0.20 | 44.52 | 1.48 | 0.68 | 18.82 |
PW + WS | 6.05 | 3.76 | 46.03 | 6.26 | 0.56 | 46.81 | 1.64 | 0.78 | 18.02 |
WS + EU + PW | 5.99 | 2.89 | 46.63 | 6.11 | 0.41 | 46.62 | 1.57 | 0.76 | 18.06 |
Feedstocks | Elemental Analysis (wt.%) a | H/C | O/C | HHV (MJ/kg) c | ER (%) | |||
---|---|---|---|---|---|---|---|---|
C | H | N | O b | |||||
WS | 73.07 | 8.01 | 1.64 | 17.28 | 1.32 | 0.17 | 35.50 | 47.25 |
EU | 74.73 | 7.76 | 0.93 | 16.58 | 1.24 | 0.16 | 35.79 | 57.22 |
PW | 75.86 | 7.98 | 1.31 | 14.86 | 1.30 | 0.16 | 33.66 | 46.61 |
WS + EU | 83.27 | 8.41 | 1.05 | 7.18 | 1.23 | 0.06 | 39.15 | 36.13 |
EU + PW | 82.07 | 8.12 | 1.06 | 8.76 | 1.19 | 0.08 | 37.49 | 29.88 |
PW + WS | 77.70 | 7.64 | 0.83 | 13.84 | 1.21 | 0.16 | 33.67 | 38.39 |
WS + EU + PW | 80.90 | 8.38 | 0.70 | 10.02 | 1.26 | 0.09 | 37.58 | 39.55 |
Petroleum crude | 83–87 | 10–14 | 0.1–1 | 0.1–3.0 | ---- | ---- | ~42–44 | ----- |
Feedstocks | Elemental Analysis (wt.%) a | H/C | O/C | HHV (MJ/kg) c | ER (%) | |||
---|---|---|---|---|---|---|---|---|
C | H | N | O b | |||||
WS | 54.53 | 2.76 | 1.12 | 41.59 | 0.61 | 0.57 | 25.79 | 15.60 |
EU | 66.02 | 3.46 | 0.13 | 30.39 | 0.62 | 0.34 | 29.48 | 19.50 |
PW | 66.59 | 3.35 | 0.42 | 29.65 | 0.60 | 0.32 | 22.81 | 15.21 |
WS + EU | 53.09 | 2.58 | 0.01 | 44.32 | 0.58 | 0.63 | 14.63 | 9.28 |
EU + PW | 67.78 | 3.16 | 0.20 | 29.27 | 0.52 | 0.32 | 22.40 | 17.85 |
PW + WS | 44.49 | 2.64 | 0.31 | 52.57 | 0.74 | 0.83 | 11.27 | 9.79 |
WS + EU + PW | 50.09 | 2.97 | 0.39 | 46.56 | 0.71 | 0.68 | 14.06 | 11.68 |
Feedstocks | TOC (g/L) | TN (g/L) | pH |
---|---|---|---|
WS | 33.52 | 0.58 | 7.33 |
EU | 21.26 | 0.51 | 7.92 |
PW | 19.9 | 0.42 | 8.68 |
WS + EU | 30.11 | 0.48 | 8.71 |
EU + PW | 22.21 | 0.29 | 8.92 |
PW + WS | 21.62 | 0.56 | 9.14 |
WS + EU + PW | 26.01 | 0.46 | 9.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, K.; Shah, A.A.; Toor, S.S.; Seehar, T.H.; Pedersen, T.H.; Rosendahl, L.A. Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water. Energies 2021, 14, 1708. https://doi.org/10.3390/en14061708
Sharma K, Shah AA, Toor SS, Seehar TH, Pedersen TH, Rosendahl LA. Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water. Energies. 2021; 14(6):1708. https://doi.org/10.3390/en14061708
Chicago/Turabian StyleSharma, Kamaldeep, Ayaz A. Shah, Saqib S. Toor, Tahir H. Seehar, Thomas H. Pedersen, and Lasse A. Rosendahl. 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water" Energies 14, no. 6: 1708. https://doi.org/10.3390/en14061708
APA StyleSharma, K., Shah, A. A., Toor, S. S., Seehar, T. H., Pedersen, T. H., & Rosendahl, L. A. (2021). Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water. Energies, 14(6), 1708. https://doi.org/10.3390/en14061708