Pyrolysis of Municipal Sewage Sludge to Investigate Char and Phosphorous Yield together with Heavy-Metal Removal—Experimental and by Thermodynamic Calculations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fuel Samples Analysis
2.2. Pyrolysis Experiments and Kinetic Reaction Analysis
2.3. Char Analysis
2.4. Predicting Pyrolysis Products
2.4.1. Chemical Fractionation
2.4.2. Thermodynamic Equilibrium Calculations
3. Results and Discussion
3.1. Pyrolysis Treatments
3.2. Char Elemental Composition and Energy Content
3.2.1. Microwave Plasma-Atomic Emission Spectroscopy
3.2.2. Trace Elements
Phosphorous and Other Nutrients
3.3. Chemical Fractionation
3.4. Equilibrium Product
3.4.1. Char Yield by Equilibrium Calculations
3.4.2. Prediction of the Phase Formation in the Char
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Vuuren, D.P.; Bouwman, A.F.; Beusen, A.H.W. Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Glob. Environ. Chang. 2010, 20, 428–439. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Kelessidis, A.; Stasinakis, A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Inglezakis, V.J.; Zorpas, A.A.; Karagiannidis, A.; Samaras, P.; Voukkali, I.; Sklari, S. European union legislation on sewage sludge management. Fresenius Environ. Bull. 2014, 23, 635–639. [Google Scholar]
- Song, X.D.; Xue, X.Y.; Chen, D.Z.; He, P.J.; Dai, X.H. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 2014, 109, 213–220. [Google Scholar] [CrossRef]
- Adam, C.; Peplinski, B.; Michaelis, M.; Kley, G.; Simon, F.G. Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manag. 2009, 29, 1122–1128. [Google Scholar] [CrossRef]
- Nordin, A.; Strandberg, A.; Elbashir, S.; Åmand, L.-E.; Skoglund, N.; Pettersson, A. Co-Combustion of Municipal Sewage Sludge and Biomass in a Grate Fired Boiler for Phosphorus Recovery in Bottom Ash. Energies 2020, 13, 1708. [Google Scholar] [CrossRef][Green Version]
- Thomsen, T.P.; Sárossy, Z.; Ahrenfeldt, J.; Henriksen, U.B.; Frandsen, F.J.; Müller-Stöver, D.S. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge. J. Environ. Manag. 2017, 198, 308–318. [Google Scholar] [CrossRef][Green Version]
- Hossain, M.K.; Strezov, V.; Yin Chan, K.; Nelson, P.F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 2010, 78, 1167–1171. [Google Scholar] [CrossRef]
- Méndez, A.; Gómez, A.; Paz-Ferreiro, J.; Gascó, G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 2012, 89, 1354–1359. [Google Scholar] [CrossRef]
- Méndez, A.; Tarquis, A.M.; Saa-Requejo, A.; Guerrero, F.; Gascó, G. Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil. Chemosphere 2013, 93, 668–676. [Google Scholar] [CrossRef]
- Han, H.; Hu, S.; Syed-Hassan, S.S.A.; Xiao, Y.; Wang, Y.; Xu, J.; Jiang, L.; Su, S.; Xiang, J. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis. Bioresour. Technol. 2017, 236, 138–145. [Google Scholar] [CrossRef]
- Lu, H.; Chen, H.; Li, W.; Li, B. Occurrence and volatilization behavior of Pb, Cd, Cr in Yima coal during fluidized-bed pyrolysis☆. Fuel 2004, 83, 39–45. [Google Scholar] [CrossRef]
- Farrell, M.; Jones, D.L. Heavy metal contamination of a mixed waste compost: Metal speciation and fate. Bioresour. Technol. 2009, 100, 4423–4432. [Google Scholar] [CrossRef]
- Conesa, J.A.; Font, R.; Fullana, A.; Martín-Gullón, I.; Aracil, I.; Gálvez, A.; Moltó, J.; Gómez-Rico, M.F. Comparison between emissions from the pyrolysis and combustion of different wastes. J. Anal. Appl. Pyrolysis 2009, 84, 95–102. [Google Scholar] [CrossRef][Green Version]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Liu, P.; Hu, H.; Yao, H. Pyrolysis characteristics and kinetic analysis of different dewatered sludge. Bioresour. Technol. 2014, 170, 325–330. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, L.; Fu, F.; Yang, Z.; Li, F.; Yuan, W.; Zhou, M.; Fang, W.; Zhen, G.; Lu, X.; et al. Pyrolysis of pre-dried dewatered sewage sludge under different heating rates: Characteristics and kinetics study. Fuel 2019, 255, 115591. [Google Scholar] [CrossRef]
- Leroy, V.; Cancellieri, D.; Leoni, E.; Rossi, J.-L. Kinetic study of forest fuels by TGA: Model-free kinetic approach for the prediction of phenomena. Thermochim. Acta 2010, 497, 1–6. [Google Scholar] [CrossRef][Green Version]
- Zevenhoven, M.; Yrjas, P.; Skrifvars, B.-J.; Hupa, M. Characterization of Ash-Forming Matter in Various Solid Fuels by Selective Leaching and Its Implications for Fluidized-Bed Combustion. Energy Fuels 2012, 26, 6366–6386. [Google Scholar] [CrossRef]
- Baxter, L.L.; Miles, T.R.; Miles, T.R.; Jenkins, B.M.; Milne, T.; Dayton, D.; Bryers, R.W.; Oden, L.L. The behavior of inorganic material in biomass-fired power boilers: Field and laboratory experiences. Fuel Process. Technol. 1998, 54, 47–78. [Google Scholar] [CrossRef]
- Pettersson, A. Characterisation of Fuels and Fly Ashes from Co-Combustion of Biofuels and Waste Fuels in a Fluidised Bed Boiler. A Phosphorus and Alkali Perspective. Ph.D. Thesis, Comprehensive Summary. Chalmers Tekniska Högskola, Göteborg, Sweden, 2008. [Google Scholar]
- Moradian, F.; Tchoffor, P.A.; Davidsson, K.O.; Pettersson, A.; Backman, R. Thermodynamic equilibrium prediction of bed agglomeration tendency in dual fluidized-bed gasification of forest residues. Fuel Process. Technol. 2016, 154, 82–90. [Google Scholar] [CrossRef]
- Moradian, F. Co-Combustion of Municipal Solid Waste and Animal Waste: Experiment and Simulation Studies. Ph.D. Thesis, University of Borås, School of Engineering, Borås, Sweden, 2013. [Google Scholar]
- Falk, J.; Skoglund, N.; Grimm, A.; Öhman, M. Systematic Evaluation of the Fate of Phosphorus in Fluidized Bed Combustion of Biomass and Sewage Sludge. Energy Fuels 2020, 34, 3984–3995. [Google Scholar] [CrossRef]
- Elled, A.-L. Co-Combustion of Biomass and Waste Fuels in a Fluidised Bed Boiler: Fuel Synergism. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2008. [Google Scholar]
- Liu, J.; Fu, J.; Ning, X.; Sun, S.; Wang, Y.; Xie, W.; Huang, S.; Zhong, S. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration. J. Environ. Sci. 2015, 35, 43–54. [Google Scholar] [CrossRef]
- Lindberg, D.; Backman, R.; Chartrand, P.; Hupa, M. Towards a comprehensive thermodynamic database for ash-forming elements in biomass and waste combustion—Current situation and future developments. Fuel Process. Technol. 2013, 105, 129–141. [Google Scholar] [CrossRef]
- Hannl, T.K.; Sefidari, H.; Kuba, M.; Skoglund, N.; Öhman, M. Thermochemical equilibrium study of ash transformation during combustion and gasification of sewage sludge mixtures with agricultural residues with focus on the phosphorus speciation. Biomass Convers. Biorefinery 2021, 11, 57–68. [Google Scholar] [CrossRef]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Hack, K.; Jung, I.H.; Kang, Y.B.; Melançon, J.; Pelton, A.D.; et al. FactSage thermochemical software and databases—Recent developments. Calphad 2009, 33, 295–311. [Google Scholar] [CrossRef]
- Arnout, S.; Nagels, E. Modelling thermal phosphorus recovery from sewage sludge ash. Calphad 2016, 55, 26–31. [Google Scholar] [CrossRef]
- Fraissler, G.; Jöller, M.; Mattenberger, H.; Brunner, T.; Obernberger, I. Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination. Chem. Eng. Process. Process Intensif. 2009, 48, 152–164. [Google Scholar] [CrossRef]
- Jakob, A.; Stucki, S.; Kuhn, P. Evaporation of Heavy Metals during the Heat Treatment of Municipal Solid Waste Incinerator Fly Ash. Environ. Sci. Technol. 1995, 29, 2429–2436. [Google Scholar] [CrossRef]
- Corella, J.; Toledo, J.M. Incineration of doped sludges in fluidized bed. Fate and partitioning of six targeted heavy metals. I. Pilot plant used and results. J. Hazard. Mater. 2000, 80, 81–105. [Google Scholar] [CrossRef]
- Roberts, T.L. Cadmium and Phosphorous Fertilizers: The Issues and the Science. Procedia Eng. 2014, 83, 52–59. [Google Scholar] [CrossRef][Green Version]
- Strehlow, C.D.; Barltrop, D. Health studies. Sci. Total Environ. 1988, 75, 101–133. [Google Scholar] [CrossRef]
- Frandsen, F.; Dam-Johansen, K.; Rasmussen, P. Trace elements from combustion and gasification of coal—An equilibrium approach. Prog. Energy Combust. Sci. 1994, 20, 115–138. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, D.-J. Enhanced phosphorus bioavailability and heavy metal removal from sewage sludge ash through thermochemical treatment with chlorine donors. J. Ind. Eng. Chem. 2018, 58, 216–221. [Google Scholar] [CrossRef]
- Piotrowska, P.; Zevenhoven, M.; Davidsson, K.; Hupa, M.; Åmand, L.-E.; Barišić, V.; Coda Zabetta, E. Fate of Alkali Metals and Phosphorus of Rapeseed Cake in Circulating Fluidized Bed Boiler Part 1: Cocombustion with Wood. Energy Fuels 2010, 24, 333–345. [Google Scholar] [CrossRef]
- Bagreev, A.; Bashkova, S.; Locke, D.C.; Bandosz, T.J. Sewage Sludge-Derived Materials as Efficient Adsorbents for Removal of Hydrogen Sulfide. Environ. Sci. Technol. 2001, 35, 1537–1543. [Google Scholar] [CrossRef]
City of Wastewater Treatment Plant | Phosphorus Precipitation Treatment | Dry Matter 3 | |||
---|---|---|---|---|---|
Mora-Sweden | P is Chemically Precipitated with Kemiras PAX 215, Which is An Aluminum Polymer. | 89.4 wt.% | |||
Proximate Analysis | Ash Analysis | (g/kg DSS 2) | Trace Elements | (mg/kg DSS 2) | |
Moisture 1,2 | 10.6 | Al | 33 | As | 1.11 |
Ash 1,3 | 21.1 | Ca | 8.9 | Cd | 0.39 |
Volatiles 1,3 | 70.7 | Fe | 3.8 | Co | 1.3 |
Fixed carbon 1,3 | 8.2 | K | 1.6 | Cr | 29 |
Ultimate analysis 1,2 | Mg | 0.93 | Cu | 130 | |
C | 55 | Na | 0.54 | Hg | 22 |
H | 8.0 | P | 15 | Mn | 93 |
O | 31 | Si | 17 | Ni | 8.1 |
N | 4.4 | Ti | 0.39 | Pb | 9.3 |
S | 0.7 | Cl | 0.47 | Zn | 310 |
Elements | |
H, C, N, O, Na, Mg, Al, Si, P, K, Ca, Fe, Zn, S | |
Database—GTOX (solution models) | |
Slag (liquid phase containing oxides, metals, sulfides, sulfates of existing elements) | |
ALPM (Al, Si)(P, Si)O4 | C3PL (Ca, Mg, Zn)3(PO4)2 |
CORU (Al, Fe)2O3 MEO CaO, MgO, K2O, Al2O3, FeO, ZnO OLIV (Ca, Fe, Mg, Zn)(Ca, Fe, Mg, Zn)SiO4 Gases: CO2, H2O, H2 Database—SGPS (stoichiometric compounds) Gas compounds Stoichiometric solid compounds | PYRR (MgS, FeS) MULL Al2(Al, Fe, Si)O5 Stoichiometric solid compounds |
Heating Rate (°C/min) | Sample Mass (mg) | k0 | n |
---|---|---|---|
2 | 3.687 | 4.78 × 1014 | 7.18 |
5 | 3.769 | 6.03 × 1014 | 6.70 |
10 | 3.685 | 1.77 × 1015 | 6.80 |
15 | 3.897 | 3.60 × 1014 | 5.87 |
20 | 3.792 | 3.36 × 1014 | 5.82 |
Temperature °C | % Char Yield | Average Energy (J/g) |
---|---|---|
500 | 28.7 | 6087 |
700 | 26.4 | 4070 |
900 | 24.6 | 6499 |
Temperature °C | P | Mg | Ca | Zn | Cu | Cr | Ni |
---|---|---|---|---|---|---|---|
500 | 90 | 29 | 53 | 31 | 72 | 91 | 70 |
700 | 100 | 12 | 23 | 34 | 77 | 90 | 76 |
900 | 93 | 9 | 26 | 25 | 69 | 87 | 34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vali, N.; Åmand, L.-E.; Combres, A.; Richards, T.; Pettersson, A. Pyrolysis of Municipal Sewage Sludge to Investigate Char and Phosphorous Yield together with Heavy-Metal Removal—Experimental and by Thermodynamic Calculations. Energies 2021, 14, 1477. https://doi.org/10.3390/en14051477
Vali N, Åmand L-E, Combres A, Richards T, Pettersson A. Pyrolysis of Municipal Sewage Sludge to Investigate Char and Phosphorous Yield together with Heavy-Metal Removal—Experimental and by Thermodynamic Calculations. Energies. 2021; 14(5):1477. https://doi.org/10.3390/en14051477
Chicago/Turabian StyleVali, Naeimeh, Lars-Erik Åmand, Aurélie Combres, Tobias Richards, and Anita Pettersson. 2021. "Pyrolysis of Municipal Sewage Sludge to Investigate Char and Phosphorous Yield together with Heavy-Metal Removal—Experimental and by Thermodynamic Calculations" Energies 14, no. 5: 1477. https://doi.org/10.3390/en14051477