Historical Buildings Dampness Analysis Using Electrical Tomography and Machine Learning Algorithms
Abstract
:1. Introduction
1.1. The Impact of Damp Walls on Energy Consumption and Costs
1.2. Dampness-Related Health Risks in Buildings
1.3. Methods of Measuring Humidity in Walls
- (1)
- It is a non-invasive method, and the supervisors of monuments do not allow the examination of historical buildings with invasive methods.
- (2)
- Using the EIT method, it is possible to visualize wall humidity in 3D space, which is not possible with other methods. For example, the thermographic method shows only the moisture of the visible wall, not the changes inside the object.
- (3)
- EIT is not influenced by salt and other chemicals present in masonry walls and bricks. Metallic components are also not a problem.
- (4)
- Inhomogeneities of the tested object (cracks, voids, presence of different materials in the wall) complicates the calibration but does not preclude the EIT method.
- (5)
- EIT can identify spatial areas with different moisture content.
- (6)
- EIT method allows to perform multiple reconstructions in a second. Measurements can be carried out in the same place continuously, which enables continuous monitoring of changes in moisture.
- (7)
- EIT allows deep penetration.
1.4. Objective of Research and Novelties
1.5. Structure of the Paper
2. Materials and Methods
2.1. Historical Building as a Research Object
2.2. Measuring System
2.3. Compared Methods of Creating a Tomographic Image
2.3.1. Total Variation (TV)
2.3.2. Least-Angle Regression (LARS)
2.3.3. Elastic Net (EN)
2.3.4. Artificial Neural Networks (ANN)
2.4. Result Validation Methods
2.5. Preliminary Evaluation of Algorithmic Methods through Voltages
Algorithm 1. Generation of training data and preliminary evaluation of the effectiveness of EIT algorithmic methods |
|
3. Results
3.1. Visualization of Real Measurements
3.2. Comparison of Methods
- (1)
- Figure 15b and Figure 16b are examples of how misleading an assessment of a reconstruction based solely on deviation (e.g. MSE or RIE) can be. A cursory visual observation is insufficient to conclude that the values of the tetrahedra (pixels) for Figure 15b contain as many as 216 elements for which the conductance is maximum (i.e. 10). It turns out that these "wet" pixels are concentrated around the electrodes, where the finite elements are much more densely packed (and therefore smaller) than in other areas of the wall section under study. It should also be noted that in 3D images only the outer pixels are visible, while many pixels are still hidden. Of the 6408 mesh elements total, the values of 316 pixels are greater than 3 and less than 10, which should give some colors. Unfortunately, they are mostly invisible. To see them, many cross-sections of the spatial part of the wall should be analyzed.
- (2)
- In Figure 15b many pixels have values greater than 1 and smaller than 2 and they are all transparent. The reason is that a gradual (not continuous) color scale was used. In fact, the entire output band (conductances) has been divided into 9 categories, as shown in the color bars for Figure 15, Figure 16, Figure 17 and Figure 18.
- (3)
- In the case of variants with 32 electrodes, the tested part of the wall is much larger than in the case of 16 electrodes. The width of the wall section in Figure 15 is 20 cm, and in Figure 16 it is 60 cm. It means that doubling the number of electrodes (from 16 to 32) is accompanied by tripling the width of the wall section being tested (from 20 cm to 60 cm). This is the reason why the reconstruction errors for larger wall sections (#2 and #4) are bigger than in variants #1 and #3.It follows from the above considerations that the ICC indicator that reflects the regression of pixel values, not their deviation, is better suited for the comparative analysis of the variants shown in Figure 15, Figure 16, Figure 17 and Figure 18. “Mean” (right column of Table 5) is also a good indicator as it combines all four variants into one metric, which overcomes the disadvantages of MSE and RIE.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hola, A. Measuring of the moisture content in brick walls of historical buildings—the overview of methods. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 3rd International Conference on Innovative Materials, Structures and Technologies (IMST 2017), Riga, Latvia, 27–29 September 2017; Institute of Physics Publishing: Bristol, UK, 2017; Volume 251. [Google Scholar]
- Rymarczyk, T.; Kłosowski, G.; Kozłowski, E. A Non-Destructive System Based on Electrical Tomography and Machine Learning to Analyze the Moisture of Buildings. Sensors 2018, 18, 2285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoła, A. Methodology for the in situ testing of the moisture content of brick walls: An example of application. Arch. Civ. Mech. Eng. 2020, 20, 3. [Google Scholar] [CrossRef]
- Andreotti, M.; Bottino-Leone, D.; Calzolari, M.; Davoli, P.; Dias Pereira, L.; Lucchi, E.; Troi, A. Applied Research of the Hygrothermal Behaviour of an Internally Insulated Historic Wall without Vapour Barrier: In Situ Measurements and Dynamic Simulations. Energies 2020, 13, 3362. [Google Scholar] [CrossRef]
- Lucchi, E.; Dias Pereira, L.; Andreotti, M.; Malaguti, R.; Cennamo, D.; Calzolari, M.; Frighi, V. Development of a Compatible, Low Cost and High Accurate Conservation Remote Sensing Technology for the Hygrothermal Assessment of Historic Walls. Electronics 2019, 8, 643. [Google Scholar] [CrossRef] [Green Version]
- Litti, G.; Khoshdel, S.; Audenaert, A.; Braet, J. Hygrothermal performance evaluation of traditional brick masonry in historic buildings. Energy Build. 2015, 105, 393–411. [Google Scholar] [CrossRef]
- Rye, C.; Scott, C.; Hubbard, D. THE SPAB RESEARCH REPORT 2 The SPAB Building Performance Survey 2012 Interim Report. 2012. Available online: https://bit.ly/3r04xUt (accessed on 28 December 2020).
- Bikas, D.; Chastas, P. The Effect of the U Value in the Energy Performance of Residential Buildings in Greece. J. Sustain. Arch. Civ. Eng. 2014, 6, 6. [Google Scholar] [CrossRef]
- Kosinski, T.; Obaid, M.; Wozniak, P.W.; Fjeld, M.; Kucharski, J. A fuzzy data-based model for Human-Robot Proxemics. In Proceedings of the 25th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN, New York, NY, USA, 26–31 August 2016; pp. 335–340. [Google Scholar]
- Daniewski, K.; Kosicka, E.; Mazurkiewicz, D. Analysis of the correctness of determination of the effectiveness of maintenance service actions. Manag. Prod. Eng. Rev. 2018, 9, 20–25. [Google Scholar]
- Kłosowski, G.; Rymarczyk, T.; Wójcik, D.; Skowron, S.; Cieplak, T.; Adamkiewicz, P. The use of time-frequency moments as inputs of lstm network for ecg signal classification. Electronics 2020, 9, 1452. [Google Scholar] [CrossRef]
- Karabacak, Y.E.; Gürsel Özmen, N.; Gümüşel, L. Worm gear condition monitoring and fault detection from thermal images via deep learning method. Eksploat. Niezawodn. 2020, 22, 544–556. [Google Scholar] [CrossRef]
- Rodrigues, J.; Costa, I.; Farinha, J.T.; Mendes, M.; Margalho, L. Predicting motor oil condition using artificial neural networks and principal component analysis. Eksploat. Niezawodn. 2020, 22, 440–448. [Google Scholar] [CrossRef]
- Korzeniewska, E.; Sekulska-Nalewajko, J.; Gocawski, J.; Droż Dż, T.; Kiebasa, P. Analysis of changes in fruit tissue after the pulsed electric field treatment using optical coherence tomography. EPJ Appl. Phys. 2020, 91, 30902. [Google Scholar] [CrossRef]
- Rymarczyk, T.; Kłosowski, G.; Tchórzewski, P.; Cieplak, T.; Kozłowski, E. Area monitoring using the ERT method with multisensor electrodes. Prz. Elektrotechniczny 2019, 95, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Abascal, J.; Soleimani, M. Extended Joint Sparsity Reconstruction for Spatial and Temporal ERT Imaging. Sensors 2018, 18, 4014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczesny, A.; Korzeniewska, E. Selection of the method for the earthing resistance measurement. Prz. Elektrotech. 2018, 94, 178–181. [Google Scholar]
- Romanowski, A. Contextual Processing of Electrical Capacitance Tomography Measurement Data for Temporal Modeling of Pneumatic Conveying Process. In Proceedings of the 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), Poznań, Poland, 9–12 September 2018; pp. 283–286. [Google Scholar]
- Majchrowicz, M.; Kapusta, P.; Jackowska-Strumiłło, L.; Sankowski, D. Acceleration of image reconstruction process in the electrical capacitance tomography 3D in heterogeneous, multi-GPU system. Inform. Control Meas. Econ. Environ. Prot. 2017, 7, 37–41. [Google Scholar] [CrossRef]
- Kryszyn, J.; Smolik, W. Toolbox for 3D modelling and image reconstruction in electrical capacitance tomography. Inform. Control Meas. Econ. Environ. Prot. 2017, 7, 137–145. [Google Scholar] [CrossRef]
- Grudzien, K.; Chaniecki, Z.; Romanowski, A.; Sankowski, D.; Nowakowski, J.; Niedostatkiewicz, M. Application of twin-plane ECT sensor for identification of the internal imperfections inside concrete beams. In Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, 23–26 May 2016; pp. 1–6. [Google Scholar]
- Rymarczyk, T. New methods to determine moisture areas by electrical impedance tomography. Int. J. Appl. Electromagn. Mech. 2016, 52, 79–87. [Google Scholar] [CrossRef]
- Rymarczyk, T.; Nita Pawełand Vejar, A.; Wos, M.; Stefaniak, B.; Adamkiewicz, P. Wareable mobile measuring device based on electrical tomography. Prz. Elektrotech. 2019, 95, 211–214. [Google Scholar] [CrossRef]
- Dusek, J.; Hladky, D.; Mikulka, J. Electrical impedance tomography methods and algorithms processed with a GPU. In Proceedings of the 2017 Progress In Electromagnetics Research Symposium—Spring (PIERS), St. Petersburg, Russia, 22–25 May 2017; pp. 1710–1714. [Google Scholar]
- Kozłowski, E.; Mazurkiewicz, D.; Żabiński, T.; Prucnal, S.; Sęp, J. Assessment model of cutting tool condition for reAl-time supervision system model oceny stAnu nArzędziA skrAwAjącego dlA systemu nAdzoru w czAsie rzeczywistym. Eksploat. Niezawodn. Reliab. 2019, 21. [Google Scholar] [CrossRef]
- Kłosowski, G.; Rymarczyk, T.; Kania, K.; Świć, A.; Cieplak, T. Maintenance of industrial reactors supported by deep learning driven ultrasound tomography. Eksploat. Niezawodn. 2020, 22, 138–147. [Google Scholar] [CrossRef]
- Kłosowski, G.; Rymarczyk, T.; Cieplak, T.; Niderla, K.; Skowron, Ł. Quality assessment of the neural algorithms on the example of EIT-UST hybrid tomography. Sensors 2020, 20, 3324. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fuentes, X.; Mera, D.; Gómez, A.; Vidal-Franco, I. Towards a Fast and Accurate EIT Inverse Problem Solver: A Machine Learning Approach. Electronics 2018, 7, 422. [Google Scholar] [CrossRef] [Green Version]
- Rymarczyk, T.; Tchorzewski, P.; Adamkiewicz, P.; Duda, K.; Szumowski, J.; Sikora, J. Practical Implementation of Electrical Tomography in a Distributed System to Examine the Condition of Objects. IEEE Sens. J. 2017, 17, 8166–8186. [Google Scholar] [CrossRef]
- Zhao, G.; Hu, J.; He, J.; Wang, S.X. A Novel Current Reconstruction Method Based on Elastic Net Regularization. IEEE Trans. Instrum. Meas. 2020, 69, 7484–7493. [Google Scholar] [CrossRef]
- Adler, A.; Lionheart, W.R.B. Uses and abuses of EIDORS: An extensible software base for EIT. Physiol. Meas. 2006, 27, S25–S42. [Google Scholar] [CrossRef] [Green Version]
- Hoegh, K.; Khazanovich, L. Correlation analysis of 2D tomographic images for flaw detection in pavements. J. Test. Eval. 2012, 40, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Hoła, J.; Matkowski, Z.; Schabowicz, K.; Sikora, J.; Nita, K.; Wójtowicz, S. Identification of moisture content in brick walls by means of impedance tomography. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2012, 31, 1774–1792. [Google Scholar] [CrossRef]
- Goetzke-Pala, A.; Hoła, A.; Sadowski, Ł. A non-destructive method of the evaluation of the moisture in saline brick walls using artificial neural networks. Arch. Civ. Mech. Eng. 2018, 18, 1729–1742. [Google Scholar] [CrossRef]
- Hoła, A.; Matkowski, Z.; Hoła, J. Analysis of the Moisture Content of Masonry Walls in Historical Buildings Using the Basement of a Medieval Town Hall as an Example. In Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 172, pp. 363–368. [Google Scholar]
Data Division | Number of Cases in A Given Set | Mean Square Error (MSE) | Regression (R) |
---|---|---|---|
Training set (70%) | 24,500 | 1.50735 | 0.961016 |
Validation set (15%) | 5250 | 2.12389 | 0.945380 |
Testing set (15%) | 5250 | 2.42436 | 0.936677 |
Methods of Reconstruction | PE (%) | ICC |
---|---|---|
TV | 1.9652 | 0.9997 |
LARS | 26.7330 | 0.9970 |
Elastic Net | 12.6800 | 0.9986 |
ANN | 11.6358 | 0.9993 |
Description | Variant No. #1 | Variant No. #2 | ||
---|---|---|---|---|
Values | Dense Mesh, Axes (cm) | Values | Dense Mesh, Axes (cm) | |
Number of electrodes | 16 | | 32 | |
Type of electrodes | surface | surface | ||
Number of nodes | 1924 | 3580 | ||
Number of finite elements | 6408 | 13,004 |
Description | Variant No. #3 | Variant No. #4 | ||
---|---|---|---|---|
Values | Dense Mesh, Axes (cm) | Values | Dense Mesh, Axes (cm) | |
Number of electrodes | 16 | | 32 | |
Type of electrodes | surface | surface | ||
Number of nodes | 1569 | 3051 | ||
Number of finite elements | 5102 | 10,752 |
Methods of Reconstruction | Indicator | Variant No. | Mean | |||
---|---|---|---|---|---|---|
#1 | #2 | #3 | #4 | |||
TV | MSE | 17.15476 | 21.63204 | 14.39486 | 15.05821 | 17.05997 |
RIE | 0.668432 | 0.779286 | 0.682255 | 0.700165 | 0.707535 | |
ICC | 0.666223 | 0.74076 | 0.834452 | 0.703908 | 0.736336 | |
LARS | MSE | 11.92607 | 3.462529 | 1.224107 | 5.508663 | 5.530342 |
RIE | 0.557331 | 0.311777 | 0.198954 | 0.423484 | 0.372887 | |
ICC | 0.726455 | 0.906298 | 0.969256 | 0.824197 | 0.856552 | |
Elastic Net | MSE | 7.614354 | 2.23404 | 1.253634 | 1.031945 | 3.033493 |
RIE | 0.445329 | 0.250434 | 0.201339 | 0.183291 | 0.270098 | |
ICC | 0.851874 | 0.955191 | 0.975278 | 0.975083 | 0.939357 | |
ANN | MSE | 8.722011 | 8.13319 | 3.019731 | 3.49561 | 5.842636 |
RIE | 0.476621 | 0.477836 | 0.312484 | 0.337345 | 0.401072 | |
ICC | 0.801593 | 0.808106 | 0.919449 | 0.904321 | 0.858367 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rymarczyk, T.; Kłosowski, G.; Hoła, A.; Hoła, J.; Sikora, J.; Tchórzewski, P.; Skowron, Ł. Historical Buildings Dampness Analysis Using Electrical Tomography and Machine Learning Algorithms. Energies 2021, 14, 1307. https://doi.org/10.3390/en14051307
Rymarczyk T, Kłosowski G, Hoła A, Hoła J, Sikora J, Tchórzewski P, Skowron Ł. Historical Buildings Dampness Analysis Using Electrical Tomography and Machine Learning Algorithms. Energies. 2021; 14(5):1307. https://doi.org/10.3390/en14051307
Chicago/Turabian StyleRymarczyk, Tomasz, Grzegorz Kłosowski, Anna Hoła, Jerzy Hoła, Jan Sikora, Paweł Tchórzewski, and Łukasz Skowron. 2021. "Historical Buildings Dampness Analysis Using Electrical Tomography and Machine Learning Algorithms" Energies 14, no. 5: 1307. https://doi.org/10.3390/en14051307
APA StyleRymarczyk, T., Kłosowski, G., Hoła, A., Hoła, J., Sikora, J., Tchórzewski, P., & Skowron, Ł. (2021). Historical Buildings Dampness Analysis Using Electrical Tomography and Machine Learning Algorithms. Energies, 14(5), 1307. https://doi.org/10.3390/en14051307