Research on a Comprehensive Maintenance Optimization Strategy for an Offshore Wind Farm
Abstract
:1. Introduction
2. Handling Method of Imperfect Equipment Maintenance
2.1. Improved Factor Method
2.2. Monte Carlo Simulation
3. Offshore Wind Farm Accessibility Evaluation Method Considering Weather Window
3.1. L-Moment-Based Parameter Estimation Theory
3.2. Establishment of the Weather Window Model
3.3. Optimal Fitting Distribution of Waiting Windows
3.4. Estimation of Waiting Windows
4. Comprehensive Offshore Wind Farm Maintenance Strategies Based on Rolling Horizon Approach
4.1. Assumptions
- (1)
- The offshore wind form consists of m wind turbines and n mutually independent equipment, each wind turbine and each equipment have two states—working state and outage state, and all components are under outage state during each maintenance process (preventive maintenance and fault maintenance).
- (2)
- Equipment failure rate of the equipment satisfies a Weibull distribution, which can be expressed as:
- (3)
- When a wind turbine equipment reaches its reliability threshold Rmi, then preventive maintenance of the equipment should be carried out to avoid degradation and failure. After the preventive maintenance work is completed, the equipment will restart a new round of the failure and degradation process.
- (4)
- If the equipment goes through a sudden failure before the preventive maintenance, then fault maintenance can make the equipment reenter working state while its failure rate is not changed.
- (5)
- The outage loss of a sudden failure of the offshore wind power system is high, so fault maintenance cost is higher than planned preventive maintenance.
- (6)
- When a wind turbine equipment is put under opportunistic maintenance, then all equipment of this wind turbine involved in this maintenance will be considered having the same outage time and outage loss , namely , .
4.2. Calculation of Maintenance Reliability Threshold
4.3. Offshore Wind Farm Opportunistic Maintenance Model Considering Weather Effect
4.4. Opportunistic Grouping Optimization Model of the Offshore Wind Farm
5. Calculation and Analysis
5.1. Site Selection and Maintenance of Dafengtian Wind Farm of Goldwind Technology
5.2. Calculation of Dafengtian Wind Farm Maintenance Scheme
5.3. Analysis of Economical Efficiency
6. Conclusions
- (1)
- An improved factor with Monte Carlo algorithm were presented to simulate the imperfect preventive maintenance activity, the influence of uncertainty of maintenance degree in practical engineering on the system is taken into consideration in the optimization process.
- (2)
- The weather window model of the offshore wind farm is established to calculate the expected waiting window time, so as to consider the impact of weather environment accessibility on offshore wind turbine maintenance. The results show that considering the weather accessibility, it is not only closer to the actual offshore maintenance process, but also suitable for leasing and dispatching maintenance vessels, so as to reduce the fixed maintenance cost of offshore wind farms.
- (3)
- A maintenance grouping optimization method for offshore wind farm considering opportunities and economic relevance is provided. By applying a rolling horizon approach, the maintenance planning which can be changed with time can be updated to take short-term information, into account. The results of Dafengtian offshore wind farm show the practicality and superiority of the proposed method, which can realize the long-term dynamic optimization of offshore wind farm maintenance activities.
- (4)
- There are many uncertainties in offshore wind farm maintenance process, some assumptions have been made in this paper. In the future, more statistical data, such as dynamic equipment failure data, maintenance quality statistics, etc., are needed to establish a more perfect and accurate maintenance model. Meanwhile, artificial intelligence and data mining technology can be applied to realize an intelligent maintenance strategy for smart offshore wind farms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shafiee, M. Maintenance logistics organization for offshore wind energy: Current progress and future perspectives. Renew. Energy 2015, 77, 182–193. [Google Scholar] [CrossRef]
- James, C.; Alasdair, M. Availability, operation & maintenance costs of offshore wind turbines with different drive train configurations. Wind Energy 2016, 20, 361–378. [Google Scholar]
- Zhang, C.; Gao, W.; Guo, S.; Li, Y.; Yang, T. Opportunistic maintenance for wind turbines considering imperfect, reliability-based maintenance. Renew. Energy 2017, 103, 606–612. [Google Scholar] [CrossRef]
- Ding, F.; Tian, Z. Opportunistic maintenance optimization for wind turbine systems considering imperfect maintenance actions. Int. J. Reliab. Qual. Saf. Eng. 2011, 18, 463–481. [Google Scholar] [CrossRef]
- Nilsson, J.; Bertling, L. Maintenance management of wind power systems using condition monitoring systems—Life cycle cost analysis for two case studies. IEEE Trans. Energy Convers. 2007, 22, 223–229. [Google Scholar] [CrossRef]
- Carlos, S.; Sánchez, A.; Martorell, S.; Marton, I. Onshore wind farms maintenance optimization using a stochastic model. Math. Comput. Model. 2013, 57, 1884–1890. [Google Scholar] [CrossRef]
- Laura, C.S.; Vincente, D.C. Life-cycle cost analysis of floating offshore wind farms. Renew. Energy 2014, 66, 41–48. [Google Scholar] [CrossRef]
- Carroll, J.; McDonald, A.; McMillan, D. Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines. Wind. Energy 2016, 19, 1107–1119. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Sun, L.; Kang, J.; Sun, H.; Zhang, X. Opportunistic maintenance optimization for offshore wind turbine electrical and electronic system based on rolling horizon approach. J. Renew. Sustain. Energy 2017, 9, 033307. [Google Scholar] [CrossRef]
- Ding, F.F.; Tian, Z.G. Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresh-olds. Renew. Energy 2012, 45, 175–182. [Google Scholar] [CrossRef]
- Sun, H.Y.; Zheng, X.Y.; Huang, Y.; Gao, S. Study on offshore personnel transfer technique and crew transfer vessel’s sea-keeping performance. J. Ship Mech. 2018, 22, 580–594. [Google Scholar]
- Tian, Z.G.; Wong, L. A neural network approach for remaining useful life prediction utilizing both failure and suspen-sion histories. Mech. Syst. Signal Process. 2009, 24, 1542–1555. [Google Scholar] [CrossRef]
- Lu, Y.; Sun, L.; Zhang, X.; Feng, F.; Kang, J.; Fu, G. Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach. Appl. Ocean Res. 2018, 74, 69–79. [Google Scholar] [CrossRef]
- Wu, Y.-R.; Zhao, H.-S. Optimization maintenance of wind turbines using Markov decision processes. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; pp. 1–6. [Google Scholar]
- Hagen, B.; Simonsen, I.; Hofmann, M.; Muskulus, M. A multivariate Markov weather model for O&M simulation of offshore wind parks. Energy Procedia 2013, 35, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.J.; Castanier, B.; Bettayeb, B. A dynamic programming-based maintenance model of offshore wind turbine con-sidering logistic delay and weather condition. Reliab. Eng. Syst. Saf. 2019, 190, 106512. [Google Scholar] [CrossRef]
- Malik, M.A.K. Reliable preventive maintenance scheduling. AIIE Trans. 1979, 11, 221–228. [Google Scholar] [CrossRef]
- Nakagawa, T. Sequential imperfect preventive maintenance policies. IEEE Trans. Reliab. 1988, 37, 295–298. [Google Scholar] [CrossRef]
- Kroese, D.P.; Taimre, T.; Botev, Z.I. Handbook of Monte Carlo Methods; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Bian, X.Y.; Yin, J.H.; Fu, Y. Optimized operation and maintenance strategies for offshore wind farm. East China Electr. Power 2012, 40, 95–98. [Google Scholar]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Pilar, P.; Soares, C.G.; Carretero, J. 44-year wave hindcast for the North East Atlantic European coast. Coast. Eng. 2008, 55, 861–871. [Google Scholar] [CrossRef]
- Walker, R.T.; van Nieuwkoop-McCall, J.; Johanning, L.; Parkinson, R.J. Calculating weather windows: Application to transit, installation and the implications on deployment success. Ocean Eng. 2013, 68, 88–101. [Google Scholar] [CrossRef]
L-Moment Ratio | |||||
---|---|---|---|---|---|
Statistical Model | λ1 | Τ | τ3 | τ4 | Z-Test |
Sample | 3.625 | 0.933 | 0.214 | 0.151 | - |
Gev | 3.625 | 0.933 | 0.214 | 0.165 | 2.30 |
LN3 | 3.625 | 0.933 | 0.214 | 0.156 | 1.02 |
Gum | 3.626 | 0.933 | 0.176 | 0.149 | 0.27 |
Wei | 3.625 | 0.933 | 0.214 | 0.131 | 3.67 |
Gam | 3.624 | 0.932 | 0.161 | 0.128 | 3.18 |
GP3 | 3.625 | 0.933 | 0.214 | 0.081 | 7.97 |
hac | Tw | Tp |
---|---|---|
1.4 | 0.75 | 5.61 |
1.6 | 0.94 | 3.47 |
1.8 | 1.05 | 2.48 |
2 | 1.19 | 2.05 |
2.2 | 1.38 | 1.81 |
2.4 | 1.55 | 1.41 |
2.6 | 1.76 | 1.12 |
2.8 | 1.96 | 0.96 |
3 | 2.06 | 0.84 |
3.2 | 2.18 | 0.63 |
3.4 | 2.55 | 0.60 |
Component | Cost of Fault Maintenance | Cost of Preventive Maintenance | Downtime Loss | Maintenance Time |
---|---|---|---|---|
Rotor | 30,000 | 3300 | 30,000 | 4 |
Generator | 25,000 | 1250 | 30,000 | 3 |
Pitch | 19,000 | 2100 | 30,000 | 2 |
Brake | 23,000 | 2600 | 30,000 | 2 |
Weather Conditions | Fixed Cost C0 (10,000 ¥/Year) | Applicable Wave Height (m) |
---|---|---|
1 | 200 | <1.2 |
2 | 350 | <1.5 |
3 | 500 | <2.0 |
NO. OWTs. | Component | Number of Maintenance | |
---|---|---|---|
PM | OM | ||
1 | Rotor | 3 | 10 |
Generator | 0 | 6 | |
Pitch | 2 | 2 | |
Brake | 0 | 1 | |
2 | Rotor | 3 | 9 |
Generator | 0 | 6 | |
Pitch | 0 | 3 | |
Brake | 0 | 1 | |
3 | Rotor | 3 | 7 |
Generator | 1 | 4 | |
Pitch | 1 | 3 | |
Brake | 0 | 2 | |
4 | Rotor | 5 | 9 |
Generator | 4 | 5 | |
Pitch | 2 | 4 | |
Brake | 0 | 2 | |
5 | Rotor | 1 | 8 |
Generator | 0 | 8 | |
Pitch | 0 | 6 | |
Brake | 0 | 3 |
NO. OWTs. | OWT No.1 | OWT No.2 | OWT No.3 | OWT No.4 | OWT No.5 | Cost Saving/¥ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Component | Rotor | Generator | Pitch | Brake | Rotor | Generator | Pitch | Brake | Rotor | Generator | Pitch | Brake | Rotor | Generator | Pitch | Brake | Rotor | Generator | Pitch | Brake | ||
Time/ Day | 50 | OM | - | - | - | OM | - | - | - | OM | - | - | - | PM | - | - | - | - | - | - | - | 76,855 |
75 | - | OM | - | - | - | - | - | - | - | - | - | - | - | PM | - | - | OM | OM | - | - | 58,242 | |
100 | OM | - | - | - | - | OM | - | - | - | OM | - | - | OM | - | PM | - | - | - | OM | - | 89,262 | |
124 | - | - | OM | - | PM | - | - | - | OM | - | OM | - | - | - | - | - | - | - | - | - | 47,808 | |
148 | OM | - | - | - | - | - | - | - | - | - | - | - | PM | OM | - | - | OM | OM | - | OM | 109,772 | |
188 | - | OM | - | - | PM | OM | OM | - | OM | - | - | - | OM | - | OM | - | - | - | OM | - | 61,060 | |
213 | PM | - | - | - | - | - | - | - | - | OM | - | - | - | - | - | - | OM | - | - | - | 17,539 | |
240 | - | - | - | - | OM | - | - | - | - | - | - | - | OM | PM | - | - | - | OM | - | - | 20,546 | |
270 | PM | - | - | - | - | - | - | - | OM | - | - | - | - | - | - | - | - | - | - | - | 34,887 | |
301 | - | OM | OM | - | OM | - | - | - | - | - | PM | OM | OM | OM | - | OM | OM | - | - | - | 96,190 | |
327 | PM | - | - | - | - | OM | - | - | OM | - | - | - | - | - | OM | - | - | OM | OM | - | 83,610 | |
349 | - | - | - | - | OM | - | - | - | - | OM | - | - | PM | - | - | - | - | - | - | - | 18,810 | |
382 | OM | - | - | - | - | - | - | OM | - | - | - | - | - | OM | - | - | PM | - | - | - | 76,393 | |
403 | - | OM | - | - | - | - | - | - | OM | - | - | - | PM | - | - | - | - | - | - | OM | 45,752 | |
426 | OM | - | - | - | PM | - | OM | - | - | - | OM | - | - | - | - | - | - | OM | - | - | 62,251 | |
456 | - | - | PM | - | - | OM | - | - | - | - | - | - | OM | OM | OM | - | OM | - | OM | - | 122,213 | |
486 | OM | - | - | - | OM | - | - | - | PM | - | - | - | OM | - | - | - | - | - | - | - | 59,763 | |
522 | - | OM | - | - | - | - | - | - | - | PM | - | - | - | - | - | - | OM | OM | - | - | 79,922 | |
545 | OM | - | - | - | OM | OM | - | - | OM | - | - | - | OM | PM | OM | - | - | - | OM | - | 95,590 | |
597 | OM | - | PM | - | OM | - | - | - | - | - | OM | - | OM | - | - | - | OM | OM | - | - | 114,192 | |
619 | - | OM | - | - | - | - | PM | OM | - | - | - | OM | - | - | - | - | - | - | - | - | 44,445 | |
648 | OM | - | - | - | OM | - | - | - | - | - | - | - | PM | - | - | - | OM | - | - | OM | 51,566 | |
672 | - | - | - | - | - | OM | OM | - | - | - | - | - | - | - | PM | - | - | OM | OM | - | 59,380 | |
689 | - | - | - | - | - | - | - | - | PM | - | - | OM | OM | - | - | OM | - | - | - | - | 17,264 | |
710 | OM | - | - | OM | OM | - | - | - | - | - | - | - | - | PM | - | - | - | - | - | - | 35,815 |
Number of OWTs | Planned Maintenance Cost | Optimized Maintenance Cost | Saving Cost | Saving Ratio |
---|---|---|---|---|
5 | 1,875,000 | 1,085,436 | 2163 | 42.11% |
10 | 3,750,000 | 2,296,875 | 3981 | 38.75% |
20 | 7,500,000 | 4,847,250 | 7268 | 35.37% |
40 | 15,000,000 | 10,186,444 | 13,188 | 32.09% |
80 | 30,000,000 | 21,638,634 | 22,908 | 27.87% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Sun, L.; Xue, Y. Research on a Comprehensive Maintenance Optimization Strategy for an Offshore Wind Farm. Energies 2021, 14, 965. https://doi.org/10.3390/en14040965
Lu Y, Sun L, Xue Y. Research on a Comprehensive Maintenance Optimization Strategy for an Offshore Wind Farm. Energies. 2021; 14(4):965. https://doi.org/10.3390/en14040965
Chicago/Turabian StyleLu, Yang, Liping Sun, and Yanzhuo Xue. 2021. "Research on a Comprehensive Maintenance Optimization Strategy for an Offshore Wind Farm" Energies 14, no. 4: 965. https://doi.org/10.3390/en14040965
APA StyleLu, Y., Sun, L., & Xue, Y. (2021). Research on a Comprehensive Maintenance Optimization Strategy for an Offshore Wind Farm. Energies, 14(4), 965. https://doi.org/10.3390/en14040965