A PWM/PFM Dual-Mode DC-DC Buck Converter with Load-Dependent Efficiency-Controllable Scheme for Multi-Purpose IoT Applications
Abstract
:1. Introduction
2. Proposed Dual-Mode Buck Converter
2.1. Conventional Buck Converter Structures
2.2. Proposed Dual-Mode Buck Converter Structure
2.3. Selectable Adaptive On-Time PFM Control
2.4. Voltage-Mode PWM Control with Non-Overlapping Gate Driving
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, Y.-J.; Park, J.-H.; Kim, H.-J.; Ryu, H.-C.; Kim, S.-Y.; Pu, Y.; Hwang, K.C.; Yang, Y.; Lee, M.; Lee, K.-Y. A Design of a 92.4% Efficiency Triple Mode Control DC–DC Buck Converter with Low Power Retention Mode and Adaptive Zero Current Detector for IoT/Wearable Applications. IEEE Trans. Power Electron. 2017, 32, 6946–6960. [Google Scholar] [CrossRef]
- Wu, P.Y.; Tsui, S.Y.S.; Mok, P.K.T. Area- and Power-Efficient Monolithic Buck Converters with Pseudo-Type III Compensation. IEEE J. Solid-State Circuits 2010, 45, 1446–1455. [Google Scholar] [CrossRef]
- Hong, W.; Lee, M. A 7.4-MHz Tri-Mode DC-DC Buck Converter with Load Current Prediction Scheme and Seamless Mode Transition for IoT Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4544–4555. [Google Scholar] [CrossRef]
- Lee, T.-J.; Hsu, C.-H.; Wang, C.-C. High Efficiency Buck Converter with Wide Load Current Range using Dual-Mode of PWM and PSM. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Park, J.; Lee, H.-M.; Shin, S.-U.; Choi, W.; Hong, S.-W. A 0.46 mm2 On-Chip Compensated Type-III Buck Converter Using an Inner Feedback Loop with a Seamless CCM/DCM Transition Technique. IEEE Trans. Power Electron. 2019, 35, 4477–4482. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, Y.; Ki, W.-H. A 10/30 MHz Fast Reference-Tracking Buck Converter with DDA-Based Type-III Compensator. IEEE J. Solid-State Circuits 2014, 49, 2788–2799. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Ramadass, Y.K.; Chandrakasan, A.P. 20 μA to 100 mA DC–DC Converter With 2.8–4.2 V Battery Supply for Portable Applications in 45 nm CMOS. IEEE J. Solid-State Circuits 2011, 46, 2807–2820. [Google Scholar] [CrossRef]
- Tsai, J.-C.; Huang, T.-Y.; Lai, W.-W.; Chen, K.-H. Dual Modulation Technique for High Efficiency in High-Switching Buck Converters over a Wide Load Range. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 1671–1680. [Google Scholar] [CrossRef]
- Xiao, J.; Peterchev, A.V.; Zhang, J.; Sanders, S.R. A 4-μA quiescent-current dual-mode digitally con-trolled buck converter IC for cellular phone applications. IEEE J. Solid-State Circuits 2004, 39, 2342–2348. [Google Scholar] [CrossRef]
- Chen, P.-H.; Wu, C.-S.; Lin, K.-C. A 50 nW-to-10 mW Output Power Tri-Mode Digital Buck Converter with Self-Tracking Zero Current Detection for Photovoltaic Energy Harvesting. IEEE J. Solid-State Circuits 2016, 51, 523–532. [Google Scholar] [CrossRef]
- Chen, P.; Cheng, H.; Ai, Y.; Chung, W. Automatic Mode-Selected Energy Harvesting Interface with >80% Power Efficiency Over 200 nW to 10 Mw. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 2898–2906. [Google Scholar] [CrossRef]
- Yuan, B.; Liu, M.-X.; Ng, W.T.; Lai, X.-Q. Hybrid Buck Converter with Constant Mode Changing Point and Smooth Mode Transition for High-Frequency Applications. IEEE Trans. Ind. Electron. 2020, 67, 1466–1474. [Google Scholar] [CrossRef]
- Kim, S.J.; Choi, W.-S.; Pilawa-Podgurski, R.G.C.N.; Hanumolu, P.K. A 10-MHz 2–800-mA 0.5–1.5-V 90% Peak Efficiency Time-Based Buck Converter with Seamless Transition between PWM/PFM Modes. IEEE J. Solid-State Circuits 2017, 53, 814–824. [Google Scholar] [CrossRef]
- Leung, K.K.-S.; Chung, H.S.-H. Dynamic hysteresis band control of the buck converter with fast transient response. IEEE Trans. Circuits Syst. II Express Briefs 2005, 52, 398–402. [Google Scholar] [CrossRef]
- Su, F.; Ki, W.-H.; Tsui, C.-Y. Ultra Fast Fixed-Frequency Hysteretic Buck Converter with Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications. IEEE J. Solid-State Circuits 2008, 43, 815–822. [Google Scholar] [CrossRef]
- Fu, W.; Tan, S.T.; Radhakrishnan, M.; Byrd, R.; Fayed, A. A DCM-Only Buck Regulator with Hysteretic-Assisted Adaptive Minimum-On-Time Control for Low-Power Microcontrollers. IEEE Trans. Power Electron. 2015, 31, 418–429. [Google Scholar] [CrossRef]
- Redl, R.; Sun, J. Ripple-Based Control of Switching Regulators—An Overview. IEEE Trans. Power Electron. 2009, 24, 2669–2680. [Google Scholar] [CrossRef]
- Nashed, M.; Fayed, A.A. Current-Mode Hysteretic Buck Converter With Spur-Free Control for Variable Switching Noise Mitigation. IEEE Trans. Power Electron. 2018, 33, 650–664. [Google Scholar] [CrossRef]
- Yang, W.-H.; Huang, C.-J.; Huang, H.-H.; Lin, W.-T.; Chen, K.-H.; Lin, Y.-H.; Lin, S.-R.; Tsai, T.-Y. A Constant-on-Time Control DC–DC Buck Converter with the Pseudowave Tracking Technique for Regulation Accuracy and Load Transient Enhancement. IEEE Trans. Power Electron. 2017, 33, 6187–6198. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chen, C.-J.; Chen, D.; Wang, B. A Ripple-Based Constant On-Time Control With Virtual Inductor Current and Offset Cancellation for DC Power Converters. IEEE Trans. Power Electron. 2012, 27, 4301–4310. [Google Scholar] [CrossRef]
- Li, Y.-C.; Chen, C.-J.; Tsai, C.-J. A Constant On-Time Buck Converter with Analog Time-Optimized On-Time Control. IEEE Trans. Power Electron. 2020, 35, 3754–3765. [Google Scholar] [CrossRef]
- Liu, W.-C.; Chen, C.-J.; Cheng, C.-H.; Chen, H.-J. A Novel Accurate Adaptive Constant On-Time Buck Converter for a Wide-Range Operation. IEEE Trans. Power Electron. 2019, 35, 3729–3739. [Google Scholar] [CrossRef]
- Wong, L.; Man, T. Maximum frequency for hysteretic control COT buck converters. In Proceedings of the 13th International Power Electronics and Motion Control Conference, Poznań, Poland, 1–3 September 2008; pp. 475–478. [Google Scholar]
- Nam, H.; Ahn, Y.; Roh, J. A buck converter with adaptive on-time PFM control and adjustable output voltage. Analog. Integr. Circuits Signal Process. 2011, 71, 327–332. [Google Scholar] [CrossRef]
- Chuan, N.; Tateishi, T. Adaptive constant on-time (D-CAPTM) control study in notebook applications. In TI Application Note SLVA281B; Texas Instruments: Dallas, TX, USA, 2007. [Google Scholar]
- Sahu, B. Analysis and design of a fully-integrated current sharing scheme for multi-phase adaptive on-time modulated switching regulators. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 3829–3835. [Google Scholar]
- Sahu, B.; Rincon-Mora, G.A. An Accurate, Low-Voltage, CMOS Switching Power Supply With Adaptive On-Time Pulse-Frequency Modulation (PFM) Control. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 312–321. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Chen, B.-M.; Li, H.-L. Switching Frequency Stabilization Techniques for Adaptive On-Time Controlled Buck Converter With Adaptive Voltage Positioning Mechanism. IEEE Trans. Power Electron. 2016, 31, 443–451. [Google Scholar] [CrossRef]
- Thi Kim Nga, T.; Park, S.-M.; Park, Y.-J.; Park, S.-H.; Kim, S.; Van Cong Thuong, T.; Lee, M.; Hwang, K.C.; Yang, Y.; Lee, K.-Y. A Wide Input Range Buck-Boost DC–DC Converter Using Hysteresis Triple-Mode Control Technique with Peak Efficiency of 94.8% for RF Energy Harvesting Applications. Energies 2018, 11, 1618. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.-F.; Chen, W.-Z.; Wu, J.-C. A Monolithic Current-Mode Buck Converter with Advanced Control and Protection Circuits. IEEE Trans. Power Electron. 2007, 22, 1836–1846. [Google Scholar] [CrossRef]
- Lee, C.F.; Mok, P. A Monolithic Current-Mode CMOS DC–DC Converter with On-Chip Current-Sensing Technique. IEEE J. Solid-State Circuits 2004, 39, 3–14. [Google Scholar] [CrossRef]
- Zeng, W.-L.; Ren, Y.; Lam, C.; Sin, S.-W.; Che, W.-K.; Ding, R.; Martins, R.P. A 470-nA Quiescent Current and 92.7%/94.7% Efficiency DCT/PWM Control Buck Converter with Seamless Mode Selection for IoT Application. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4085–4098. [Google Scholar] [CrossRef]
- Liou, W.-R.; Yeh, M.-L.; Kuo, Y.L. A High Efficiency Dual-Mode Buck Converter IC for Portable Applications. IEEE Trans. Power Electron. 2008, 23, 667–677. [Google Scholar] [CrossRef]
- Chen, C.-L.; Hsieh, W.-L.; Lai, W.-J.; Chen, K.-H.; Wang, C.-S. A new PWM/PFM control technique for improving efficiency over wide load range. In Proceedings of the 2008 15th IEEE International Conference on Electronics, Circuits and Systems, St. Julien’s, Malta, 31 August–3 September 2008; pp. 962–965. [Google Scholar]
- Wong, L.; Man, T. Adaptive On-Time Converters. IEEE Ind. Electron. Mag. 2010, 4, 28–35. [Google Scholar] [CrossRef]
- Siu, M.; Mok, P.K.T.; Leung, K.N.; Lam, Y.-H.; Ki, W.-H. A voltage-mode PWM buck regulator with end-point prediction. IEEE Trans. Circuits Syst. II Express Briefs 2006, 53, 294–298. [Google Scholar] [CrossRef]
- Lu, M.-X.; Hwang, B.-H.; Chen, J.Y.; Hwang, Y.-S. A sub-1V voltage-mode DC-DC buck converter using PWM control technique. In Proceedings of the 2010 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China, 15–17 December 2010; pp. 1–4. [Google Scholar]
- Huang, Q.; Zhan, C.; Burm, J. A 30-MHz Voltage-Mode Buck Converter Using Delay-Line-Based PWM Control. IEEE Trans. Circuits Syst. II Express Briefs 2017, 65, 1659–1663. [Google Scholar] [CrossRef]
[33] TPE ’08 | [1] TPE ’17 | [7] JSSC ’11 | [8] TCASI ’11 | [9] JSSC ’04 | [10] JSSC ’16 | [11] TVLSI ’18 | This Work | |
---|---|---|---|---|---|---|---|---|
Technology | 350-nm CMOS | 130-nm CMOS | 45-nm CMOS | 250-nm CMOS | 250-nm CMOS | 180-nm CMOS | 180-nm CMOS | 180-nm CMOS |
Operation Modes | PWM/PFM | PWM/PFM /Retention | PWM/PFM | Proposed Dual-modulation | PWM/PFM | DPWM /PFM/AM | PPFM/DPWM | PWM/PFM |
Control Method | Voltage-mode | Voltage-mode | Voltage-mode (Digital control) | Voltage-mode | Voltage-mode (Digital control) | Voltage-mode (Digital control) | Voltage-mode (Digital control) | Voltage-mode |
Input Voltage (V) | 2.7–5.0 | 2.2–3.3 | 2.8–4.2 | 3.0–4.5 | 2.8–5.5 | 0.55–1.0 | 0.55–0.18 | 3.6–5.4 |
Output Voltage (V) | 1 | 1.7 | 0.4-1.2 | 1.8 | 1.0-1.8 | 0.35-0.5 | 0.3-0.55 | 3.3 |
Max. Output Current | 460 mA | 20 mA | 25 0mA | 600 mA | 400 mA | 20 mA | 33.3 mA | 100 mA |
L (uH) | 10 | 3 | 10 | 1 | 10 | 4.7 | 4.7 | 4.7 |
COUT (uF) | 10 | 3 | 2 | 4.7 | 47 | 4.7 | 4.7 | 33 |
Max. Switching Frequency (MHz) | 0.6 | 2.5 | 2 | 5 | 1.5 | 1.6 | 2 | 1 |
Peak Efficiency | 95% (Measured) | 92.4% (Measured) | 87.4% (Measured) | 92% (Measured) | 91.5% (Measured) | 92% (Measured) | 90.5% (Measured) | 95.7% (Measured) |
Active Area (mm2) | 2.1 | 0.3 | 1.16 | 0.8 | 2 | 0.6 | 0.44 | 0.4 |
Power Density (W/mm2) | 0.21 | 0.11 | 0.09 | 1.35 | 0.36 | 0.02 | 0.04 | 0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.W.; Kim, J.J. A PWM/PFM Dual-Mode DC-DC Buck Converter with Load-Dependent Efficiency-Controllable Scheme for Multi-Purpose IoT Applications. Energies 2021, 14, 960. https://doi.org/10.3390/en14040960
Kim MW, Kim JJ. A PWM/PFM Dual-Mode DC-DC Buck Converter with Load-Dependent Efficiency-Controllable Scheme for Multi-Purpose IoT Applications. Energies. 2021; 14(4):960. https://doi.org/10.3390/en14040960
Chicago/Turabian StyleKim, Myeong Woo, and Jae Joon Kim. 2021. "A PWM/PFM Dual-Mode DC-DC Buck Converter with Load-Dependent Efficiency-Controllable Scheme for Multi-Purpose IoT Applications" Energies 14, no. 4: 960. https://doi.org/10.3390/en14040960
APA StyleKim, M. W., & Kim, J. J. (2021). A PWM/PFM Dual-Mode DC-DC Buck Converter with Load-Dependent Efficiency-Controllable Scheme for Multi-Purpose IoT Applications. Energies, 14(4), 960. https://doi.org/10.3390/en14040960