Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions and Policy Recommendations
Author Contributions
Funding
Conflicts of Interest
Appendix A
FAO’s Item Code | Name | FAO’s Item Code | Name | FAO’s Item Code | Name |
---|---|---|---|---|---|
2656 | Beer | 2619 | Dates | 2645 | Spices, Other |
2658 | Beverages, Alcoholic | 2625 | Fruits, Other | 2532 | Cassava and products |
2657 | Beverages, Fermented | 2613 | Grapefruit and products | 2531 | Potatoes and products |
2655 | Wine | 2620 | Grapes and products | 2534 | Roots, Other |
2740 | Butter, Ghee | 2612 | Lemons, Limes and products | 2533 | Sweet potatoes |
2743 | Cream | 2611 | Oranges, Mandarines | 2535 | Yams |
2737 | Fats, Animals, Raw | 2618 | Pineapples and products | 2633 | Cocoa Beans and products |
2781 | Fish, Body Oil | 2616 | Plantains | 2630 | Coffee and products |
2782 | Fish, Liver Oil | 2731 | Bovine Meat | 2635 | Tea (including mate) |
2769 | Aquatic Animals, Others | 2735 | Meat, Other | 2745 | Honey |
2775 | Aquatic Plants | 2732 | Mutton & Goat Meat | 2542 | Sugar (Raw Equivalent) |
2768 | Meat, Aquatic Mammals | 2733 | Pigmeat | 2541 | Sugar non-centrifugal |
2513 | Barley and products | 2734 | Poultry Meat | 2543 | Sweeteners, Other |
2520 | Cereals, Other | 2848 | Milk—Excluding Butter | 2537 | Sugar beet |
2514 | Maize and products | 2680 | Infant food | 2536 | Sugar cane |
2517 | Millet and products | 2899 | Miscellaneous | 2551 | Nuts and products |
2516 | Oats | 2736 | Offals, Edible | 2578 | Coconut Oil |
2805 | Rice and products | 2560 | Coconuts—Incl Copra | 2575 | Cottonseed Oil |
2515 | Rye and products | 2556 | Groundnuts (Shelled Eq) | 2572 | Groundnut Oil |
2518 | Sorghum and products | 2570 | Oilcrops, Other | 2582 | Maize Germ Oil |
2511 | Wheat and products | 2563 | Olives (including preserved) | 2586 | Oilcrops Oil, Other |
2744 | Eggs | 2562 | Palm kernels | 2580 | Olive Oil |
2766 | Cephalopods | 2558 | Rape and Mustardseed | 2577 | Palm Oil |
2765 | Crustaceans | 2561 | Sesame seed | 2576 | Palmkernel Oil |
2762 | Demersal Fish | 2555 | Soyabeans | 2574 | Rape and Mustard Oil |
2761 | Freshwater Fish | 2557 | Sunflower seed | 2581 | Ricebran Oil |
2764 | Marine Fish, Other | 2546 | Beans | 2579 | Sesameseed Oil |
2767 | Molluscs, Other | 2547 | Peas | 2571 | Soyabean Oil |
2763 | Pelagic Fish | 2549 | Pulses, Other and products | 2573 | Sunflowerseed Oil |
2617 | Apples and products | 2642 | Cloves | 2602 | Onions |
2615 | Bananas | 2640 | Pepper | 2601 | Tomatoes and products |
2614 | Citrus, Other | 2641 | Pimento | 2605 | Vegetables, Other |
Region | Indicator | Unit | 1970s | 1980s | 1990s | 2000s | 2010s |
---|---|---|---|---|---|---|---|
South America (1976–2018) | Food supply (FS) | Thousands | 940.3 | 949.0 | 972.2 | 1033.6 | 1094.5 |
Population (P) | Millions | 274.2 | 318.8 | 382.9 | 443.3 | 492.5 | |
Self-sufficiency coefficient (SSC) | - | 1.06 | 1.06 | 1.06 | 1.10 | 1.15 | |
Edible energy production (EEP) | Trillions | 272.1 | 320.5 | 396.1 | 502.9 | 621.2 | |
Direct energy use (DEU) | Trillions | 50.8 | 67.7 | 95.6 | 137.9 | 160.6 | |
North America (1970–2018) | Food supply (FS) | Thousands | 1095.7 | 1179.9 | 1249.7 | 1301.0 | 1291.4 |
Population (P) | Millions | 302.5 | 343.9 | 390.7 | 439.3 | 477.5 | |
Self-sufficiency coefficient (SSC) | - | 1.17 | 1.17 | 1.13 | 1.10 | 1.13 | |
Edible energy production (EEP) | Trillions | 387.2 | 474.2 | 553.6 | 630.4 | 696.7 | |
Direct energy use (DEU) | Trillions | 167.2 | 255.3 | 240.6 | 291.7 | 303.7 | |
Europe (1992–2018) | Food supply (FS) | Thousands | - | - | 1165.1 | 1210.2 | 1230.7 |
Population (P) | Millions | - | - | 728.6 | 732.8 | 743.7 | |
Self-sufficiency coefficient (SSC) | - | - | - | 0.99 | 0.99 | 0.99 | |
Edible energy production (EEP) | Trillions | - | - | 836.5 | 873.8 | 906.0 | |
Direct energy use (DEU) | Trillions | - | - | 533.0 | 411.9 | 369.5 | |
Asia (1986–2018) | Food supply (FS) | Thousands | - | 874.2 | 911.7 | 956.1 | 1019.6 |
Population (P) | Millions | - | 2977.4 | 3416.3 | 3891.2 | 4330.6 | |
Self-sufficiency coefficient (SSC) | - | - | 0.96 | 0.97 | 0.96 | 0.96 | |
Edible energy production (EEP) | Trillions | - | 2511.6 | 3013.2 | 3566.6 | 4231.0 | |
Direct energy use (DEU) | Trillions | - | 429.6 | 620.4 | 731.6 | 918.8 | |
Africa (1977–2018) | Food supply (FS) | Thousands | 792.6 | 818.8 | 864.6 | 917.3 | 951.8 |
Population (P) | Millions | 417.4 | 501.3 | 646.9 | 819.7 | 1031.5 | |
Self-sufficiency coefficient (SSC) | - | 0.96 | 0.93 | 0.93 | 0.92 | 0.97 | |
Edible energy production (EEP) | Trillions | 318.7 | 383.4 | 521.4 | 692.6 | 949.8 | |
Direct energy use (DEU) | Trillions | 5.6 | 9.5 | 29.7 | 55.1 | 72.7 | |
Oceania (1974–2018) | Food supply (FS) | Thousands | 1104.2 | 1111.8 | 1116.0 | 1129.3 | 1200.9 |
Population (P) | Millions | 18.6 | 20.6 | 23.6 | 26.8 | 30.8 | |
Self-sufficiency coefficient (SSC) | - | 1.50 | 1.51 | 1.52 | 1.51 | 1.47 | |
Edible energy production (EEP) | Trillions | 30.9 | 34.5 | 40.1 | 45.8 | 54.4 | |
Direct energy use (DEU) | Trillions | 13.2 | 18.3 | 20.5 | 27.7 | 31.6 |
References
- United Nations (UN). World population prospects 2019. Available online: https://population.un.org/wpp/DataQuery (accessed on 5 November 2020).
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nat. Cell Biol. 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Harchaoui, S.; Chatzimpiros, P. Energy, Nitrogen, and Farm Surplus Transitions in Agriculture from Historical Data Modeling. France, 1882–2013. J. Ind. Ecol. 2019, 23, 412–425. [Google Scholar] [CrossRef]
- Pimentel, D. Environmental and Economic Costs of the Application of Pesticides Primarily in the United States. Environ. Dev. Sustain. 2005, 7, 229–252. [Google Scholar] [CrossRef]
- Krausmann, F.; Erb, K.-H.; Gingrich, S.; Haberl, H.; Bondeau, A.; Gaube, V.; Lauk, C.; Plutzar, C.; Searchinger, T.D. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl. Acad. Sci. 2013, 110, 10324–10329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastner, T.; Kastner, M.; Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 2011, 70, 1032–1040. [Google Scholar] [CrossRef]
- Parcerisas, L.; Dupras, J. From mixed farming to intensive agriculture: Energy profiles of agriculture in Quebec, Canada, 1871–2011. Reg. Environ. Chang. 2018, 18, 1047–1057. [Google Scholar] [CrossRef]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Minx, J.C.; Farahani, C.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S.; et al. Climate change 2014: Mitigation of Climate Change. In Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Gagnon, N.; Hall, C.A.; Brinker, L. A Preliminary Investigation of Energy Return on Energy Investment for Global Oil and Gas Production. Energies 2009, 2, 490–503. [Google Scholar] [CrossRef]
- Hall, C.A.; Lambert, J.G.; Balogh, S.B. EROI of different fuels and the implications for society. Energy Policy 2014, 64, 141–152. [Google Scholar] [CrossRef] [Green Version]
- King, L.C.; Bergh, J.C.J.M.V.D. Implications of net energy-return-on-investment for a low-carbon energy transition. Nat. Energy 2018, 3, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Brockway, P.E.; Owen, A.; Brand-Correa, L.I.; Hardt, L. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat. Energy 2019, 4, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Cruse, M.J.; Liebman, M.; Raman, D.R.; Wiedenhoeft, M.H. Fossil Energy Use in Conventional and Low-External-Input Cropping Systems. Agron. J. 2010, 102, 934–941. [Google Scholar] [CrossRef] [Green Version]
- Woods, J.; Williams, A.; Hughes, J.K.; Black, M.; Murphy, R. Energy and the food system. Philos. Trans. R. Soc. B: Biol. Sci. 2010, 365, 2991–3006. [Google Scholar] [CrossRef] [PubMed]
- Mulder, K.; Hagens, N.J. Energy Return on Investment: Toward a Consistent Framework. Ambio 2008, 37, 74–79. [Google Scholar] [CrossRef]
- Kunz, H.; Hagens, N.J.; Balogh, S.B. The Influence of Output Variability from Renewable Electricity Generation on Net Energy Calculations. Energies 2014, 7, 150–172. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.A.S. Migration and Metabolism in a Temperate Stream Ecosystem. Ecology 1972, 53, 585–604. [Google Scholar] [CrossRef]
- Court, V.; Fizaine, F. Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions. Ecol. Econ. 2017, 138, 145–159. [Google Scholar] [CrossRef]
- Pimentel, D.; Hurd, L.E.; Bellotti, A.C.; Forster, M.J.; Oka, I.N.; Sholes, O.D.; Whitman, R.J. Food Production and the Energy Crisis. Science 1973, 182, 443–449. [Google Scholar] [CrossRef]
- Guzmán, G.I.; De Molina, M.G. Energy Efficiency in Agrarian Systems From an Agroecological Perspective. Agroecol. Sustain. Food Syst. 2015, 39, 924–952. [Google Scholar] [CrossRef]
- Gingrich, S.; Marco, I.; Aguilera, E.; Padró, R.; Cattaneo, C.; Cunfer, G.; Guzmán, G.I.; MacFadyen, J.; Watson, A. Agroecosystem energy transitions in the old and new worlds: Trajectories and determinants at the regional scale. Reg. Environ. Chang. 2018, 18, 1089–1101. [Google Scholar] [CrossRef] [Green Version]
- Atlason, R.S.; Kjaerheim, K.M.; Davidsdottir, B.; Ragnarsdottir, K.V. A Comparative Analysis of the Energy Return on Investment of Organic and Conventional Icelandic Dairy Farms. Icel. Agric. Sci. 2015, 28, 29–42. [Google Scholar] [CrossRef]
- Jónsson, J.; Örvar, G.; Davíðsdóttir, B.; Nikolaidis, N.P.; Giannakis, G.V. Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis. Ecol. Econ. 2019, 157, 109–119. [Google Scholar] [CrossRef]
- Pérez-Neira, D.; Schneider, M.; Armengot, L. Crop-diversification and organic management increase the energy efficiency of cacao plantations. Agric. Syst. 2020, 177, 102711. [Google Scholar] [CrossRef]
- Pracha, A.S.; Volk, T.A. An Edible Energy Return on Investment (EEROI) Analysis of Wheat and Rice in Pakistan. Sustainability 2011, 3, 2358–2391. [Google Scholar] [CrossRef] [Green Version]
- Pittelkow, C.M.; Zorrilla, G.; Terra, J.; Riccetto, S.; Macedo, I.; Bonilla, C.; Roel, A. Sustainability of rice intensification in Uruguay from 1993 to 2013. Glob. Food Secur. 2016, 9, 10–18. [Google Scholar] [CrossRef]
- Infante-Amate, J.; Picado, W. Energy flows in the coffee plantations of Costa Rica: From traditional to modern systems (1935–2010). Reg. Environ. Chang. 2018, 18, 1059–1071. [Google Scholar] [CrossRef] [Green Version]
- Macedo, I.; Terra, J.A.; Siri-Prieto, G.; Velazco, J.I.; Carrasco-Letelier, L. Rice-pasture agroecosystem intensification affects energy use efficiency. J. Clean. Prod. 2021, 278, 123771. [Google Scholar] [CrossRef]
- Ozkan, B.; Akcaoz, H.; Fert, C. Energy input–output analysis in Turkish agriculture. Renew. Energy 2004, 29, 39–51. [Google Scholar] [CrossRef]
- Cao, S.; Xie, G.; Zhen, L. Total embodied energy requirements and its decomposition in China’s agricultural sector. Ecol. Econ. 2010, 69, 1396–1404. [Google Scholar] [CrossRef]
- Veiga, J.P.S.; Romanelli, T.L.; Gimenez, L.M.; Busato, P.; Milan, M. Energy embodiment in Brazilian agriculture: An overview of 23 crops. Sci. Agricola 2015, 72, 471–477. [Google Scholar] [CrossRef]
- Guzmán, G.I.; De Molina, M.G.; Fernández, D.S.; Infante-Amate, J.; Aguilera, E. Spanish agriculture from 1900 to 2008: A long-term perspective on agroecosystem energy from an agroecological approach. Reg. Environ. Chang. 2018, 18, 995–1008. [Google Scholar] [CrossRef]
- Markussen, M.V.; Østergård, H. Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency. Energies 2013, 6, 4170–4186. [Google Scholar] [CrossRef] [Green Version]
- Galán, E.; Padró, R.; Marco, I.; Tello, E.; Cunfer, G.; Guzmán, G.; De Molina, M.G.; Krausmann, F.; Gingrich, S.; Sacristán, V.; et al. Widening the analysis of Energy Return on Investment (EROI) in agro-ecosystems: Socio-ecological transitions to industrialized farm systems (the Vallès County, Catalonia, c.1860 and 1999). Ecol. Model. 2016, 336, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Laso, J.; Hoehn, D.; Margallo, M.; García-Herrero, I.; Batlle-Bayer, L.; Bala, A.; Fullana-I-Palmer, P.; Vázquez-Rowe, I.; Irabien, A.; Aldaco, R. Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology. Energies 2018, 11, 3395. [Google Scholar] [CrossRef] [Green Version]
- Bajan, B.; Mrówczyńska-Kamińska, A.; Poczta, W. Economic Energy Efficiency of Food Production Systems. Energies 2020, 13, 5826. [Google Scholar] [CrossRef]
- Martinez-Alier, J. The EROI of agriculture and its use by the Via Campesina. J. Peasant. Stud. 2011, 38, 145–160. [Google Scholar] [CrossRef]
- Hamilton, A.; Balogh, S.B.; Maxwell, A.; Hall, C.A.S. Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades. Energies 2013, 6, 1764–1793. [Google Scholar] [CrossRef]
- Murphy, D.J.; Hall, C.A.; Dale, M.; Cleveland, C.J. Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels. Sustainability 2011, 3, 1888–1907. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.A.; Dale, B.E.; Pimentel, D. Seeking to Understand the Reasons for Different Energy Return on Investment (EROI) Estimates for Biofuels. Sustainability 2011, 3, 2413–2432. [Google Scholar] [CrossRef] [Green Version]
- Brandt, A.R.; Dale, M. A General Mathematical Framework for Calculating Systems-Scale Efficiency of Energy Extraction and Conversion: Energy Return on Investment (EROI) and Other Energy Return Ratios. Energies 2011, 4, 1211–1245. [Google Scholar] [CrossRef] [Green Version]
- Atlason, R.S.; Unnthorsson, R. Ideal EROI (energy return on investment) deepens the understanding of energy systems. Energy 2014, 67, 241–245. [Google Scholar] [CrossRef]
- Conforti, P.; Giampietro, M. Fossil energy use in agriculture: An international comparison. Agric. Ecosyst. Environ. 1997, 65, 231–243. [Google Scholar] [CrossRef]
- Pellegrini, P.; Fernández, R.J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl. Acad. Sci. 2018, 115, 2335–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.J.G.; Kendall, A.; Kramer, K.J.; Murphy, D.; Nemecek, T.; Troell, M. Energy Intensity of Agriculture and Food Systems. Annu. Rev. Environ. Resour. 2011, 36, 223–246. [Google Scholar] [CrossRef]
- Carlsson-Kanyama, A.; Ekström, M.P.; Shanahan, H. Food and life cycle energy inputs: Consequences of diet and ways to increase efficiency. Ecol. Econ. 2003, 44, 293–307. [Google Scholar] [CrossRef]
- Pimentel, D.; Williamson, S.; Alexander, C.E.; Gonzalez-Pagan, O.; Kontak, C.; Mulkey, S.E. Reducing Energy Inputs in the US Food System. Hum. Ecol. 2008, 36, 459–471. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.; Nonhebel, S.; Ivens, W.; Gerbens-Leenes, W. A method to determine land requirements relating to food consumption patterns. Agric. Ecosyst. Environ. 2002, 90, 47–58. [Google Scholar] [CrossRef]
- Siddiqi, T.A. Coal in Asia and the Pacific: A regional overview. Energy 1986, 11, 1049–1055. [Google Scholar] [CrossRef]
- Sadowski, A.; Baer-Nawrocka, A. Food and environmental function in world agriculture—Interdependence or competition? Land Use Policy 2018, 71, 578–583. [Google Scholar] [CrossRef]
- Council Directive 93/76/EEC of 13 September 1993 to Limit Carbon Dioxide Emissions by Improving Energy Efficiency. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A31993L0076 (accessed on 10 February 2021).
- Directive 2006/32/EC of the European Parliament and of the Council of 5 April 2006 on Energy End-Use Efficiency and Energy Services and Repealing Council Directive 93/76/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006L0032 (accessed on 10 February 2021).
- Directive, E.E. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32. Off. J. 2012, 315, 1–56. [Google Scholar]
- Steinhart, J.S.; Steinhart, C.E. Energy use in the US food system. Science 1974, 184, 307–316. [Google Scholar]
- Pelletier, N. Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions. Agric. Syst. 2008, 98, 67–73. [Google Scholar] [CrossRef]
- Franzese, P.P.; Rydberg, T.; Russo, G.F.; Ulgiati, S. Sustainable biomass production: A comparison between Gross Energy Requirement and Emergy Synthesis methods. Ecol. Indic. 2009, 9, 959–970. [Google Scholar] [CrossRef]
- Arizpe, N.; Giampietro, M.; Ramos-Martin, J. Food Security and Fossil Energy Dependence: An International Comparison of the Use of Fossil Energy in Agriculture (1991-2003). Crit. Rev. Plant Sci. 2011, 30, 45–63. [Google Scholar] [CrossRef]
- Baer-Nawrocka, A.; Sadowski, A. Food security and food self-sufficiency around the world: A typology of countries. PLOS ONE 2019, 14, e0213448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleveland, C. The direct and indirect use of fossil fuels and electricity in USA agriculture, 1910–1990. Agric. Ecosyst. Environ. 1995, 55, 111–121. [Google Scholar] [CrossRef]
- Chakona, G.; Shackleton, C.M. Voices of the hungry: A qualitative measure of household food access and food insecurity in South Africa. Agric. Food Secur. 2017, 6, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Fraval, S.; Hammond, J.; Bogard, J.R.; Ng’Endo, M.; Van Etten, J.; Herrero, M.; Oosting, S.J.; De Boer, I.J.M.; Lannerstad, M.; Teufel, N.; et al. Food Access Deficiencies in Sub-saharan Africa: Prevalence and Implications for Agricultural Interventions. Front. Sustain. Food Syst. 2019, 3, 104. [Google Scholar] [CrossRef] [Green Version]
- Court, V.; Lantz, F.; Jouvet, P.-A. Long-term endogenous economic growth and energy transitions. Energy J. 2018, 39, 29–57. [Google Scholar] [CrossRef]
Region | EROI in 1970s | EROI in 1980s | EROI in 1990s | EROI in 2000s | EROI in 2010s | Standard Deviation for Analyzed Period | Average Growth Rate (AGR) for Analyzed Period % |
---|---|---|---|---|---|---|---|
South America (1976–2018) | 5.35 | 4.74 | 4.14 | 3.65 | 3.87 | 0.63 | −0.68 |
North America (1970–2018) | 2.32 | 1.86 | 2.30 | 2.16 | 2.29 | 0.26 | 0.07 |
Europe (1992–2018) | - | - | 1.57 | 2.12 | 2.45 | 0.37 | 2.21 |
Asia (1986–2018) | - | 5.85 | 4.86 | 4.88 | 4.61 | 0.41 | −0.85 |
Africa (1977–2018) | 57.25 | 40.49 | 17.55 | 12.56 | 11.78 | 15.71 | −3.97 |
Oceania (1974–2018) | 2.34 | 1.89 | 1.96 | 1.65 | 1.72 | 0.27 | −1.19 |
Region | 1970s | 1980s | 1990s | 2000s | 2010s | Pearson’s Correlation Coefficients with EROI Values for Analyzed Period |
---|---|---|---|---|---|---|
South America (1976–2018) | 16.9 | 17.5 | 20.1 | 21.3 | 25.6 | −0.38 |
North America (1970–2018) | 24.3 | 23.2 | 22.1 | 23.2 | 23.4 | −0.14 |
Europe (1992–2018) | - | - | 30.3 | 28.7 | 25.8 | −0.70 |
Asia (1986–2018) | - | 9.2 | 12.2 | 14.2 | 15.2 | −0.64 |
Africa (1977–2018) | 7.3 | 7.2 | 7.0 | 7.7 | 11.3 | −0.28 |
Oceania (1974–2018) | 44.4 | 42.4 | 44.0 | 44.8 | 36.7 | 0.20 |
Region | Edible Energy Production Indicator | Thousands kcal | 1970s | 1980s | 1990s | 2000s | 2010s | AGR % |
---|---|---|---|---|---|---|---|---|
South America (1976–2018) | Per number of citizens | kcal/person | 992 | 1005 | 1034 | 1134 | 1261 | 0.71 |
Per agricultural area | kcal/ha | 498 | 561 | 694 | 869 | 1034 | 2.00 | |
Per value of production | kcal/const. Int$ | 2.08 | 2.03 | 1.93 | 1.72 | 1.61 | −0.55 | |
North America (1970–2018) | Per number of citizens | kcal/person | 1280 | 1379 | 1417 | 1435 | 1459 | 0.60 |
Per agricultural area | kcal/ha | 655 | 801 | 941 | 1087 | 1229 | 1.84 | |
Per value of production | kcal/const. Int$ | 1.62 | 1.68 | 1.69 | 1.64 | 1.57 | −0.02 | |
Europe (1992–2018) | Per number of citizens | kcal/person | - | - | 1148 | 1192 | 1218 | 0.20 |
Per agricultural area | kcal/ha | - | - | 1704 | 1835 | 1951 | 0.61 | |
Per value of production | kcal/const. Int$ | - | - | 1.68 | 1.77 | 1.70 | 0.09 | |
Asia (1986–2018) | Per number of citizens | kcal/person | - | 844 | 882 | 917 | 977 | 0.53 |
Per agricultural area | kcal/ha | - | 1983 | 1915 | 2144 | 2543 | 1.02 | |
Per value of production | kcal/const. Int$ | - | 3.59 | 3.18 | 2.74 | 2.49 | −1.21 | |
Africa (1977–2018) | Per number of citizens | kcal/person | 764 | 765 | 806 | 845 | 830 | 0.13 |
Per agricultural area | kcal/ha | 302 | 359 | 485 | 622 | 766 | 2.53 | |
Per value of production | kcal/const. Int$ | 3.17 | 3.27 | 3.15 | 3.00 | 2.72 | −0.35 | |
Oceania (1974–2018) | Per number of citizens | kcal/person | 1660 | 1673 | 1697 | 1707 | 1769 | −0.03 |
Per agricultural area | kcal/ha | 60 | 69 | 83 | 106 | 142 | 2.07 | |
Per value of production | kcal/const. Int$ | 0.97 | 1.00 | 0.97 | 0.92 | 0.96 | −0.38 |
Region | Edible Energy Production Indicator | Thousands kcal | 1970s | 1980s | 1990s | 2000s | 2010s | AGR % |
---|---|---|---|---|---|---|---|---|
South America (1976–2018) | Per number of citizens | kcal/person | 185 | 212 | 250 | 311 | 326 | 1.40 |
Per agricultural area | kcal/ha | 93 | 118 | 167 | 238 | 267 | 2.70 | |
Per value of production | kcal/const. Int$ | 0.39 | 0.43 | 0.46 | 0.47 | 0.42 | 0.13 | |
North America (1970–2018) | Per number of citizens | kcal/person | 553 | 742 | 616 | 664 | 636 | 0.53 |
Per agricultural area | kcal/ha | 283 | 431 | 409 | 503 | 536 | 1.77 | |
Per value of production | kcal/const. Int$ | 0.70 | 0.91 | 0.74 | 0.76 | 0.68 | −0.08 | |
Europe (1992–2018) | Per number of citizens | kcal/person | - | - | 732 | 562 | 497 | −1.96 |
Per agricultural area | kcal/ha | - | - | 1086 | 865 | 796 | −1.57 | |
Per value of production | kcal/const. Int$ | - | - | 1.07 | 0.83 | 0.69 | −2.07 | |
Asia (1986–2018) | Per number of citizens | kcal/person | - | 144 | 182 | 188 | 212 | 1.39 |
Per agricultural area | kcal/ha | - | 339 | 394 | 440 | 552 | 1.88 | |
Per value of production | kcal/const. Int$ | - | 0.61 | 0.65 | 0.56 | 0.54 | −0.37 | |
Africa (1977–2018) | Per number of citizens | kcal/person | 13 | 19 | 46 | 67 | 71 | 4.27 |
Per agricultural area | kcal/ha | 5 | 9 | 28 | 50 | 65 | 6.77 | |
Per value of production | kcal/const. Int$ | 0.06 | 0.08 | 0.18 | 0.24 | 0.23 | 3.77 | |
Oceania (1974–2018) | Per number of citizens | kcal/person | 710 | 887 | 867 | 1034 | 1026 | 1.17 |
Per agricultural area | kcal/ha | 26 | 37 | 43 | 64 | 82 | 3.30 | |
Per value of production | kcal/const. Int$ | 0.42 | 0.53 | 0.50 | 0.56 | 0.55 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajan, B.; Łukasiewicz, J.; Poczta-Wajda, A.; Poczta, W. Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes. Energies 2021, 14, 1011. https://doi.org/10.3390/en14041011
Bajan B, Łukasiewicz J, Poczta-Wajda A, Poczta W. Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes. Energies. 2021; 14(4):1011. https://doi.org/10.3390/en14041011
Chicago/Turabian StyleBajan, Bartłomiej, Joanna Łukasiewicz, Agnieszka Poczta-Wajda, and Walenty Poczta. 2021. "Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes" Energies 14, no. 4: 1011. https://doi.org/10.3390/en14041011
APA StyleBajan, B., Łukasiewicz, J., Poczta-Wajda, A., & Poczta, W. (2021). Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes. Energies, 14(4), 1011. https://doi.org/10.3390/en14041011