Research on Initiation of Carbon Dioxide Fracturing Pipe Using the Liquid Carbon Dioxide Phase-Transition Blasting Technology
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Experimental Apparatus
2.2. Experimental Setup
2.3. Experimental Process
3. Results and Discussion
3.1. Variables that Affect the Phase-Transition of Liquid Carbon Dioxide (L-CO2)
- (1)
- The amount of chemical heating material
- (2)
- Carbon dioxide mass
3.2. Variables that Affect the Damage of the Fracturing Pipe-Constant-Stress Shear Plate
3.3. The Quantitative Relationship between the Variables and Blasting
4. Failure Mode of the Fracturing Pipe
- (1)
- Strength-failure method
- (2)
- Viral–Han–Long Equation of Gas State (VHL-EOS)
5. Conclusions
- (1)
- The filling mass of L-CO2 and the amount of chemical heating material jointly control the phase-transition reaction process of carbon dioxide. The thickness of constant-stress shear plate controls the carbon dioxide blasting, so the three variables determine the initiation of the fracturing pipe together.
- (2)
- An empirical model between the carbon dioxide fracturing pipe initiation (Y) and three key variables (the filling mass of liquid carbon dioxide (L-CO2) (X1), the amount of chemical heating material(X2) and the thickness of constant-stress shear plate(X3)) is obtained, which can be used to explain, predict and guide on-site carbon dioxide blasting operations.
- (3)
- Two methods for the blasting pressure of the fracturing pipe are summarized. (a) The comparative state VHL equation is used to quantitatively describe the relationships among pressure, temperature and volume of carbon dioxide in the tube, and then the theoretical value P of the internal pressure is derived as the blasting pressure; (b) the blast stress P acting on the constant-stress shear plate is determined by the yield strength of constant-stress shear plate.
- (4)
- The failure model of the fracturing pipe can be determined by comparing the blasting pressure calculated by the VHL-EOS with the blasting pressure calculated by the strength-failure method.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, W.; Wang, Y. Numerical Simulation of Rock Fracturing by Carbon Dioxide Phase Transition. In Proceedings of the 51st U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 28 August 2017; p. 6. [Google Scholar]
- Chen, H.D.; Wang, Z.F.; Chen, X.E.; Chen, X.J.; Wang, L.G. Increasing permeability of coal seams using the phase energy of liquid carbon dioxide. J. CO2 Util. 2017, 19, 112–119. [Google Scholar] [CrossRef]
- Fan, Y.C.; Qin, B.T.; Zhou, Q.; Shi, Q.L.; Wu, J.H. Liquid CO2 phase transition fracturing technology and its application in enhancing gas drainage of coal mines. Adsorpt. Sci. Technol. 2020, 38, 393–412. [Google Scholar] [CrossRef]
- Vidanovic, N.; Ognjanovic, S.; Ilincic, N.; Ilic, N.; Tokalic, R. Application of unconventional methods of underground premises construction in coal mines. Tech. Technol. Educ. Manag. 2011, 6, 861–865. [Google Scholar]
- Spur, G.; Uhlmann, E.; Elbing, F. Dry-ice blasting for cleaning: Process, optimization and application. Wear 1999, 233–235, 402–411. [Google Scholar] [CrossRef]
- Hu, S.B.; Pang, S.G.; Yan, Z.Y. A new dynamic fracturing method: Deflagration fracturing technology with carbon dioxide. Int. J. Fract. 2019, 220, 99–111. [Google Scholar] [CrossRef]
- Hu, G.Z.; He, W.R.; Sun, M. Enhancing coal seam gas using liquid CO2 phase-transition blasting with cross-measure borehole. J. Nat. Gas Sci. Eng. 2018, 60, 164–173. [Google Scholar] [CrossRef]
- Cui, G.D.; Ren, S.R.; Dou, B.; Ning, F.L. Geothermal energy exploitation from depleted high-temperature gas reservoirs by recycling CO2: The superiority and existing problems. Geosci. Front. 2020. [Google Scholar] [CrossRef]
- Pruess, K. Enhanced geothermal systems (EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Brown, D. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. Proc. Twenty-Fifth Workshop Geotherm. Reserv. Eng. 2000. Available online: https://www.researchgate.net/publication/237219291_A_hot_dry_rock_geothermal_energy_concept_utilizing_supercritical_CO2_instead_of_water (accessed on 13 December 2020).
- Stevens, S.H.; Spector, D.; Riemer, P. Enhanced Coalbed Methane Recovery Using CO2 Injection: Worldwide Resource and CO2 Sequestration Potential. In Proceedings of the SPE International Oil and Gas Conference and Exhibition in China, Beijing, China, 1 January 1998; p. 13. [Google Scholar]
- Cui, G.; Pei, S.; Rui, Z.; Dou, B.; Ning, F.; Wang, J. Whole process analysis of geothermal exploitation and power generation from a depleted high-temperature gas reservoir by recycling CO2. Energy 2021, 217, 119340. [Google Scholar] [CrossRef]
- Gross, D.; Ferguson, N.; Amon, S.; Hanenkamp, N. Theoretical Investigation of the Influence of Different Chamber Geometries on the Agglomeration Capacity of Carbon Dioxide. Appl. Mech. Mater. 2017, 871, 169–175. [Google Scholar] [CrossRef]
- Archibald, L.C. Cryogenic Blasting Using Carbon Dioxide Media for the Removal of Organic Coatings. Trans. IMF 1991, 69, 128–132. [Google Scholar] [CrossRef]
- Wilson, H.H. Coal augers: Development and application underground. Trans. Inst. Min. Eng. 1954, 113, 524–539. [Google Scholar]
- Clairet, J. Use of Cardox in coal mining in Sarre. Rev. Ind. Miner. 1952, 33, 846–854. [Google Scholar]
- Weir, P.; Edwards, J.H. Mechanical loading and Cardox revolutionize an old mine. Coal Age 1928, 33, 288–290. [Google Scholar]
- Chen, Y.; Zhang, H.; Zhu, Z.; Ren, T.; Cao, C.; Zhu, F.; Li, Y.P. A new shock-wave test apparatus for liquid CO2 blasting and measurement analysis. Meas. Control 2019, 52, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Patrick. CO2 blasting in Europe. Nucl. Eng. Int. 1995, 36, 193. [Google Scholar]
- Caldwell, T. A Comparison of Non-Explosive Rock Breaking Techniques. Bachelor’s Thesis, School of Engineering, The University of Queensland, Queensland, Australia, 1 January 2004. [Google Scholar]
- He, W.R.; He, F.L.; Zhang, K.; Zhao, Y.Q.; Zhu, H.Z. Increasing Permeability of Coal Seam and Improving Gas Drainage Using a Liquid Carbon Dioxide Phase Transition Explosive Technology. Adv. Civ. Eng. 2018, 2018, 15. [Google Scholar] [CrossRef]
- Vishal, V. Saturation time dependency of liquid and supercritical CO2 permeability of bituminous coals: Implications for carbon storage. Fuel 2017, 192, 201–207. [Google Scholar] [CrossRef]
- Gao, F.; Tang, L.; Zhou, K.; Zhang, Y.; Ke, B. Mechanism Analysis of Liquid Carbon Dioxide Phase Transition for Fracturing Rock Masses. Energies 2018, 11, 2909. [Google Scholar] [CrossRef] [Green Version]
- Ke, B.; Zhou, K.P.; Ren, G.F.; Shi, J.; Zhang, Y.N. Positive Phase Pressure Function and Pressure Attenuation Characteristic of a Liquid Carbon Dioxide Blasting System. Energies 2019, 12, 4134. [Google Scholar] [CrossRef] [Green Version]
- Lak, M.; Fatehi Marji, M.; Yarahmadi Bafghi, A.; Abdollahipour, A. A Coupled Finite Difference-Boundary Element Method for modeling the propagation of explosion-induced radial cracks around a wellbore. J. Nat. Gas. Sci. Eng. 2019, 64, 41–51. [Google Scholar] [CrossRef]
- Lak, M.; Fatehi Marji, M.; Yarahamdi Bafghi, A.R.; Abdollahipour, A. Discrete element modeling of explosion-induced fracture extension in jointed rock masses. J. Min. Environ. 2019, 10, 125–138. [Google Scholar] [CrossRef]
- Ke, B.; Zhou, K.; Xu, C.; Ren, G.; Jiang, T. Thermodynamic properties and explosion energy analysis of carbon dioxide blasting systems. Min. Technol. 2018, 128, 39–50. [Google Scholar] [CrossRef]
- Huang, X.; Li, Q.Y.; Wei, X.A.; Yang, X.X.; Luo, D.Y.; Zeng, H.D.; Wang, H.W. Indoor Test System for Liquid CO2 Phase Change Shock Wave Pressure with PVDF Sensors. Sensors 2020, 20, 2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, K.P.; Ke, B.; Li, J.L.; Zhang, Y.N.; Cheng, L. Pressure dynamic response and explosion energy of liquid carbon dioxide blasting system. Blasting 2017, 34, 7. [Google Scholar]
- Wang, Z.F.; Sun, X.M.; Lu, T.K.; Han, Y.B. Experiment research on strengthening gas drainage effect with fracturing technique by liquid CO2 phase transition. J. Henan Polytech. Univ. Nat. Sci. 2015, 34, 1–5. [Google Scholar]
- Zhang, Y.; Deng, J.; Deng, H.; Ke, B. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting. Int. J. Damage Mech. 2018, 28, 1038–1052. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Deng, J.R.; Ke, B.; Deng, H.W.; Li, J.L. Experimental Study on Explosion Pressure and Rock Breaking Characteristics under Liquid Carbon Dioxide Blasting. Adv. Civ. Eng. 2018, 2018, 7840125. [Google Scholar] [CrossRef]
- Zhou, S.T.; Jiang, N.; He, X.; Luo, X.D. Rock Breaking and Dynamic Response Characteristics of Carbon Dioxide Phase Transition Fracturing Considering the Gathering Energy Effect. Energies 2020, 13, 1336. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.Y.; Chen, G.; Luo, D.Y.; Ma, H.P.; Liu, Y. An experimental study of a novel liquid carbon dioxide rock-breaking technology. Int. J. Rock Mech. Min. Sci. 2020, 128, 104244. [Google Scholar] [CrossRef]
- Qiduo, Z. Rock Breaking Mechanism and Numerical Simulation Analysis of Liquid Carbon Dioxide Blasting; Hebei University of Technology: Tianjin, China, 2018. [Google Scholar]
- Pan, H.Y.; Li, J.W.; Zhang, T.J.; Li, S.G.; Zhang, L. Study on crack propagation of the CO2 presplitting blasting empty hole effect in coal seam. Energy Sci. Eng. 2020, 8, 3898–3908. [Google Scholar] [CrossRef]
- Mingyu, W. Study on Crack Propagation Law of Liquid Carbon Dioxide Phase Transition Blasting and its Application. Master’s Thesis, China University of Mining, Xuzhou, China, 2018. [Google Scholar]
- Yinming, Z.; Liu, L.; Jun, Y. Analysis of rupture disk bursting pressure of a hybrid inflator. Appl. Sci. Technol. 2014, 41, 73–76. [Google Scholar]
- Shengchang, L. Discussion on several main formulas for explosion pressure of explosion-proof membrane. Petro-Chem. Equip Techno 1988, 2, 17–19. [Google Scholar]
- Zewei, W.; Qingyu, Q.; Xiuxia, Y.; Liqing, C. Calculation of burst pressure of bursting membrane. Chem. Equip. Pip. 1980, 4, 1–9. [Google Scholar]
- Cowan, R.D.; Fickett, W. Calculation of the Detonation Properties of Solid Explosives with the Kistiakowski-Wilson Equation of State. J. Chem. Phys. 1956, 24, 932–939. [Google Scholar] [CrossRef]
- Guidry, R.; Mcguire, R.; Lee, E. Parameterization of the BKW and JCZ Equations of State for Explosives; Frank J. Seiler Research Laboratory: Alexandria, VA, USA, 1978. [Google Scholar] [CrossRef]
- Liu, Q.; Han, Y.; Long, X.P.; Duan, Y.L. Prediction of H2O PVT relations at high temperatures by VHL equation of state. AIP Adv. 2019, 9, 8. [Google Scholar] [CrossRef]
- Maillet, J.B.; Bourasseau, E. Ab initio simulations of thermodynamic and chemical properties of detonation product mixtures. J. Chem. Phys. 2009, 131, 9. [Google Scholar] [CrossRef]
- Kopyshev, V.P.; Medvedev, A.B.; Khrustalev, V.V. Equation of state of explosion products on the basis of a modified Van der Waals model. Combust. Explos. 2006, 42, 76–87. [Google Scholar] [CrossRef]
- Son, E.E. Current investigations of thermophysical properties of substances (based on recent publications in the journal High Temperature). High. Temp. 2013, 51, 351–368. [Google Scholar] [CrossRef]
- Fegley, B., Jr. Practical chemical thermodynamics for geoscientists. Acad. Press 2013, 48, 712–713. [Google Scholar]
- Al-Jawad, M.S.; Hassan, O.F. Comprehensive Model for Flash Calculations of Heavy Oils Using the Soave—Redlich—Kwong Equation of State. In Proceedings of the North Africa Technical Conference and Exhibition, Cairo, Egypt, 1 January 2012; p. 14. [Google Scholar]
- Han, Y.; Guo, X.L.; Long, X.P. High Temperature and High Pressure Equation of State of Carbon Dioxide. Chin. J. Energetic Mater. 2016, 24, 0462–0468. [Google Scholar] [CrossRef]
- Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B. Molecular Theory of Gases and Liquids; Wileg: New York, NY, USA, 1954; p. 34. [Google Scholar]
- Han, Y.; Long, X.P.; Huang, Y.M.; Jiang, Z.H. Effect of L-J or Exp-6 Potential Function on Calcula tion of Reduced Second Viral Coefficient. Chin. J. Energ. Mater. 2009, 17, 574–577. [Google Scholar]
Experiment Number | Chemical Heating Material Dosage (g) | The Thickness of Constant-Stress Shear Plate (mm) | The Filling Mass L-CO2 (kg) | Initiation Situation |
---|---|---|---|---|
1 | 250 | 4.0 | 1.31 | NO |
2 | 250 | 4.0 | 1.40 | NO |
3 | 250 | 4.0 | 1.49 | YES |
4 | 250 | 4.5 | 1.30 | NO |
5 | 250 | 4.5 | 1.40 | NO |
6 | 250 | 4.5 | 1.51 | YES |
7 | 250 | 4.5 | 1.60 | YES |
8 | 250 | 5.0 | 1.20 | NO |
9 | 250 | 5.0 | 1.50 | NO |
10 | 250 | 5.0 | 1.59 | YES |
11 | 300 | 4.0 | 1.31 | YES |
12 | 300 | 4.0 | 1.39 | YES |
13 | 300 | 4.0 | 1.60 | YES |
14 | 300 | 4.5 | 1.22 | NO |
15 | 300 | 4.5 | 1.31 | YES |
16 | 300 | 4.5 | 1.40 | YES |
17 | 300 | 5.0 | 1.50 | YES |
Experiment 10 | Blasting Pressure (MPa) | ||
---|---|---|---|
Viral–Han–Long Equation of Gas State (VHL-EOS) | The filling mass of L-CO2 m(kg) | 1.60 | 202.56 |
Number moles of carbon dioxide gas n(mol) | 36.36 | ||
Internal temperature Tf (K) | 410 | ||
Punching-shear failure | Shear strength (MPa) | 355 | 221.9 |
the thickness of constant-stress shear plate (mm) | 5.0 | ||
Tensile failure | Tensile strength (MPa) | 600 | 193.3 |
Elongation rate | 16% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, J.; Dou, B.; Tian, H.; Zheng, J.; Cui, G.; Kashif, M. Research on Initiation of Carbon Dioxide Fracturing Pipe Using the Liquid Carbon Dioxide Phase-Transition Blasting Technology. Energies 2021, 14, 521. https://doi.org/10.3390/en14030521
Xia J, Dou B, Tian H, Zheng J, Cui G, Kashif M. Research on Initiation of Carbon Dioxide Fracturing Pipe Using the Liquid Carbon Dioxide Phase-Transition Blasting Technology. Energies. 2021; 14(3):521. https://doi.org/10.3390/en14030521
Chicago/Turabian StyleXia, Jieqin, Bin Dou, Hong Tian, Jun Zheng, Guodong Cui, and Muhammad Kashif. 2021. "Research on Initiation of Carbon Dioxide Fracturing Pipe Using the Liquid Carbon Dioxide Phase-Transition Blasting Technology" Energies 14, no. 3: 521. https://doi.org/10.3390/en14030521
APA StyleXia, J., Dou, B., Tian, H., Zheng, J., Cui, G., & Kashif, M. (2021). Research on Initiation of Carbon Dioxide Fracturing Pipe Using the Liquid Carbon Dioxide Phase-Transition Blasting Technology. Energies, 14(3), 521. https://doi.org/10.3390/en14030521