Simulation and Techno-Economic Analysis of a Power-to-Hydrogen Process for Oxyfuel Glass Melting
Abstract
:1. Introduction
1.1. CO2 Emissions of the German Glass Industry
1.2. Structure and Scope of This Work
2. Literature Review
2.1. Specific Energy Demand
2.2. Furnace Efficiency
2.3. Melting Tank Design
2.4. Innovative Melting Concepts and Options for Low CO2-Emission Glass Production
3. Integration of Power-to-Hydrogen in Oxyfuel Glass Melting Processes
4. Materials and Methods
4.1. Modelling of Renewable Energy Sources
4.1.1. Photovoltaic Power Plants
4.1.2. Wind Power Plants
4.2. Electrolysis
4.3. Air Separation Unit
4.4. Oxyfuel Glass Melting Tank
4.4.1. Heat Balance Submodel
4.4.2. Combustion Submodel
4.4.3. Adiabatic Flame Temperature
4.5. Economic Analysis and CO2 Abatement Costs
4.6. Energy System Optimization
5. Results and Discussion
5.1. Changes of Heat Content in the Fuel Mixture
5.2. Changes of Adiabatic Flame Temperature
5.3. Influences on Furnace Efficiency
5.4. Specific Energy Demand
5.5. Specific CO2 Emissions
5.6. CO2 Abatement Costs
- A battery-storage concept for emission reduction of electrical boosting and ASU power supply should be considered. Through the associated use of renewable electricity, the remaining CO2 emissions of both ASU and electrical boosting can be significantly reduced.
- The use of so-called green electricity plans that exhibit lower specific CO2 emissions for electricity supplied from the grid will allow a further reduction in CO2 emissions. In this context, electricity market-based control and optimization of the operating strategy for the PtH2 can provide further cost benefits.
- Developments in electrolysis production technology through more intensive use of PtH2 in other sectors may result in a further reduction in CAPEX.
- Political funding programs and changing situations of CO2 taxation should be taken into account.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Alternating current |
ASU | Air separation unit |
CAPEX | Capital expenditures |
DC | Direct current |
DWD | German metrological service |
EAC | Equivalent annual cost factor |
EEX | European energy exchange |
EU-ETS | European Union emission trading system |
FLH | Full load hours |
GCV | Gross calorific values |
ICVLHV | Inferior calorific Lower heating value |
MSL | Modelica standard library |
OEMOF | Open energy modeling framework |
OPEX | Operational expenditures |
PEM | Proton exchange membrane |
PtH2 | Power-to-Hydrogen |
PV | Photovoltaic |
SCM | Submerged combustion melter |
STP | Standard temperature and pressure conditions ( 0 °C and 1.013 bar) |
TCR | Thermochemical reformation |
TRY | Test reference year |
WP | Wind power |
References
- Federal Association of the German Glas Industry (BV Glas). Jahresbericht 2019—Annual Report 2019. Berlin, Duesseldorf. 2020. Available online: https://www.bvglas.de/presse/publikationen/ (accessed on 3 November 2021).
- Leisin, M. Energiewende in der Industrie: Branchensteckbrief der Glasindustrie. Available online: https://www.bmwi.de/Redaktion/DE/Downloads/E/energiewende-in-der-industrie-ap2a-branchensteckbrief-glas.pdf?__blob=publicationFile&v=4 (accessed on 11 November 2021).
- Scalet, B.M.; Garcia, M.M.; Sissa, A.; Roudier, S.; Delgardo Sancho, L. Best Available Techniques (BAT) Reference Document for the Manufacture of Glass, 3rd ed.; European Comission, Joint Research Center: Seville, Spain, 2013; p. 485. ISBN 978-9-279282-84-3. [Google Scholar]
- Ausfelder, F.; Seitz, A.; von Roon, S. Bericht des AP V.6: “Flexibilitätsoptionen und Perspektiven in der Grundstoffindustrie” im Kopernikus-Projekt “SynErgie—Synchronisierte und Energieadaptive Produktionstechnik”, 1st ed.; DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.: Frankfurt am Main, Germany, 2018; p. 296. ISBN 9783897462069. [Google Scholar]
- Deutsche Emissionshandelsstelle (DEHSt). Treibhausgasemissionen 2019. Emissionshandelspflichtige Stationäre Anlagen und Luftverkehr in Deutschland (VET-Bericht 2019); DEHst im Umweltbundesamt: Berlin, Germany, 2020. [Google Scholar]
- Bach, S.; Isaak, N.; Kemfert, C.; Kunert, U.; Schill, W.-P.; Wägner, N.; Zaklan, A. Für eine Sozialverträgliche CO2-Pepreisung. Politikberatung Kompakt, 1st ed.; Deutsches Institut für Wirtschaftsforschung (DIW): Berlin, Germany, 2019; ISBN 978-3-946417-29-3. [Google Scholar]
- Lindig, M. Glass melting technology addressing the environmental trend electro. In Proceedings of the 91st Glas Technology Meeting of DGG, Weimar, Germany, 29–31 May 2017. [Google Scholar]
- Schmitz, A.; Kamiński, J.; Maria Scalet, B.; Soria, A. Energy consumption and CO2 emissions of the European glass industry. Energy Policy 2011, 39, 142–155. [Google Scholar] [CrossRef]
- Jamshidi, A.; Kurumisawa, K.; Nawa, T.; Igarashi, T. Performance of pavements incorporating waste glass: The current state of the art. Renew. Sustain. Energy Rev. 2016, 64, 211–236. [Google Scholar] [CrossRef]
- Stormont, R. Electricity in Glass Making . . . often the Low-Cost Option. In Proceedings of the 39th ASEAN Glass Conference of the ASEAN Federation of Glass Manufacturers (AFGM), Cebu, Philippines, October 2015; Available online: http://www.aseanglass.org/wp-content/uploads/2017/08/39th-ASEAN-Glass-5.-Electricity-in-Glass-Making-...-often-the-Low-Cost-Option-Electroglass-Ltd-by-Mr.-Richard-Stormont.pdf (accessed on 11 November 2021).
- Trier, W. Glasschmelzöfen, 1st ed.; Springer: Berlin, Germany, 1984; p. 324. ISBN 978-3-642-82068-7. [Google Scholar]
- Nikolaus Sorg GmbH. Glass Melting Technology. 2016. Available online: https://www.sorg.de/content/uploads/2016/09/Glas%7B%5C_%7DMelting.pdf (accessed on 9 September 2021).
- Horn Glass Industries GmbH. Melting and Conditioning—Furnaces. Available online: https://www.hornglass.com/melting-conditioning/furnaces (accessed on 9 September 2021).
- Beerkens, R. Energy saving options for glass furnaces and recovery of heat from their flue gases—And experiences with batch and cullet preheaters applied in the glass industry. In Proceedings of the 69th Conference on Glass Problems, Columbus, OH, USA, 4–5 November 2008; Drummond, C.H., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. ISBN 978-0-470-45751-1. [Google Scholar]
- Conradt, R. Prospects and physical limits of processes and technologies in glass melting. J. Asian Ceram. Soc. 2019, 7, 377–396. [Google Scholar] [CrossRef] [Green Version]
- Schep, J.J. Experiences with an oxygen-fired container glass furnace with silica crown: 14 years—A world record? In Proceedings of the 69th Conference on Glass Problems, Columbus, OH, USA, 4–5 November 2008; Drummond, C.H., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019. ISBN 978-0-470-45751-1. [Google Scholar]
- Schmitt, S. Flexibler Einsatz verschiedener Energiearten in der Spezialglasindustrie—Ein Ausblick in die Zukunft. In Linde Expertenforum Glas; Linde AG: Merseburg, Germany, 2017. [Google Scholar]
- Giese, A. Untersuchungen zur Verbesserung der Energieeffizienz und der Wämeubertragung einer Oxy-Fuel-Glasschmelzwanne. Available online: https://www.gwi-essen.de/fileadmin/dateien/abschlussberichte/Abschlussbericht_O2Glaswanne_final-1.pdf (accessed on 9 September 2021).
- Gonzales, A. Optimelt Regenerative thermo-chemical heat recovery for oxy-fuel glass furnaces. In Proceedings of the 75th Conference on Glass Problems, Columbus, OH, USA, 3–6 November 2014; Sundaram, S.K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 113–120, ISBN 978-1-119-11747-6. [Google Scholar] [CrossRef]
- Caumont-prim, C.; Paubel, X.; Lâm, T.; Juma, S.; Jarry, L. HeatOx technology makes major efficiency strides. Glass Worldw. 2018, 5/6, 78–80. [Google Scholar]
- Teschner, R. Glasfasern, 1st ed.; Springer: Berlin, Germany, 2013; p. 205. ISBN 978-3-642-38328-1. [Google Scholar]
- Wesseling, J.H. The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research. Renew. Sustain. Energy Rev. 2017, 79, 1303–1313. [Google Scholar] [CrossRef]
- Fleischmann, B. Neuer Ansatz zur Bilanzierung des Energieeinsatzes bei der Glasherstellung und der Versuch der geschlossenen Darstellung von Kennzahlen aus der Produktionstechnik und aus statistischen (Wirtschafts-) Daten. HVG-Mitteilungen 2018, 2173, 1–18. [Google Scholar] [CrossRef]
- Krogel, S.; Roos, C. Large lab-scale glass melting with hydrogen-oxygen combustion. In Proceedings of the Joint Meeting of DGG-USTV, Nürnberg, Germany, 13–15 May 2019; Hüttentechnische Vereinigung der Glasindusrie e.V. (HVG) Offenbach: Nürnberg, Germany, 2019. [Google Scholar]
- Beerkens, R. Analysis of elementary process steps in industrial glass melting tanks—Some ideas on innovations in industrial glass melting. Ceram. Silik. 2008, 52, 206–217. [Google Scholar]
- Minegishi, S. Method and Apparatus for Melting Glassy Materials by a Rotary Kiln. U.S. Patent 3,508,742A, 28 April 1967. [Google Scholar]
- Gonterman, J.R.; Weinstein, M.A.; High Intensity Plasma Glass Melter Project. Final DOE. Available online: https://www.osti.gov/servlets/purl/894643 (accessed on 9 September 2021).
- Rue, D.; Kunc, W.; Aronchik, G. Operation of a Pilot-Scale Submerged Combustion Melter. In Proceedings of the 68th Conference on Glass Problems, Columbus, OH, USA, 16–17 October 2007; Drummond, C.H., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. ISBN 978-0-470-34491-0. [Google Scholar]
- Muijsenberg, E.; Mahrenholtz, H.; Jandacek, P.; Hakes, S.; Jatzwauk, C. Options for a step wise CO2 emission reduction. In Proceedings of the Joint Meeting of DGG-USTV, Nürnberg, Germany, 13–15 May 2019; Hüttentechnische Vereinigung der Glasindusrie e.V. (HVG) Offenbach: Nürnberg, Germany, 2019. [Google Scholar]
- Kopernikus-Projekte für die Energiewende. DisConMelter. Available online: https://geschichten.ptj.de/disconmelter#150748 (accessed on 9 September 2021).
- Sterner, M. Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems. Ph.D. Thesis, University of Kassel, Kassel, Germany, 23 September 2009. [Google Scholar]
- Sterner, M.; Stadler, I. Energiespeicher—Bedarf, Technologien, Integration, 2nd ed.; Springer: Berlin, Germany, 2017; p. 876. ISBN 978-3-662-48893-5. [Google Scholar]
- Thema, M.; Bauer, F.; Sterner, M. Power-to-Gas: Electrolysis and methanation status review. Renew. Sustain. Energy Rev. 2019, 112, 775–787. [Google Scholar] [CrossRef]
- Buttler, A.; Spliethoff, H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renew. Sustain. Energy Rev. 2018, 82, 2440–2454. [Google Scholar] [CrossRef]
- Fleischmann, B. Einfluss von Gasbeschaffenheitsänderungen auf industrielle Prozessfeuerungen am Beispiel der Glasindustrie. DVGW Energ. Wasser Prax. 2013, 64, 158–161. [Google Scholar]
- Müller-Syring, G.; Henel, M.; Krause, H.; Rasmusson, H.; Mlaker, H.; Köppel, W.; Höcher, T.; Sterner, M.; Trost, T. Power-to-Gas: Entwicklung von Anlagenkonzepten im Rahmen der DVGW-Innovationsoffensive. gwf-Gas|Erdgas 2011, 11, 770–777. [Google Scholar]
- Täschner, I. Erdgas—Zahlen, Daten, Fakten; Bundesverband der Energie- und Wasserwirtschaft (BDEW) e.V.: Berlin, Germany, 2019; Available online: https://issuu.com/bdew_ev/docs/8_erdgastechnik-zahlen-daten-fakten (accessed on 9 September 2021).
- Modelica Association. Modelica Language Specification. Version 3.5. 2021. Available online: https://modelica.org/documents/MLS.pdf (accessed on 9 September 2021).
- Krien, U.; Schönfeldt, P.; Launer, J.; Hilpert, S.; Kaldemeyer, C.; Pleßmann, G. oemof.solph—A model generator for linear and mixed-integer linear optimisation ofenergy systems. Softw. Impacts 2020, 6, 100028. [Google Scholar] [CrossRef]
- Deutscher Wetterdienst (DWD). Projektbericht: Ortsgenaue Testreferenzjahre von Deutschland für Mittlere und Extreme Witterungsverhältnisse. 2017. Available online: https://www.dwd.de/DE/leistungen/testreferenzjahre/testreferenzjahre.html (accessed on 9 September 2021).
- Brkic, J.; Ceran, M.; Elmoghazy, M.; Kavlak, R.; Haumer, A.; Kral, C. Open Source PhotoVoltaics Library for Systemic Investigations. In Proceedings of the 13th International Modelica Conference, Regensburg, Germany, 4–6 March 2019; Linköping University Electronic Press: Linköping, Sweden, 2019. ISBN 978-91-7685-122-7. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.Y.H.; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Andresen, L.; Dubucq, P.; Garica, R.P.; Ackermann, G.; Kather, A.; Schmitz, G. Transientes Verhalten gekoppelter Energienetze Mit Hohem Anteil Erneuerbarer Energien. Available online: https://www.tuhh.de/transient-ee/Abschlussbericht_TransiEntEE.pdf (accessed on 9 September 2021).
- ResilientEE—The TransiEnt Library. Available online: https://www.tuhh.de/transient-ee/ (accessed on 1 April 2021).
- Memmler, M.; Lauf, T.; Schneider, S. Emissionsbilanz erneuerbarer Energieträger 2017. Clim. Chang. 2018, 23. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2018-10-22_climate-change_23-2018_emissionsbilanz_erneuerbarer_energien_2017_fin.pdf (accessed on 8 May 2021).
- Hau, E. Windkraftanlagen—Grundlagen, Technik, Einsatz, Wirtschaftlichkeit, 6th ed.; Springer: Berlin, Germany, 2016; p. 1009. ISBN 978-3-662-53154-9. [Google Scholar] [CrossRef]
- Eberhart, P.; Chung, T.S.; Haumer, A.; Kral, C. Open Source Library for the Simulation of Wind Power Plants. In Proceedings of the 11th International Modelica Conference, Versailles, France, 21–23 September 2015; Linköping University Electronic Press: Linköping, Sweden, 2015. ISBN 978-91-7685-955-1. [Google Scholar] [CrossRef] [Green Version]
- Energieatlas Bayern. Available online: https://geoportal.bayern.de/energieatlas-karten/?wicket-crypt=PBbnymGWFSQ (accessed on 1 July 2021).
- Vogl, V.; Ahman, M.; Nilsson, L.J. Assessment of hydrogen direct reduction for fossil-free steel making. J. Clean. Prod. 2018, 203, 736–745. [Google Scholar] [CrossRef]
- Aneke, M.; Meihong, W. Potential for improving the energy efficiency of cryogenic air separation unit (ASU) using binary heat recovery cycles. Appl. Therm. Eng. 2015, 81, 223–231. [Google Scholar] [CrossRef]
- Icha, P.; Kugs, G. Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990–2019. Clim. Chang. 2020, 13, 29. [Google Scholar]
- Conradt, R. The industrial glass melting process. In The SGTE Casebook: Thermodynamics at Work, 2nd ed.; Hack, K., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2012; ISBN 978-1-84569-395-4. [Google Scholar]
- Conradt, R. Thermal versus chemical constraints for the efficiency of industrial glass melting furnaces. In Proceedings of the 9th International Conference on Advances in the Fusion and Processing of Glass, Cairns, Australia, 10–14 July 2011; Varshneya, A.K., Schaeffer, H.A., Richardson, K.A., Wightman, M., Pye, L.D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012. ISBN 978-1-118-27374-6. [Google Scholar]
- Joos, F. Technische Verbrennung, 1st ed.; Springer: Berlin, Germany, 2006; ISBN 978-3-540-34333-2. [Google Scholar]
- Lucas, K. Thermodynamik, 7th ed.; Springer: Berlin, Germany, 2008; ISBN 978-3-540-68645-3. [Google Scholar]
- Goodwin, D.G.; Speth, R.L.; Moffat, H.K.; Weber, B.W. Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.5.1. 2021. Available online: https://www.cantera.org (accessed on 16 September 2021).
- Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.; Gardiner, W.C.; et al. GRI-MECH 3.0. Available online: http://www.me.berkeley.edu/gri_mech/ (accessed on 9 September 2021).
- Deutsches Institut für Normung (DIN). DIN 1310: Zusammensetzung von Mischphasen; Deutsches Institut für Normung (DIN): Berlin, Germany, 1984. [Google Scholar] [CrossRef]
- Huang, K.S.; Kuo, L.; Chou, K.L. The applicability of marginal abatement cost approach: A comprehensive review. J. Clean. Prod. 2016, 127, 59–71. [Google Scholar] [CrossRef]
- Zhou, D.; Li, T.; Huang, D.; Wu, Y.; Huang, Z.; Xiao, W.; Wang, Q.; Wang, X. The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel. Int. J. Hydrogen Energy 2021, 46, 7402–7414. [Google Scholar] [CrossRef]
- Leicher, J.; Giese, A. Einfluss von Gasbeschaffenheitsänderungen auf den Glasherstellungsprozess. HVG-Mitteilungen 2014, 2164, 1–9. [Google Scholar] [CrossRef]
- Beerkens, R. New Concepts for Energy Efficient and Emission Friendly Melting of Glass. In Proceedings of the 9th International Conference on Advances in the Fusion and Processing of Glass, Cairns, Australia, 10–14 July 2011; Varshneya, A.K., Schaeffer, H.A., Richardson, K.A., Wightman, M., Pye, L.D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012. ISBN 978-1-118-27374-6. [Google Scholar]
- Fraunhofer ISE. Stromgestehungskosten Erneuerbare Energien. Available online: https://nachrichten.idw-online.de/2021/06/22/stromgestehungskosten-erneuerbare-energien-aufgrund-steigender-co2-kosten-den-konventionellen-kraftwerken-deu/ (accessed on 9 September 2021).
- Zakeri, B.; Sanna, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596. [Google Scholar] [CrossRef]
Regenerative | Recuperative | Oxyfuel | All-Electric | |
---|---|---|---|---|
Heat-exchanger | direct contact | indirect contact | none | none |
system | ceramic lattice | dual shell, | ||
structure | shell-and-tube | |||
Burner arrangement | U-flame, | U-flame, | cross-fired | none |
cross fired | cross fired | |||
Industry sector | Flat-, container-, | Container- and | special glass | special glass |
fiber-, special- | special-glass | |||
glass | ||||
Efficiency | ++ | + | +++ | ++++ |
Component | Conventional | Scenario | Scenario | Scenario | Scenario | Scenario |
---|---|---|---|---|---|---|
0 vol% H2 | 10 vol% H2 | 25 vol% H2 | 50 vol% H2 | 75 vol% H2 | 100 vol% H2 | |
mol/mol | mol/mol | mol/mol | mol/mol | mol/mol | mol/mol | |
Methane (CH4) | 0.9642 | 0.8678 | 0.7238 | 0.4822 | 0.2410 | 0.0000 |
Ethane (C2H6) | 0.0258 | 0.0232 | 0.0193 | 0.0129 | 0.0065 | 0.0000 |
Propane (C3H8) | 0.0017 | 0.0015 | 0.0013 | 0.0008 | 0.0004 | 0.0000 |
Carbon dioxide (CO2) | 0.0033 | 0.0030 | 0.0025 | 0.0016 | 0.0008 | 0.0000 |
Nitrogen (N2) | 0.0050 | 0.0045 | 0.0037 | 0.0026 | 0.0013 | 0.0000 |
Hydrogen (H2) | 0.0000 | 0.1000 | 0.2500 | 0.5000 | 0.7500 | 1.0000 |
Plant | Nominal Power | Hub Height | Year of Construction | |
---|---|---|---|---|
in kW | in m | |||
Wind power | AN Bonus 600 | 600 | 58 | 2001 |
AN Bonus 600 | 600 | 58 | 2001 | |
AN Bonus 1000 | 1000 | 70 | 2001 | |
Total: | 2200 | |||
Photovoltaic, | Plant 1 | 2997 | 2017 | |
open field | Plant 2 | 538 | 2007 | |
Total: | 3535 |
Unit | Scenario | Scenario | |
---|---|---|---|
10 vol% H2 | 25 vol% H2 | ||
PEM input power | kW | 272 | 966 |
PEM electrolysis FLH | h | 6979 | 5544 |
Used energy of total supply | % | 19 | 53 |
H2 Storage capacity | MWh | 4.65 | 500.00 |
H2 Costs | €/kWh | 0.092 | 0.224 |
€/m3 STP | 0.28 | 0.67 | |
€/kg H2 | 3.07 | 7.48 |
Conventional Scenario | 10 vol% H2 Scenario | 25 vol% H2 Scenario | ||||
---|---|---|---|---|---|---|
Demand | Specific Costs | Demand | Specific Costs | Demand | Specific Costs | |
€/t Glass | €/t Glass | €/t Glass | ||||
Boosting | 118 kWh/t glass | 14.16 | 118 kWh/t glass | 14.16 | 118 kWh/t glass | 14.16 |
Natural gas | 1192 kWh/t glass | 35.76 | 1154 kWh/t glass | 34.62 | 1086 kWh/t glass | 32.58 |
O2 from ASU | 243 m3/t glass | 24.30 | 240 m3/t glass | 24.00 | 220 m3/t glass | 22.00 |
H2 | 0 kWh/t glass | 0.00 | 156 kWh/t glass | 3.50 | 106 m3/t glass | 23.78 |
Total | 74.22 | 76.28 | 92.52 | |||
CO2 em. | 411 kg CO2-eq./t glass | 404 kg CO2-eq./t glass | 386 kg CO2-eq./t glass | |||
CO2 ab. costs | — | 295 €/t CO2 | 732 €/t CO2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gärtner, S.; Rank, D.; Heberl, M.; Gaderer, M.; Dawoud, B.; Haumer, A.; Sterner, M. Simulation and Techno-Economic Analysis of a Power-to-Hydrogen Process for Oxyfuel Glass Melting. Energies 2021, 14, 8603. https://doi.org/10.3390/en14248603
Gärtner S, Rank D, Heberl M, Gaderer M, Dawoud B, Haumer A, Sterner M. Simulation and Techno-Economic Analysis of a Power-to-Hydrogen Process for Oxyfuel Glass Melting. Energies. 2021; 14(24):8603. https://doi.org/10.3390/en14248603
Chicago/Turabian StyleGärtner, Sebastian, Daniel Rank, Michael Heberl, Matthias Gaderer, Belal Dawoud, Anton Haumer, and Michael Sterner. 2021. "Simulation and Techno-Economic Analysis of a Power-to-Hydrogen Process for Oxyfuel Glass Melting" Energies 14, no. 24: 8603. https://doi.org/10.3390/en14248603
APA StyleGärtner, S., Rank, D., Heberl, M., Gaderer, M., Dawoud, B., Haumer, A., & Sterner, M. (2021). Simulation and Techno-Economic Analysis of a Power-to-Hydrogen Process for Oxyfuel Glass Melting. Energies, 14(24), 8603. https://doi.org/10.3390/en14248603