Catalytic and Sulfur-Tolerant Performance of Bimetallic Ni–Ru Catalysts on HI Decomposition in the Sulfur-Iodine Cycle for Hydrogen Production
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Catalyst Preparation
2.2. Characterization
2.3. Catalyst Activity and Stability Test
2.4. Theoretical Modeling
3. Results and Discussion
3.1. Properties of the Catalysts
3.2. Catalytic Activity and Sulfur-Tolerant Performance
3.3. Characterization of the Deactivated Catalysts
3.4. Adsorption Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singhania, A.; Bhaskarwar, A.N. TiO2 as a catalyst for hydrogen production from hydrogen-iodide in thermo-chemical water-splitting sulfur-iodine cycle. Fuel 2018, 221, 393–398. [Google Scholar] [CrossRef]
- Ying, Z.; Zheng, X.; Cui, G. Detailed kinetic study of the electrochemical Bunsen reaction in the sulfur–iodine cycle for hydrogen production. Energy Convers. Manag. 2016, 115, 26–31. [Google Scholar] [CrossRef]
- Dincer, I.; Balta, M.T. Potential thermochemical and hybrid cycles for nuclear-based hydrogen production. Int. J. Energy Res. 2011, 35, 123–137. [Google Scholar] [CrossRef]
- Singhania, A.; Krishnan, V.V.; Bhaskarwar, A.N.; Bhargava, B.; Parvatalu, D. Hydrogen-iodide decomposition over PdCeO2 nanocatalyst for hydrogen production in sulfur-iodine thermochemical cycle. Int. J. Hydrogen Energy 2018, 43, 3886–3891. [Google Scholar] [CrossRef] [Green Version]
- Ying, Z.; Zheng, X.; Zhang, Y.; Cui, G. Kinetic analysis of Bunsen reaction with HI existence in the thermochemical sulfur–iodine cycle for hydrogen production. Appl. Therm. Eng. 2018, 129, 41–49. [Google Scholar] [CrossRef]
- Tyagi, D.; Varma, S.; Bharadwaj, S. Pt/graphite catalyst for hydrogen generation by HI decomposition reaction in S-I thermochemical cycle. Int. J. Energy Res. 2015, 39, 2008–2018. [Google Scholar] [CrossRef]
- Bai, S.; Wang, L.; Han, Q.; Zhang, P.; Chen, S.; Meng, X.; Xu, J. Experimental study on the purification of HIx phase in the iodine-sulfur thermochemical hydrogen production process. Int. J. Hydrogen Energy 2013, 38, 29–35. [Google Scholar] [CrossRef]
- Tyagi, D.; Varma, S.; Bharadwaj, S.R. Mesoporous Carbon Supported Platinum Nanocatalyst: Application for Hydrogen Production by HI Decomposition Reaction in S-I Cycle. J. Nanosci. Nanotechnol. 2017, 17, 2177–2184. [Google Scholar] [CrossRef]
- Wang, L.; Imai, Y.; Tanaka, N.; Kasahara, S.; Kubo, S.; Onuki, K. Thermodynamic considerations on the purification of H2SO4 and HIx phases in the iodine-sulfur hydrogen production process. Chem. Eng. Commun. 2012, 199, 165–177. [Google Scholar] [CrossRef]
- Dokiya, M.; Kameyama, T.; Fukuda, K.; Kotera, Y. The study of thermochemical hydrogen preparation. III. An oxygen-evolving step through the thermal splitting of sulfuric acid. Bull. Chem. Soc. Jpn. 1977, 50, 2657–2660. [Google Scholar] [CrossRef]
- Le Duigou, A.; Borgard, J.-M.; Larousse, B.; Doizi, D.; Allen, R.; Ewan, B.C.; Priestman, G.H.; Elder, R.; Devonshire, R.; Ramos, V. HYTHEC: An EC funded search for a long term massive hydrogen production route using solar and nuclear technologies. Int. J. Hydrogen Energy 2007, 32, 1516–1529. [Google Scholar] [CrossRef]
- Hinshelwood, C.N.; Prichard, C.R. CCVII—The relation of homogeneous to catalysed reactions. The catalytic decomposition of hydrogen iodide on the surface of gold. J. Chem. Soc. Trans. 1925, 127, 1552–1559. [Google Scholar] [CrossRef]
- Hinshelwood, C.N.; Burk, E.R. CCCCII—The relation of homogeneous to catalysed reactions. The catalytic decomposition of hydrogen iodide on the surface of platinum. J. Chem. Soc. Trans. 1925, 127, 2896–2900. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Wang, Z.H.; Zhou, J.H.; Cen, K.F. Ceria as a catalyst for hydrogen iodide decomposition in sulfur-iodine cycle for hydrogen production. Int. J. Hydrogen Energy 2009, 34, 1688–1695. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Zhou, J.; Liu, J.; Cen, K. Experimental study of Ni/CeO2 catalytic properties and performance for hydrogen production in sulfur-iodine cycle. Int. J. Hydrogen Energy 2009, 34, 5637–5644. [Google Scholar] [CrossRef]
- Fu, G.S.; He, Y.; Zhang, Y.W.; Zhu, Y.Q.; Wang, Z.H.; Cen, K.F. Catalytic performance and durability of Ni/AC for HI decomposition in sulfur–iodine thermochemical cycle for hydrogen production. Energ. Convers. Manag. 2016, 117, 520–527. [Google Scholar] [CrossRef]
- Fu, G.; Wang, Z.; Zhang, Y.; Huang, Z.; Liu, J.; Zhou, J.; Cen, K. Effect of raw material sources on activated carbon catalytic activity for HI decomposition in the sulfur-iodine thermochemical cycle for hydrogen production. Int. J. Hydrogen Energy 2016, 41, 7854–7860. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Zhou, J.; Liu, J.; Cen, K. Effect of preparation method on platinum-ceria catalysts for hydrogen iodide decomposition in sulfur-iodine cycle. Int. J. Hydrogen Energy 2008, 33, 602–607. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Zhou, J.; Liu, J.; Cen, K. Catalytic decomposition of hydrogen iodide over pre-treated Ni/CeO2 catalysts for hydrogen production in the sulfur-iodine cycle. Int. J. Hydrogen Energy 2009, 34, 8792–8798. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Wang, Z.; Liu, J.; Cen, K. Influence of the oxidative/reductive treatments on Pt/CeO2 catalyst for hydrogen iodide decomposition in sulfur-iodine cycle. Int. J. Hydrogen Energy 2008, 33, 2211–2217. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, G.; Wang, Z.; Lin, X.; Wang, L.; Kuang, M.; Whiddon, R.; Cen, K. HI Decomposition over carbon-based and Ni-impregnated catalysts of the sulfur–iodine cycle for hydrogen production. Ind. Eng. Chem. Res. 2015, 54, 1498–1504. [Google Scholar] [CrossRef]
- Favuzza, P.; Felici, C.; Lanchi, M.; Liberatore, R.; Mazzocchia, C.; Spadoni, A.; Tarquini, P.; Tito, A. Decomposition of hydrogen iodide in the S-I thermochemical cycle over Ni catalyst systems. Int. J. Hydrogen Energy 2009, 34, 4049–4056. [Google Scholar] [CrossRef]
- Favuzza, P.; Felici, C.; Nardi, L.; Tarquini, P.; Tito, A. Kinetics of hydrogen iodide decomposition over activated carbon catalysts in pellets. Appl. Catal. B Environ. 2011, 105, 30–40. [Google Scholar] [CrossRef]
- Kasahara, S.; Iwatsuki, J.; Takegami, H.; Tanaka, N.; Noguchi, H.; Kamiji, Y.; Onuki, K.; Kubo, S. Current R&D status of thermochemical water splitting iodine-sulfur process in Japan Atomic Energy Agency. Int. J. Hydrogen Energy 2017, 42, 13477–13485. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, J.; Wang, Z.; Wang, R.; Cen, K. Study of the mechanism of the catalytic decomposition of hydrogen iodide (HI) over carbon materials for hydrogen production. Int. J. Hydrogen Energy 2017, 42, 4977–4986. [Google Scholar] [CrossRef]
- Singhania, A. Catalytic Decomposition of Hydrogen-Iodide Over Nanocrystalline Ceria Promoted by Transition Metal Oxides for Hydrogen Production in Sulfur-Iodine Thermo-Chemical Cycle. Catal. Lett. 2018, 148, 1416–1422. [Google Scholar] [CrossRef]
- Parisi, M.; Giaconia, A.; Sau, S.; Spadoni, A.; Caputo, G.; Tarquini, P. Bunsen reaction and hydriodic phase purification in the sulfur–iodine process: An experimental investigation. Int. J. Hydrogen Energy 2011, 36, 2007–2013. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, P.; Bai, Y.; Wang, L.; Chen, S.; Xu, J. Continuous purification of H2 SO4 and HI phases by packed column in IS process. Int. J. Hydrogen Energy 2010, 35, 2836–2839. [Google Scholar] [CrossRef]
- Sakurai, M.; Nakajima, H.; Onuki, K.; Shimizu, S. Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process. Int. J. Hydrogen Energy 2000, 25, 605–611. [Google Scholar] [CrossRef]
- Ying, B.; Zhang, P.; Hanfei, G.; Songzhe, C.; Laijun, W.; Jingming, X. Purification of sulfuric and hydriodic acids phases in the iodine-sulfur process. Chin. J. Chem. Eng. 2009, 17, 160–166. [Google Scholar]
- Sheng, Z.; Yufeng, H.; Jianming, X.; Xiaoming, W.; Weiping, L. SO2 poisoning and regeneration of Mn-Ce/TiO2 catalyst for low temperature NOx reduction with NH3. J. Rare Earths 2012, 30, 676–682. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Y.; Fu, G.; He, Y.; Zhang, Y.; Wang, Z. H2SO4 poisoning of Ru-based and Ni-based catalysts for HI decomposition in SulfurIodine cycle for hydrogen production. Int. J. Hydrogen Energy 2019, 44, 9771–9778. [Google Scholar] [CrossRef]
- Yuan, C.; Nan, Y.; Wang, X.; Wang, J.; Lv, D.; Li, X. The SiO2 supported bimetallic Ni–Ru particles: A good sulfur-tolerant catalyst for methanation reaction. Chem. Eng. J. 2015, 260, 1–10. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Burattin, P.; Che, M.; Louis, C. Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. J. Phys. Chem. B 1997, 101, 7060–7074. [Google Scholar] [CrossRef]
- Yao, N.; Ma, H.; Shao, Y.; Yuan, C.; Lv, D.; Li, X. Effect of cation-oligomer interactions on the size and reducibility of NiO particles on NiRu/SiO2 catalysts. J. Mater. Chem. 2011, 21, 17403–17412. [Google Scholar] [CrossRef]
- Czekaj, I.; Loviat, F.; Raimondi, F.; Wambach, J.; Biollaz, S.; Wokaun, A. Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS). Appl. Catal. A Gen. 2007, 329, 68–78. [Google Scholar] [CrossRef]
- Alfonso, D.R. First-principles studies of H2S adsorption and dissociation on metal surfaces. Surf. Sci. 2008, 602, 2758–2768. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, K.; Qiu, Y.; Chen, H.; Wang, J.; Wang, Z. Catalytic and Sulfur-Tolerant Performance of Bimetallic Ni–Ru Catalysts on HI Decomposition in the Sulfur-Iodine Cycle for Hydrogen Production. Energies 2021, 14, 8539. https://doi.org/10.3390/en14248539
Wang L, Zhang K, Qiu Y, Chen H, Wang J, Wang Z. Catalytic and Sulfur-Tolerant Performance of Bimetallic Ni–Ru Catalysts on HI Decomposition in the Sulfur-Iodine Cycle for Hydrogen Production. Energies. 2021; 14(24):8539. https://doi.org/10.3390/en14248539
Chicago/Turabian StyleWang, Lijian, Kang Zhang, Yi Qiu, Huiyun Chen, Jie Wang, and Zhihua Wang. 2021. "Catalytic and Sulfur-Tolerant Performance of Bimetallic Ni–Ru Catalysts on HI Decomposition in the Sulfur-Iodine Cycle for Hydrogen Production" Energies 14, no. 24: 8539. https://doi.org/10.3390/en14248539
APA StyleWang, L., Zhang, K., Qiu, Y., Chen, H., Wang, J., & Wang, Z. (2021). Catalytic and Sulfur-Tolerant Performance of Bimetallic Ni–Ru Catalysts on HI Decomposition in the Sulfur-Iodine Cycle for Hydrogen Production. Energies, 14(24), 8539. https://doi.org/10.3390/en14248539