# Assessment of Machine-Learned Turbulence Models Trained for Improved Wake-Mixing in Low-Pressure Turbine Flows

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

_{2}emissions from air transport in half by 2050, compared to the base year of 2005, in order to keep global warming below 1.5 ${}^{\xb0}$C as recommended by the Intergovernmental Panel on Climate Change (IPCC) [1]. In 2018, commercial airliners consumed approximately 360 billion liters of aviation fuel globally (source: www.statista.com (accessed on July 2019)). The reduction of specific fuel consumption directly impacts the carbon footprint of aeroengines and thus remains one of the primary objectives for the aviation industry. In addition to that, aircraft noise is the most significant cause of adverse community reaction related to the operation and expansion of airports. Noise reduction at the source has proven to be effective, and it remains a priority for aircraft engine manufacturers.

## 2. Test Case and Boundary Conditions

## 3. Domain Discretization

## 4. Computational Framework

## 5. Discussion of Results

#### 5.1. Blade Boundary-Layers and Effect of Transition Modelling

#### 5.2. Wake Diffusion and Effect of the EARSMs

#### 5.3. Secondary Flows

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

CFD | Computational Fluid Dynamics |

DNS | Direct Numerical Simulation |

EARSM | Explicit Algebraic Reynolds Stress Model |

FSTI | Free Stream Turbulence Intensity |

GEP | Gene Expression Programming |

LES | Large Eddy Simulation |

LKE | Laminar Kinetic Energy |

LPT | Low Pressure Turbine |

TVD | Total Variation Diminishing |

## Nomenclature

${a}_{ij}$ | Anisotropy tensor |

$AR$ | Blade aspect ratio, $AR=h/{C}_{x}$ |

C | blade chord |

${C}_{p}$ | Pressure coefficient |

${C}_{pt}$ | Total Pressure Loss Coefficient |

${C}_{f}$ | Skin Friction Coefficient |

$DR$ | Diffusion rate, $DR=\frac{{v}_{peak}-{v}_{2}}{{v}_{2}}\frac{{s}_{tot}}{{s}_{tot}-{s}_{peak}}$ |

g | Tangential gap |

h | Blade height |

I | Invariant |

k | Turbulent Kinetic Energy |

p | Pressure |

$R{e}_{2,is}$ | Isentropic exit Reynolds number, $R{e}_{2,is}=\frac{\rho {v}_{2,is}{C}_{x,ms}}{\mu}$ |

s | Curvilinear abscissa along airfoil surface |

${S}_{ij}$ | Strain rate tensor |

v | Flow velocity |

${V}_{ij}$ | Tensor basis element |

x | Axial, axial coordinate |

y | Pitchwise coordinate |

z | Spanwise coordinate |

$Zw$ | Zweifel coefficient, $Zw=2\left(\right)open="("\; close=")">\frac{g}{{C}_{x}}$ |

${\delta}_{ij}$ | Kronecker tensor |

$\mu $ | Dinamic viscosity |

$\rho $ | Fluid density |

$\tau $ | Turbulence time scale |

${\tau}_{ij}$ | Reynolds stress tensor |

$\omega $ | Specific dissipation rate |

${\mathrm{\Omega}}_{ij}$ | Rotation tensor |

## Subscripts

0 | Total quantity |

1 | Inlet |

2 | Outlet |

$is$ | Isentropic |

$ms$ | Midspan |

$peak$ | Relative to the suction peak velocity |

$REF$ | Reference |

$tot$ | Total |

w | Wall |

## References

- Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5 °C, Summary for Policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Michelassi, V.; Chen, L.W.; Pichler, R.; Sandberg, R.D. Compressible Direct Numerical Simulation of Low-Pressure Turbines: Part II - Effect of Inflow Disturbances. J. Turbomach.
**2015**, 137, 071005. [Google Scholar] [CrossRef] - Praisner, T.J.; Clark, J.P.; Nash, T.C.; Rice, M.J.; Grover, E.A. Performance Impacts Due to Wake Mixing in Axial-Flow Turbomachinery. In Proceedings of the ASME Turbo Expo, Barcelona, Spain, 8–11 May 2006. ASME paper GT2006-90666. [Google Scholar]
- Marconcini, M.; Pacciani, R.; Arnone, A.; Michelassi, V.; Pichler, R.; Zhao, Y.; Sandberg, R. Large Eddy Simulation and RANS Analysis of the End-Wall Flow in a Linear Low-Pressure-Turbine Cascade—Part II: Loss Generation. J. Turbomach.
**2019**, 141, 051004. [Google Scholar] [CrossRef] - Hodson, H.P.; Howell, R.J. The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines. Prog. Aerosp. Sci.
**2005**, 41, 419–454. [Google Scholar] [CrossRef] - Uzol, O.; Zhang, X.F.; Cranstone, A.; Hodson, H.P. Investigation of Unsteady Wake-Separated Boundary Layer Interaction Using Particle-Image-Velocimetry. In Proceedings of the ASME Turbo Expo, Montreal, QC, Canada, 14–17 May 2007. ASME paper No. GT2007-28099. [Google Scholar]
- Moreau, S. Turbomachinery Noise Predictions: Present and Future. Acoustics
**2019**, 1, 92–116. [Google Scholar] [CrossRef][Green Version] - Burberi, C.; Ghignoni, E.; Pinelli, L.; Marconcini, M. Validation of an URANS approach for direct and indirect noise assessment in a high pressure turbine stage. Energy Procedia
**2018**, 148, 130–137. [Google Scholar] [CrossRef] - Pinelli, L.; Poli, F.; Marconcini, M.; Arnone, A.; Spano, E.; Torzo, D. Validation of a 3D Linearized Method for Turbomachinery Tone Noise Analysis. In Proceedings of the ASME Turbo Expo, Vancouver, BC, Canada, 6–10 June 2011. ASME paper GT2011-45886. [Google Scholar]
- Pacciani, R.; Marconcini, M.; Arnone, A.; Bertini, F. A CFD Study of Low Reynolds Number Flow in High Lift Cascades. In Proceedings of the ASME Turbo Expo, Glasgow, UK, 14–18 June 2010. ASME paper GT2010-23300. [Google Scholar]
- Duraisamy, K.; Iaccarino, G.; Xiao, H. Turbulence Modeling in the Age of Data. Annu. Rev. Fluid Mech.
**2019**, 53, 357–377. [Google Scholar] [CrossRef][Green Version] - Weatheritt, J.; Sandberg, R.D. The development of algebraic stress models using a novel evolutionary algorithm. Int. J. Heat Fluid Flow
**2017**, 68, 298–318. [Google Scholar] [CrossRef] - Ferreira, C. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Syst.
**2001**, 13, 87–129. [Google Scholar] - Akolekar, H.D.; Weatheritt, J.; Hutchins, N.; Sandberg, R.D.; Laskowski, G.; Michelassi, V. Development and Use of Machine-Learnt Algebraic Reynolds Stress Models for Enhanced Prediction of Wake Mixing in Low Pressure Turbines. J. Turbomach.
**2019**, 141, 041010. [Google Scholar] [CrossRef] - Akolekar, H.D.; Sandberg, R.D.; Hutchins, N.; Michelassi, V.; Laskowski, G. Machine-Learnt Turbulence Closures for Low Pressure Turbines with Unsteady Inflow Conditions. J. Turbomach.
**2019**, 141, 101009. [Google Scholar] [CrossRef] - Zhao, Y.; Akolekar, H.D.; Weatheritt, J.; Michelassi, V.; Sandberg, R.D. RANS Turbulence Model Development using CFD-Driven Machine Learning. J. Comput. Phisycs
**2020**, 411, 109413. [Google Scholar] [CrossRef][Green Version] - Akolekar, H.; Zhao, Y.; Sandberg, R.D.; Pacciani, R. Integration of Machine Learning and Computational Fluid Dynamics to Develop Turbulence Models for Improved Low-Pressure Turbine Wake Mixing. J. Turbomach.
**2021**, 143, 121001. [Google Scholar] [CrossRef] - Lav, C.; Sandberg, R.D.; Philip, J. A Framework to Develop Data-Driven Turbulence Models for Flows with Organised Unsteadiness. J. Comput. Phisycs
**2019**, 383, 148–165. [Google Scholar] [CrossRef] - Langtry, R.B.; Menter, F.R. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA J.
**2009**, 47, 2894–2906. [Google Scholar] [CrossRef] - Pacciani, R.; Marconcini, M.; Fadai-Ghotbi, A.; Lardeau, S.; Leschziner, M.A. Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model. J. Turbomach.
**2011**, 133, 031016. [Google Scholar] [CrossRef] - Wilcox, D.C. Multiscale Model for Turbulent Flows. AIAA J.
**1988**, 26, 1311–1320. [Google Scholar] [CrossRef] - Simoni, D.; Berrino, M.; Ubaldi, M.; Zunino, P.; Bertini, F. Off-Design Performance of a Highly Loaded LP Turbine Cascade Under Steady and Unsteady Incoming Flow Conditions. J. Turbomach.
**2015**, 137, 071009. [Google Scholar] [CrossRef] - Marconcini, M.; Pacciani, R.; Arnone, A.; Bertini, F. Low-Pressure Turbine Cascade Performance Calculations with Incidence Variation and Periodic Unsteady Inflow Conditions. In Proceedings of the ASME Turbo Expo, Montreal, QC, Canada, 15–19 June 2015. ASME paper GT2015-42276. [Google Scholar]
- Giovannini, M.; Rubechini, F.; Marconcini, M.; Simoni, D.; Yepmo, V.; Bertini, F. Secondary Flows in Low- Pressure Turbines Cascades: Numerical and Experimental Investigation of the Impact of the Inner Part of the Boundary Layer. J. Turbomach.
**2018**, 140, 111002. [Google Scholar] [CrossRef] - Pichler, R.; Zhao, Y.; Sandberg, R.; Michelassi, V.; Pacciani, R.; Marconcini, M.; Arnone, A. Large-Eddy Simulation and RANS Analysis of the End-Wall Flow in a Linear Low-Pressure Turbine Cascade, Part I: Flow and Secondary Vorticity Fields Under Varying Inlet Condition. J. Turbomach.
**2019**, 141, 121005. [Google Scholar] [CrossRef] - Ricci, M.; Pacciani, R.; Marconcini, M.; Arnone, A. Prediction of Tip Leakage Vortex Dynamics in an Axial Compressor Cascade Using RANS Analyses. In Proceedings of the ASME Turbo Expo, London, UK, 22–26 June 2020. ASME paper GT2020-14797. [Google Scholar]
- Arnone, A. Viscous Analysis of Three–Dimensional Rotor Flow Using a Multigrid Method. J. Turbomach.
**1994**, 116, 435–445. [Google Scholar] [CrossRef] - Chorin, A.J. A Numerical Method for Solving Incompressible Viscous Flow Problems. J. Comput. Phys.
**1967**, 2, 12–26. [Google Scholar] [CrossRef] - Pacciani, R.; Marconcini, M.; Arnone, A. Comparison of the AUSM
^{+}-up and Other Advection Schemes for Turbomachinery Applications. Shock Waves**2019**, 29, 705–716. [Google Scholar] [CrossRef] - Pacciani, R.; Marconcini, M.; Arnone, A.; Bertini, F. An Assessment of the Laminar Kinetic Energy Concept for the Prediction of High-Lift, Low-Reynolds Number Cascade Flows. Proc. Inst. Mech. E Part A J. Power Energy
**2011**, 225, 995–1003. [Google Scholar] [CrossRef] - Pacciani, R.; Marconcini, M.; Arnone, A.; Bertini, F. Predicting High-Lift LP Turbine Cascades Flows Using Transition-Sensitive Turbulence Closures. J. Turbomach.
**2014**, 136, 051007. [Google Scholar] [CrossRef] - Pope, S.B. A More General Effective-Viscosity Hypothesis. J. Fluid Mech.
**1975**, 72, 331–340. [Google Scholar] [CrossRef][Green Version]

**Figure 3.**Blade surface distributions of (

**a**) pressure-coefficient (

**b**) skin friction ($R{e}_{2,is}=3.0\times {10}^{5}$).

**Figure 4.**Blade surface distributions (

**a**) pressure-coefficient (

**b**) skin friction ($R{e}_{2,is}=0.7\times {10}^{5}$).

**Figure 5.**Wake loss profiles at $R{e}_{2,is}=0.7\times {10}^{5}$, (

**a**) obtained with different values of ${x}_{mask}$ (GEP-EARSM, $x/{C}_{x,ms}=1.46$), (

**b**) in different locations downstream of blade TE (GEP-EARSM H).

**Figure 6.**Wake loss profiles w/ and w/o GEP-EARSM ($R{e}_{2,is}=0.7\times {10}^{5}$, $x/{C}_{x,ms}=1.46$).

**Figure 7.**Nondimensional turbulent kinetic energy at midspan (

**a**) without GEP-EARSM (

**b**) with GEP-EARSM ($R{e}_{2,is}=0.7\times {10}^{5}$).

**Figure 10.**Spanwise distribution of (

**a**) total pressure loss coefficient (

**b**) blade-to-blade flow angle ($R{e}_{2,is}=1.5\times {10}^{5}$, $x/{C}_{x,ms}=1.46$).

**Figure 11.**Contours of total pressure loss coefficient (

**a**) Experimental (

**b**) without GEP-EARSM (

**c**) with GEP-EARSM.

Zw | DR | AR |
---|---|---|

1.1 | 0.5 | 3.0 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pacciani, R.; Marconcini, M.; Bertini, F.; Rosa Taddei, S.; Spano, E.; Zhao, Y.; Akolekar, H.D.; Sandberg, R.D.; Arnone, A.
Assessment of Machine-Learned Turbulence Models Trained for Improved Wake-Mixing in Low-Pressure Turbine Flows. *Energies* **2021**, *14*, 8327.
https://doi.org/10.3390/en14248327

**AMA Style**

Pacciani R, Marconcini M, Bertini F, Rosa Taddei S, Spano E, Zhao Y, Akolekar HD, Sandberg RD, Arnone A.
Assessment of Machine-Learned Turbulence Models Trained for Improved Wake-Mixing in Low-Pressure Turbine Flows. *Energies*. 2021; 14(24):8327.
https://doi.org/10.3390/en14248327

**Chicago/Turabian Style**

Pacciani, Roberto, Michele Marconcini, Francesco Bertini, Simone Rosa Taddei, Ennio Spano, Yaomin Zhao, Harshal D. Akolekar, Richard D. Sandberg, and Andrea Arnone.
2021. "Assessment of Machine-Learned Turbulence Models Trained for Improved Wake-Mixing in Low-Pressure Turbine Flows" *Energies* 14, no. 24: 8327.
https://doi.org/10.3390/en14248327