Hybrid Renewable Energy Systems’ Optimisation. A Review and Extended Comparison of the Most-Used Software Tools
Abstract
:1. Introduction
- High reliability;
- Minimisation of energy storage capacity requirement, especially if the hybrid energy system is comprised of RES with a complementary character as solar and wind energy are;
- Better efficiency;
- Modularity;
- LCOE (Levelised Cost Of Electricity) minimisation (as a consequence of an optimum design strategy).
2. Optimisation Techniques Review
2.1. Conventional Optimisation Techniques
2.2. New Generation Optimisation Approach Techniques
2.3. Hybrid Techniques
2.4. Comparison of Modelling Techniques
3. Simulation Software Categorisation
Comparison of Simulation Software Tools
4. Optimisation Constraints
- Scientific, functional, and practical;
- Easily understandable;
- Representative.
Power Reliability Indicators
- If FEE is less than zero, the net ESS charge will be decreased at the end of the analysis period, leading to a possible system failure.
- If FEE is equal to zero, there is no discrepancy between the initial and final ESS charge.
- If FEE is greater than zero, the net ESS charge will increase, leading to its possible overestimation.
- If REF is equal to zero, the load is completely covered by the non-intermittent energy resources.
- If REF is greater than one, the hybrid system sizing is overestimated.
- If REF is less than zero, the hybrid system sizing is underestimated.
- If EGR is equal to one, the load is satisfied equally by PV modules and WTs of the HRES.
- If EGR is greater than one, WTs contribute more than PV modules to load satisfaction.
- If EGR is less than one, WTs contribute less than PV modules to load satisfaction.
5. Simulations’ Input Parameters
5.1. Solar and Wind Potential
5.2. Load Demand Profile
5.3. System Configuration
5.4. Economic Parameters
5.5. Optimisation Targets
5.6. Simulation Scenarios
6. Simulation Results
6.1. System Sizing for Optimum Financial Cost
- iHOGA maintains the total nominal wind power (except for scenario 9) and the batteries bank’s capacity constant as well as their pertinent contribution to load requirement. The strategy opted by the software consists of the diversification of the solar power appropriately to respond to load variation. In contrast, HOMER Pro depicts a diversified dispatch strategy. The software maintains only the total nominal wind power as a constant, whereas both the solar power and also the batteries bank’s capacities are diversified. Moreover, it is worth noting that for scenarios 1 and 4 (where low wind potential is present) HOMER Pro has opted for only PV panels and batteries to satisfy the load demand.
- The PV contribution generated by iHOGA is smaller than the relevant one generated by HOMER Pro for all scenarios examined. On the other hand, HOMER Pro has opted for smaller battery banks’ capacities to satisfy the load requirements in comparison to iHOGA. This is also visualised in the smaller values of batteries bank’s autonomy achieved with HOMER Pro compared to iHOGA.
- For all scenarios examined, HOMER Pro, compared to iHOGA, generates greater volumes of excess energy (ranging from 2 to over 13 times). The previous remark can be principally ascribed to the straightforward control strategy that iHOGA has adopted [11].
6.2. System Sizing for Optimum Load Coverage
- As is also valid for the simulations for optimum financial cost, iHOGA maintains the total nominal wind power (except for scenario 5) and the batteries bank’s capacity constant as their pertinent contribution to load demand. The software has opted for the appropriate diversification of solar power to respond to load variation. In contrast, HOMER Pro presents a different dispatch strategy. The software retains constant only the total nominal wind power (except for Scenario 1) and diversifies both the battery banks’ capacities as well as the solar power.
- All energy resources are included in the configurations that have been generated by both software, contrary to the relevant simulations for optimum financial cost.
- The PV contribution generated by iHOGA is greater than the relevant one generated by HOMER Pro for all scenarios examined, as opposed to simulations carried out for optimum financial cost. Furthermore, HOMER Pro has opted for smaller battery banks’ capacities to satisfy the load requirements.
- In 5 out of 9 scenarios (except Scenarios 1, 2, 5 and 7), iHOGA, compared to HOMER Pro, generated smaller amounts of excess energy.
6.3. Comparison of Simulation Results
- ESA was selected to cover the load demand only with WTs for all scenarios examined. The greater capacity of WTs that resulted from the software simulations has also increased the relevant amount of energy delivered by WTs, compared to the two commercial software examined.
- For all scenarios examined, the battery banks’ capacities generated by ESA are greater than the pertinent ones generated by HOMER Pro. Contrarily, iHOGA generated greater values for the battery banks’ capacities than ESA (except for Scenarios 4 and 5).
- Excluding Scenario 8, the excess energy generated by HOMER Pro is greater than the one generated by ESA. Moreover, iHOGA generated smaller values of excess energy than ESA for all scenarios examined.
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | Artificial Bee Colony |
AC | Alternating Current |
AHP | Analytical Hierarchy Process |
AI | Artificial Intelligence |
ANN | Artificial Neural Networks |
CAES | Compressed Air Energy Storage |
DC | Direct Current |
DOD | Depth of Discharge |
DSM | Demand Side Management |
EPBT | Energy Payback Time |
ESA | Energy Systems Analysis |
EUE | Expected Unserved Energy |
GA | Genetic Algorithms |
HOMER | Hybrid Optimisation of Multiple Energy Resources |
HRES | Hybrid Renewable Energy System |
iHOGA | improved Hybrid Optimisation by Genetic Algorithms |
LA | Level of Autonomy |
LOPSP | Loss Of Power Supply Probability |
LCOE | Levelised Cost Of Electricity |
MCS | Monte Carlo Simulations |
NPC | Net Present Cost |
NREL | National Renewable Energy Laboratory |
O & M | Operation & Maintenance |
Probability Density Function | |
PLC | Probability of Load Curtailment |
PSO | Particle Swarm Optimisation |
PV | Photovoltaic |
RES | Renewable Energy Sources |
SA | Simulating Annealing |
SOC | State Of Charge |
TLBO | Teaching-Learning Based Optimisation |
TMY | Typical Meteorological Year |
WT | Wind Turbine |
References
- Erdinc, O.; Uzunoglu, M. Optimum design of hybrid renewable energy systems: Overview of different approaches. Renew. Sustain. Energy Rev. 2012, 16, 1412–1425. [Google Scholar] [CrossRef]
- Kavadias, K.; Triantafyllou, P. Wind-based stand-alone hybrid energy systems. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Oxford, UK, 2021. [Google Scholar]
- Kavadias, K.A. Modern Solar Map of Greece with Application in Hybrid Renewable Energy Systems (Available in Greek Only). Ph.D. Thesis, University of Ioannina, Ioannina, Greece, January 2016. [Google Scholar]
- Sinha, S.; Chandel, S.S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 33, 192–205. [Google Scholar] [CrossRef]
- Kavadias, K.A. Stand-alone, hybrid systems. In Comprehensive Renewable Energy; Sayigh, A., Kaldellis, J.K., Eds.; Elsevier: Oxford, UK, 2012; Volume 2, pp. 623–656. [Google Scholar]
- Bhandari, B.; Lee, K.T.; Lee, G.Y.; Chso, Y.M.; Ahn, S.H. Optimization of Hybrid Renewable Energy Power Systems: A Review. Int. J. Precis. Eng. Manuf. Green Technol. 2015, 2, 99–112. [Google Scholar] [CrossRef]
- Turcotte, D.; Ross, M.; Sheriffa, F. Photovoltaic hybrid system sizing and simulation tools: Status and needs. In Proceedings of the PV Horizon: Workshop on Photovoltaic Hybrid Systems, Montreal, QC, Canada, 10 September 2001; pp. 1–10. [Google Scholar]
- Subramanian, A.S.R.; Gundersen, T.; Adams, T.A., II. Modeling and Simulation of Energy Systems: A Review. Processes 2018, 6, 238. [Google Scholar] [CrossRef] [Green Version]
- Acuña, L.G.; Padilla, R.V.; Santander-Mercado, A.R. Measuring reliability of hybrid photovoltaic-wind energy systems: A new indicator. Renew. Energy 2017, 106, 68–77. [Google Scholar] [CrossRef]
- Al-Falahi, M.D.A.; Jayasinghe, S.D.G.; Enshaei, H. A review on recent size optimisation methodologies for standalone solar and wind hybrid renewable energy system. Energy Convers. Manag. 2012, 143, 252–274. [Google Scholar] [CrossRef]
- Saiprasad, N.; Kalam, A.; Zayegh, A. Comparative Study of Optimisation of HRES using HOMER and iHOGA Software. J. Sci. Ind. Res. 2018, 77, 677–683. [Google Scholar]
- Kumar, P. Analysis of hybrid systems: Software tools. In Proceedings of the IEEE International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB16), Chennai, India, 27–28 February 2016. [Google Scholar]
- Diaf, S.; Diaf, D.; Belhamel, M.; Haddadi, M.; Louche, A. A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy 2007, 35, 5708–5718. [Google Scholar] [CrossRef] [Green Version]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Leahy, M. A review of computer tools for analysing the integration of renewable energy. Appl. Energy 2010, 87, 1059–1082. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Fang, Z. A novel model for photovoltaic array performance prediction. Appl. Energy 2007, 84, 1187–1198. [Google Scholar] [CrossRef]
- Ashok, S. Optimised model for community-based hybrid energy system. Renew. Energy 2007, 32, 1155–1164. [Google Scholar] [CrossRef]
- Kondili, E. Design and performance optimisation of stand-alone and hybrid wind energy systems. In Stand-Alone and Hybrid Wind Energy Systems: Technology, Energy Storage and Applications; Kaldellis, J.K., Ed.; Woodhead Publishing Series in Energy: Oxford, UK, 2010; pp. 81–101. [Google Scholar]
- HOMER Pro. Available online: https://www.homerenergy.com/products/pro (accessed on 19 July 2019).
- iHOGA. Available online: http://ihoga.unizar.es/en (accessed on 21 October 2019).
- Piraeus University of Applied Sciences. Technology Innovation for the Local Scale, Optimum Integration of Battery Energy Storage, TILOS, Innovation Project LCE-08-2014: Local/Small Scale Storage. D7.1 The Validated Microgrid Simulator; The TILOS Consortium: Egaleo, Greece, 2017; pp. 1–48. [Google Scholar]
- Ghofrani, M.; Hosseini, N.N. Optimizing hybrid renewable energy systems: A review. In Sustainable Energy-Technological Issues, Applications and Case Studies; Zobaa, A.F., Afifi, S., Pisica, I., Eds.; Intech: Rijeka, Croatia, 2016; Chapter 8; pp. 161–176. [Google Scholar]
- Tina, G.M.; Gagliano, S.; Raiti, S. Hybrid solar/wind power system probabilistic modelling for long-term performance assessment. Elsevier Sol. Energy 2006, 80, 578–588. [Google Scholar] [CrossRef]
- Khatod, D.K.; Pant, V.; Sharma, J. Analytical Approach for Well-Being Assessment of Small Autonomous Power Systems with Solar and Wind Energy Sources. IEEE Trans. Energy Convers. 2010, 25, 535–545. [Google Scholar] [CrossRef]
- Zhou, W.; Lou, C.; Li, Z.; Lu, L.; Yang, H. Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Appl. Energy 2010, 87, 380–389. [Google Scholar] [CrossRef]
- Li, J.; Wei, W.; Xiang, J. A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids. Energies 2012, 5, 5307–5323. [Google Scholar] [CrossRef] [Green Version]
- Chedid, R.; Rahman, S. Unit sizing and control of hybrid wind-solar power systems. IEEE Trans. Energy Convers. 1997, 12, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Huneke, F.; Henkel, J.; Benavides González, J.A.; Erdmann, G. Optimisation of hybrid off-grid energy systems by linear programming. Energy Sustain. Soc. 2012, 2, 1–19. [Google Scholar] [CrossRef] [Green Version]
- De, A.R.; Musgrove, L. The optimization of hybrid energy conversion systems using the dynamic programming model–Rapsody. Int. J. Energy Res. 1988, 12, 447–457. [Google Scholar] [CrossRef]
- Bakirtzis, A.G.; Gavanidou, E.S. Optimum operation of a small autonomous system with unconventional energy sources. Electr. Power Syst. Res. 1992, 23, 93–102. [Google Scholar] [CrossRef]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Ming, M.; Wang, R.; Zha, Y.; Zhang, T. Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm. Energies 2017, 10, 674. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Bansal, R.C.; Singh, A.R.; Naidoo, R. Multi-objective optimization of hybrid renewable energy system using reformed electric system cascade analysis for islanding and grid connected modes of operation. IEEE Access 2018, 6, 47332–47354. [Google Scholar] [CrossRef]
- Saramourtsis, A.C.; Bakirtzis, A.G.; Dokopoulos, P.S.; Gavanidou, E.S. Probabilistic evaluation of the performance of wind-diesel energy systems. IEEE Trans. Energy Convers. 1994, 9, 743–752. [Google Scholar] [CrossRef]
- Karaki, S.H.; Chedid, R.B.; Ramadan, R. Probabilistic Performance Assessment of Autonomous Solar-Wind Energy Conversion Systems. IEEE Trans. Energy Convers. 1999, 14, 766–772. [Google Scholar] [CrossRef]
- Dagdougui, H.; Minciardi, R.; Ouammi, A.; Robba, M.; Sacile, R. Modelling and control of a hybrid renewable energy system to supply demand of a “Green” building. Energy Convers. Manag. 2012, 64, 351–363. [Google Scholar] [CrossRef]
- Bhandari, B.; Poudel, S.R.; Lee, K.-T.; Ahn, S.-H. Mathematical Modeling of Hybrid Renewable Energy System: A Review on Small Hydro-Solar-Wind Power Generation. Int. J. Precis. Eng. Manuf. Green Technol. 2014, 1, 157–173. [Google Scholar] [CrossRef]
- Zhang, L.; Barakat, G.; Yassine, A. Deterministic Optimization and Cost Analysis of Hybrid PV/Wind/Battery/Diesel Power System. Int. J. Renew. Energy Res. 2012, 2, 686–696. [Google Scholar]
- Borowy, B.S.; Salameh, Z.M. Methodology for Optimally Sizing the Combination of a Battery Bank and PV Array in a Wind/PV Hybrid System. IEEE Trans. Energy Convers. 1996, 11, 367–375. [Google Scholar] [CrossRef]
- Markvart, T. Sizing of hybrid photovoltaic-wind energy systems. Sol. Energy 1996, 57, 277–281. [Google Scholar] [CrossRef]
- Ramoji, S.K.; Rath, B.B.; Kumar, D.V. Optimization of Hybrid PV Wind Energy System Using Genetic Algorithm (GA). Int. J. Eng. Res. Appl. 2014, 4, 29–37. [Google Scholar]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Optimization of solar systems using artificial neural-networks and genetic algorithms. Appl. Energy 2004, 77, 383–405. [Google Scholar] [CrossRef]
- Alzahrani, A.; Ferdowsi, M.; Shamsi, P.; Dagli, C.H. Modeling and Simulation of Microgrid. Procedia Comput. Sci. 2017, 114, 392–400. [Google Scholar] [CrossRef]
- Saharia, B.J.; Brahma, H.; Sarmah, N. A review of algorithms for control and optimization for energy management of hybrid renewable energy systems. J. Renew. Sustain. Energy 2018, 10, 1–33. [Google Scholar]
- Kennedy, V.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Geleta, D.K.; Manshahia, M.S. Artificial bee colony-based optimization of hybrid wind and solar renewable energy system. In Handbook of Research on Energy-Saving Technologies for Environmentally-Friendly Agricultural Development; Kharchenko, V., Vasant, P., Eds.; IGI Global: Hershey, PA, USA, 2019; Chapter 17; pp. 429–453. [Google Scholar]
- Eltamaly, A.M.; Mohamed, M.A.; Al-Saud, M.S.; Alolah, A.I. Load management as a smart grid concept for sizing and designing of hybrid renewable energy systems. Eng. Optim. 2017, 49, 1813–1828. [Google Scholar] [CrossRef]
- Clerc, M. Particle Swarm Optimization; ISTE Ltd.: London, UK, 2006. [Google Scholar]
- Lehmann, S.; Rutter, I.; Wagner, D.; Wagner, F. A simulated-annealing-based approach for wind farm cabling. In Proceedings of the 8th International Conference on Future Energy Systems, Shatin, Hong Kong, 16–19 May 2017; pp. 203–215. [Google Scholar]
- Yang, K.; Kwak, G.; Cho, K.; Huh, J. Wind farm layout optimization for wake effect uniformity. Energy 2019, 183, 983–995. [Google Scholar] [CrossRef]
- Dong, W.; Li, Y.; Xiang, J. Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization. Energies 2016, 9, 785. [Google Scholar] [CrossRef]
- Suhane, P.; Rangnekar, S.; Mittal, A. Optimal Sizing of Hybrid Energy System using Ant Colony Optimization. Int. J. Renew. Energy Res. 2014, 4, 683–688. [Google Scholar]
- Ringkjøb, H.K.; Haugan, P.M.; Solbrekke, I.M. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew. Sustain. Energy Rev. 2018, 96, 440–459. [Google Scholar] [CrossRef]
- Santarelli, M.; Pellegrino, D. Mathematical optimization of a RES-H2 plant using a black box algorithm. Renew. Energy 2005, 30, 493–510. [Google Scholar] [CrossRef]
- Yang, M.; Chen, C.; Que, B.; Zhou, Z.; Yang, Q. Optimal placement and configuration of hybrid energy storage system in power distribution networks with distributed photovoltaic sources. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–6. [Google Scholar]
- Upadhyay, S.; Sharma, M.P. A review on configurations, control and sizing methodologies of hybrid energy systems. Renew. Sustain. Energy Rev. 2014, 38, 47–63. [Google Scholar] [CrossRef]
- Ganguly, P.; Kalam, A.; Zayegh, A. Design an optimum standalone hybrid renewable energy system for a small town at Portland, Victoria using iHOGA. In Proceedings of the 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, Australia, 19–22 November 2017; pp. 1–6. [Google Scholar]
- Al-Sheikh, H.; Moubayed, N. An overview of simulation tools for renewable applications in power systems. In Proceedings of the 2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), Beirut, Lebanon, 12–15 December 2012; pp. 257–261. [Google Scholar]
- Lundsager, P.; Bindner, H.; Clausen, N.-E.; Frandsen, S.; Hansen, L.H.; Hansen, J.C. Isolated Systems with Wind Power; Risø National Laboratory: Roskilde, Denmark, 2001; pp. 1–72.
- International Energy Agency. World-Wide Overview of Design and Simulation Tools for Hybrid PV Systems; International Energy Agency: Paris, France, 2011.
- Lambert, T.; Gilman, P.; Lilienthal, P. Micropower system modeling with HOMER. In Integration of Alternative Sources of Energy; Farret, F.A., Simões, M.G., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; Chapter 15; pp. 379–418. [Google Scholar]
- Hirschberg, S.; Bauer, C.; Burgherr, P.; Dones, R.; Simons, A.; Schenler, W.; Bachmann, T.; Gallego Carrera, D.; Maupu, V.; Lecointe, C.; et al. Deliverable n° D3.2–RS 2b: Final set of sustainability criteria and indicators for assessment of electricity supply options. In NEEDS-New Energy Externalities Developments for Sustainability; Project no: 502687; Paul Scherrer Institut: Villigen, Switzerland, 2008. [Google Scholar]
- Polatidis, H.; Haralambopoulos, D.; Munda, G.; Vreeker, R. Selecting an Appropriate Multi-Criteria Decision Analysis Technique for Renewable Energy Planning. Energy Sources Part B 2006, 1, 181–193. [Google Scholar] [CrossRef]
- Afgan, N.H.; Carvalho, M.G. Sustainability assessment of a hybrid energy system. Energy Policy 2008, 36, 2903–2910. [Google Scholar] [CrossRef]
- Liu, G.; Rasul, M.G.; Amanullah, M.T.O.; Khan, M.M.K. AHP and fuzzy assessment based sustainability indicator for hybrid renewable energy system. In Proceedings of the 2010 20th Australasian Universities Power Engineering Conference, Christchurch, New Zealand, 5–8 December 2010; pp. 1–6. [Google Scholar]
- Santoyo-Castelazo, E.; Azapagic, A. Sustainability assessment of energy systems: Integrating environmental, economic and social aspects. J. Clean. Prod. 2014, 80, 119–138. [Google Scholar] [CrossRef]
- Wang, R.; Lam, C.M.; Hsu, S.C.; Chen, J.H. Life cycle assessment and energy payback time of a standalone hybrid renewable energy commercial microgrid: A case study of Town Island in Hong Kong. Appl. Energy 2019, 250, 760–775. [Google Scholar] [CrossRef]
- Dufo-López, R.; Bernal-Agustin, J.L. Design and control strategies of PV-Diesel systems using genetic algorithms. Sol. Energy 2005, 79, 33–46. [Google Scholar] [CrossRef]
- Gudelj, A.; Krčum, M. Simulation and Optimization of Independent Renewable Energy Hybrid System. Trans. Marit. Sci. 2013, 1, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Heylen, E.; Deconinck, G.; Van Hertem, D. Review and classification of reliability indicators for power systems with a high share of renewable energy sources. Renew. Sustain. Energy Rev. 2018, 97, 554–568. [Google Scholar] [CrossRef]
- Chaer, R.; Zeballos, R.; Uturbey, W.; Casaravilla, G. Simenerg: A novel tool for designing autonomous electricity systems. In Proceedings of the European Community Wind Energy Conference (ECWEC), Lübeck-Travemünde, Germany, 8–12 March 1993; pp. 330–333. [Google Scholar]
- Yazdanpanah, M.-A. Modeling and sizing optimization of hybrid photovoltaic/wind power generation system. J. Ind. Eng. Int. 2014, 49, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Xydis, G. On the exergetic capacity factor of a wind-Solar power generation system. J. Clean. Prod. 2013, 47, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Puri, A. Optimally sizing battery storage and renewable energy sources on an off-grid facility. In Proceedings of the 2013 IEEE Power & Energy Society (PES) General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Singh, R.; Bansal, R. Optimization of an autonomous hybrid renewable energy system using reformed electric system cascade analysis. IEEE Trans. Ind. Inform. 2019, 15, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Kashefi Kaviani, A.; Riahy, G.H.; Kouhsari, S.M. Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages. Renew. Energy 2009, 34, 2380–2390. [Google Scholar] [CrossRef]
- Wu, Y.K.; Chang, S.M. Review of the optimal design on a hybrid renewable energy system. In Proceedings of the 2016 1st Asia Conference on Power and Electrical Engineering (ACPEE 2016), Bangkok, Thailand, 20–22 March 2016; pp. 1–7. [Google Scholar]
- Shrestha, G.B.; Goel, L. A study on optimal sizing of stand-alone photovoltaic stations. IEEE Trans. Energy Convers. 1998, 13, 373–378. [Google Scholar] [CrossRef]
- Chen, H.-C. Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability. Elsevier Appl. Sci. 2013, 103, 155–164. [Google Scholar] [CrossRef]
- Boroujeni, H.F.; Eghtedari, M.; Abdollahi, M.; Behzadipour, E. Calculation of generation system reliability index: Loss of Load Probability. Life Sci. J. 2012, 9, 4903–4908. [Google Scholar]
- Al-Ashwal, A.M.; Moghram, I.S. Proportion assessment of combined PV-Wind generating systems. Renew. Energy 1997, 10, 43–51. [Google Scholar] [CrossRef]
- Celik, A.N. Techno-economic analysis of autonomous PV-wind hybrid energy systems using different sizing methods. Energy Convers. Manag. 2003, 44, 1951–1968. [Google Scholar] [CrossRef]
- Medjoudj, R.; Bediaf, H.; Aissani, D. Power system reliability: Mathematical models and applications. In System Reliability; Volosencu, C., Ed.; IntechOpen: London, UK, 2017; Chapter 15; pp. 279–298. [Google Scholar]
- Billinton, R.; Li, W. Reliability Assessment of Electric Power Systems Using Monte Carlo Methods, 1st ed.; Plenum Press: New York, NY, USA, 1994. [Google Scholar]
- Maghraby, H.A.M.; Shwehdi, M.H.; Al-Bassam, G.K. Probabilistic Assessment of Photovoltaic (PV) Generation Systems. IEEE Trans. Power Syst. 2002, 17, 205–208. [Google Scholar] [CrossRef]
- Yang, H.X.; Lu, L.; Burnett, J. Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong. Renew. Energy 2003, 28, 1813–1824. [Google Scholar] [CrossRef]
- Ganguly, P.; Kalam, A.; Zayegh, A. Solar–wind hybrid renewable energy system: Current status of research on configurations, control, and sizing methodologies. In Hybrid-Renewable Energy Systems in Microgrids, Integration, Developments and Control; Hina Fathima, A., Palanisamy, K., Mekhilef, S., Eds.; Woodhead Publishing Series in Energy: Oxford, UK, 2018; Chapter 12; pp. 219–248. [Google Scholar]
- Moriana, I.; San Martin, I.; Sanchis, P. Wind-photovoltaic hybrid systems design. In Proceedings of the 2010 2nd International Symposium on Power Electronics Electrical Drives Automation and Motion (SPEEDAM), Pisa, Italy, 14–16 June 2010; pp. 610–615. [Google Scholar]
- Maleki, A.; Pourfayaz, F. Optimal sizing of autonomous hybrid photovoltaic/wind/battery power system with LPSP technology by using evolutionary algorithms. Sol. Energy 2015, 115, 471–483. [Google Scholar] [CrossRef]
- Hina Fathima, A.; Palanisamy, K. Optimization in microgrids with hybrid energy systems–A review. Renew. Sustain. Energy Rev. 2015, 45, 431–446. [Google Scholar] [CrossRef]
- Hafez, A.A.; Hatata, A.Y.; Aldl, M.M. Optimal sizing of hybrid renewable energy system via artificial immune system under frequency stability constraints. J. Renew. Sustain. Energy 2019, 11, 015905. [Google Scholar] [CrossRef]
- Zahboune, H.; Zouggar, S.; Krajacic, G.; Sabev Varbanov, P.; Elhafyani, M.; Ziani, E. Optimal hybrid renewable energy design in autonomous system using Modified Electric System Cascade Analysis and Homer software. Energy Convers. Manag. 2016, 126, 909–922. [Google Scholar] [CrossRef]
- Luna-Rubio, R.; Trejo-Perea, M.; Vargas-Vázquez, D.; Ríos-Moreno, G.J. Optimal sizing of renewable hybrids energy systems: A review of methodologies. Sol. Energy 2012, 86, 1077–1088. [Google Scholar] [CrossRef]
- Shirvani, M.; Memaripour, A.; Abdollahi, M.; Salimi, A. Calculation of generation system reliability index: Expected Energy Not Served. Life Sci. J. 2012, 9, 3443–3448. [Google Scholar]
- Al-Shaalan, A.M. Reliability evaluation of power systems. In Reliability and Maintenance-an Overview of Cases; Kounis, L.D., Ed.; IntechOpen: London, UK, 2019; Chapter 1; pp. 1–25. [Google Scholar]
- Aien, M.; Biglari, A.; Rashidinejad, M. Probabilistic reliability evaluation of hybrid wind-photovoltaic power systems. In Proceedings of the 2013 21st Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 14–16 May 2013; pp. 1–6. [Google Scholar]
- Wang, L.; Singh, C. Compromise between cost and reliability in optimum design of an autonomous hybrid power system using mixed-integer PSO algorithm. In Proceedings of the 2007 International Conference on Clean Electrical Power, Capri, Italy, 21–23 May 2007; pp. 682–689. [Google Scholar]
- Garcia, R.S.; Weisser, D. A wind–diesel system with hydrogen storage: Joint optimisation of design and dispatch. Renew. Energy 2006, 31, 2296–2320. [Google Scholar] [CrossRef]
- Jahanbani, F.; Riahy, G.H. Optimum design of a hybrid renewable energy system. In Renewable Energy-Trends and Applications; Nayeripour, M., Khesti, M., Eds.; Intech: Rijeka, Croatia, 2011; Chapter 11; pp. 231–250. [Google Scholar]
- Navaeefard, A.; Moghaddas-Tafreshi, S.M.; Barzegari, M.; Shahrood, A.J. Optimal sizing of distributed energy resources in microgrid considering wind energy uncertainty with respect to reliability. In Proceedings of the 2010 IEEE International Energy Conference, Manama, Bahrain, 18–22 December 2010; pp. 820–821. [Google Scholar]
- Bashir, M.; Sadeh, J. Size optimization of new hybrid stand-alone renewable energy system considering a reliability index. In Proceedings of the 2012 11th International Conference on Environment and Electrical Engineering, Venice, Italy, 18–25 May 2012; pp. 1–6. [Google Scholar]
- Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B.; Talebi, H.A. Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system. Energy 2016, 115, 1022–1041. [Google Scholar] [CrossRef]
- Fockens, S.; van Wijk, A.J.M.; Turkenburg, W.C.; Singh, C. Reliability analysis of generating systems including intermittent sources. Int. J. Electr. Power Energy Syst. 1992, 14, 2–8. [Google Scholar] [CrossRef]
- Singh, C.; Bagchi, A. Reliability analysis of power systems incorporating renewable energy sources. In Proceedings of the 16th National Power Systems Conference, Hyderabad, India, 15–17 December 2010; pp. 43–49. [Google Scholar]
- Singh, R.; Bansal, R.C.; Tiwari, N. Optimization and comparison of autonomous renewable energy system based on ESCA technique. In Proceedings of the IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Dehradun, India, 18–19 December 2017; pp. 21–24. [Google Scholar]
- NASA Prediction of Worldwide Energy Resources. Available online: https://power.larc.nasa.gov (accessed on 20 July 2019).
- Tozzi, P.; Jo, J.H. A comparative analysis of renewable energy simulation tools: Performance simulation model vs. system optimization. Renew. Sustain. Energy Rev. 2017, 80, 390–398. [Google Scholar] [CrossRef]
- Yoro, K.O.; Daramola, M.O.; Sekoai, P.T.; Wilson, U.N.; Eterigho-Ikelegbe, O. Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems. Renew. Sustain. Energy Rev. 2021, 150, 1–15. [Google Scholar] [CrossRef]
- Ataei, A.; Nedaei, M.; Rashidi, R.; Yoo, C. Optimum design of an off-grid hybrid renewable energy system for an office building. J. Renew. Sustain. Energy 2015, 7, 1–25. [Google Scholar] [CrossRef]
- Alkarrami, F.; Iqbal, T.; Pope, K. Optimal sizing of a stand-Alone hybrid energy system for water pumping in Sirte, Libya. In Proceedings of the 2016 IEEE Electrical Power and Energy Conference (EPEC), Ottawa, ON, Canada, 12–14 October 2016; pp. 1–5. [Google Scholar]
Conventional Optimisation Techniques | New generation Optimisation Techniques | Hybrid Techniques |
---|---|---|
Iterative techniques (Linear Programming, Dynamic Programming, Multi-objective optimisation) | Artificial Intelligence (AI) techniques (Artificial Neural Networks (ANN), Fuzzy Logic, Genetic Algorithms (GA)) | Simulating Annealing and Particle Swarm Optimisation (SAPSO) |
Probabilistic techniques | Particle Swarm Optimisation (PSO) techniques | Artificial Neural Networks and Genetic Algorithms technique |
Deterministic techniques | Simulating Annealing (SA) techniques | Downhill Simplex technique |
Graphical construction techniques | Teaching–Learning-Based Optimisation (TLBO) techniques | Probabilistic and Deterministic technique |
Ant-Colony-based techniques | ||
Artificial Bee Colony (ABC) techniques |
Nominal Discount Rate | Expected Inflation Rate | Project Lifetime |
---|---|---|
7% | 2% | 25 years |
Components | Parameters | HOMER Pro Values | iHOGA Values |
---|---|---|---|
PV modules | Capital cost (EUR) per PV module | 200 | 200 |
O & M 1 cost (EUR/year) per PV module | 1.7 | 1.7 | |
Lifetime (years) | 25 | 25 | |
WTs | Capital cost (EUR) per WT | 4255 | 4255 |
Replacement cost (EUR) per WT | 3055 | 3055 | |
O & M 1 cost (EUR/year) per WT | 85 | 85 | |
Lifetime (years) | 15 | 15 | |
Batteries | Capital cost (EUR) per battery | 150 | 110 |
Replacement cost (EUR) per battery | 140 | 50 | |
O & M 1 cost (EUR/year) per battery | 1.4 | 1.1 | |
Inverter | Capital cost (EUR) | 2900 | 2900 |
Replacement cost (EUR) | 2600 | 2600 | |
O & M 1 cost (EUR/year) | 290 | 290 | |
Lifetime (years) | 10 | 10 |
Scenario S/N | RES Potentials Data |
---|---|
1 | IT,annual = 1489 kWh/m2 − vaverage = 5.48 m/s |
2 | IT,annual = 1489 kWh/m2 − vaverage = 6.85 m/s |
3 | IT,annual = 1489 kWh/m2 − vaverage = 9.16 m/s |
4 | IT,annual = 1686 kWh/m2 − vaverage = 5.48 m/s |
5 | IT,annual = 1686 kWh/m2 − vaverage = 6.85 m/s |
6 | IT,annual = 1686 kWh/m2 − vaverage = 9.16 m/s |
7 | IT,annual = 1732 kWh/m2 − vaverage = 5.48 m/s |
8 | IT,annual = 1732 kWh/m2 − vaverage = 6.85 m/s |
9 | IT,annual = 1732 kWh/m2 − vaverage = 9.16 m/s |
Scenario S/N | HOMER Pro_Total Nominal PV Power (kWp) | iHOGA_Total Nominal PV Power (kWp) | HOMER Pro_Total Nominal Wind Power (kW) | iHOGA_Total Nominal Wind Power (kW) | HOMER Pro_Battery Bank’s Capacity (kWh) | iHOGA_Battery Bank’s Capacity (kWh) |
---|---|---|---|---|---|---|
1 | 10.3 | 4.225 | 0 | 0.66 | 22.85 | 31.1 |
2 | 5.47 | 4.225 | 0.914 | 0.66 | 10.55 | 31.1 |
3 | 3.07 | 1.3 | 0.914 | 0.66 | 10.55 | 31.1 |
4 | 7.47 | 4.225 | 0 | 0.66 | 15.82 | 31.1 |
5 | 5.09 | 4.225 | 0.914 | 0.66 | 10.55 | 31.1 |
6 | 2.9 | 1.3 | 0.914 | 0.66 | 10.55 | 31.1 |
7 | 3.87 | 4.225 | 0.914 | 0.66 | 15.82 | 31.1 |
8 | 4.07 | 4.225 | 0.914 | 0.66 | 10.55 | 31.1 |
9 | 2.27 | 1.3 | 0.914 | 1.32 | 10.55 | 31.1 |
Scenario S/N | HOMER Pro_Excess Energy (kWh/year) | iHOGA_Excess Energy (kWh/year) | HOMER Pro_Energy Delivered by PV Array (kWh/year) | iHOGA_Energy Delivered by PV Array (kWh/year) | HOMER Pro_Energy Delivered by WT Array (kWh/year) | iHOGA_Energy Delivered by WT Array (kWh/year) |
---|---|---|---|---|---|---|
1 | 8908 | 1446 | 12,797 | 3917 | 0 | 1775 |
2 | 6163 | 2137 | 6811 | 3917 | 3079 | 2439 |
3 | 4269 | 324 | 3820 | 1205 | 4154 | 3198 |
4 | 6460 | 1844 | 10,331 | 4404 | 0 | 1747 |
5 | 6389 | 257 | 7034 | 4404 | 3079 | 2411 |
6 | 4448 | 563 | 4015 | 1355 | 4154 | 3156 |
7 | 3716 | 1800 | 5373 | 4403 | 2145 | 1747 |
8 | 4997 | 2539 | 5653 | 4402 | 3079 | 2410 |
9 | 3589 | 367 | 3156 | 1354 | 4154 | 3155 |
Scenario S/N | HOMER Pro_Unmet Load (kWh/year) | iHOGA_Unmet Load (kWh/year) | HOMER Pro_Days of Autonomy | iHOGA_Days of Autonomy |
---|---|---|---|---|
1 | 26.27 | 96.45 | 1.93 | 2.17 |
2 | 37.85 | 73.50 | 0.89 | 2.17 |
3 | 17.54 | 150.22 | 0.89 | 2.17 |
4 | 38.75 | 44.82 | 1.34 | 2.17 |
5 | 40.55 | 46.94 | 0.89 | 2.17 |
6 | 3.35 | 24.66 | 0.89 | 2.17 |
7 | 5.46 | 21.37 | 1.34 | 2.17 |
8 | 32.47 | 34.31 | 0.89 | 2.17 |
9 | 5.85 | 99.42 | 0.89 | 2.17 |
Scenario S/N | HOMER Pro_NPC (EUR) | iHOGA_NPC (EUR) | HOMER Pro_LCOE (EUR/kWh) | iHOGA_LCOE (EUR/kWh) |
---|---|---|---|---|
1 | 40,173 | 33,171 | 0.83 | 0.40 |
2 | 37,753 | 33,171 | 0.78 | 0.39 |
3 | 33,449 | 33,138 | 0.69 | 0.40 |
4 | 37,539 | 33,171 | 0.77 | 0.39 |
5 | 37,401 | 33,171 | 0.77 | 0.39 |
6 | 33,328 | 31,808 | 0.68 | 0.37 |
7 | 37,471 | 33,171 | 0.77 | 0.39 |
8 | 36,649 | 33,171 | 0.76 | 0.39 |
9 | 33,230 | 33,138 | 0.70 | 0.40 |
Scenario S/N | HOMER Pro_Total Nominal PV Power (kWp) | iHOGA_Total Nominal PV Power (kWp) | HOMER Pro_Total Nominal Wind Power (kW) | iHOGA_Total Nominal Wind Power (kW) | HOMER Pro_Battery Bank’s Capacity (kWh) | iHOGA_Battery Bank’s Capacity (kWh) |
---|---|---|---|---|---|---|
1 | 4.61 | 9.425 | 1.828 | 0.66 | 12.76 | 31.1 |
2 | 5.47 | 9.1 | 0.914 | 0.66 | 10.55 | 31.1 |
3 | 3.07 | 4.225 | 0.914 | 0.66 | 10.55 | 31.1 |
4 | 5.42 | 7.475 | 0.914 | 0.66 | 21.12 | 31.1 |
5 | 5.09 | 9.1 | 0.914 | 1.98 | 10.55 | 38.8 |
6 | 2.9 | 4.225 | 0.914 | 0.66 | 10.55 | 31.1 |
7 | 3.87 | 6.5 | 0.914 | 0.66 | 15.82 | 31.1 |
8 | 4.07 | 6.5 | 0.914 | 0.66 | 10.55 | 31.1 |
9 | 2.27 | 4.225 | 0.914 | 0.66 | 10.55 | 31.1 |
Scenario S/N | HOMER Pro_Excess Energy (kWh/year) | iHOGA_Excess Energy (kWh/year) | HOMER Pro_Energy Delivered by PV Array (kWh/year) | iHOGA_Energy Delivered by PV Array (kWh/year) | HOMER Pro_Energy Delivered by WT Array (kWh/year) | iHOGA_Energy Delivered by WT Array (kWh/year) |
---|---|---|---|---|---|---|
1 | 5577 | 6143 | 5738 | 8738 | 3604 | 1775 |
2 | 6163 | 6575 | 6811 | 8437 | 3079 | 2439 |
3 | 4269 | 2859 | 3820 | 3917 | 4154 | 3198 |
4 | 5832 | 5182 | 7490 | 7792 | 2145 | 1747 |
5 | 6389 | 12,522 | 7034 | 9486 | 3079 | 7235 |
6 | 4448 | 3602 | 4015 | 4404 | 4154 | 3156 |
7 | 3716 | 4143 | 5373 | 6775 | 2145 | 1747 |
8 | 4997 | 4873 | 5653 | 6773 | 3079 | 2410 |
9 | 3589 | 3302 | 3156 | 4403 | 4154 | 3155 |
Scenario S/N | HOMER Pro_NPC (EUR) | iHOGA_NPC (EUR) | HOMER Pro_LCOE (EUR/kWh) | iHOGA_LCOE (EUR/kWh) |
---|---|---|---|---|
1 | 43,881 | 39,378 | 0.83 | 0.50 |
2 | 37,753 | 38,980 | 0.78 | 0.45 |
3 | 33,449 | 33,171 | 0.69 | 0.40 |
4 | 37,539 | 37,052 | 0.77 | 0.43 |
5 | 37,401 | 55,370 | 0.77 | 0.64 |
6 | 33,328 | 31,842 | 0.68 | 0.37 |
7 | 37,471 | 35,883 | 0.77 | 0.42 |
8 | 36,649 | 35,883 | 0.75 | 0.42 |
9 | 33,230 | 33,171 | 0.70 | 0.40 |
Scenario S/N | HOMER Pro_Battery Bank’s Capacity (kWh) | iHOGA_Battery Bank’s Capacity (kWh) | ESA_Battery Bank’s Capacity (kWh) | HOMER Pro_Energy Delivered by WT Array (kWh/year) | iHOGA_Energy Delivered by WT Array (kWh/year) | ESA_Energy Delivered by WT Array (kWh/year) |
---|---|---|---|---|---|---|
1 | 22.85 | 31.10 | 24 | 0 | 1775 | 9989 |
2 | 10.55 | 31.10 | 30 | 3079 | 2439 | 9989 |
3 | 10.55 | 31.10 | 20 | 4154 | 3198 | 9989 |
4 | 15.82 | 31.10 | 32 | 0 | 1747 | 10,171 |
5 | 10.55 | 31.10 | 32 | 3079 | 2411 | 10,171 |
6 | 10.55 | 31.10 | 16 | 4154 | 3156 | 9989 |
7 | 15.82 | 31.10 | 16 | 2145 | 1747 | 9989 |
8 | 10.55 | 31.10 | 28 | 3079 | 2410 | 20,341 |
9 | 10.55 | 31.10 | 18 | 4154 | 3155 | 9989 |
Scenario S/N | HOMER Pro_Unmet Load (kWh/year) | iHOGA_Unmet Load (kWh/year) | ESA_Unmet Load (kWh/year) | HOMER Pro_Excess Energy (kWh/year) | iHOGA_Excess Energy (kWh/year) | ESA_Excess Energy (kWh/year) |
---|---|---|---|---|---|---|
1 | 26.27 | 96.45 | 0 | 8908 | 1446 | 3485 |
2 | 37.85 | 73.50 | 0 | 6163 | 2137 | 3485 |
3 | 17.54 | 150.22 | 13.80 | 4269 | 324 | 3485 |
4 | 38.75 | 44.82 | 0 | 6460 | 1844 | 3694 |
5 | 40.55 | 46.94 | 0 | 6389 | 2570 | 3694 |
6 | 3.35 | 18.43 | 100.08 | 4448 | 563 | 3179 |
7 | 5.46 | 21.37 | 100.08 | 3716 | 1800 | 3179 |
8 | 32.47 | 34.31 | 131.14 | 4997 | 2539 | 9072 |
9 | 5.85 | 99.42 | 134.59 | 3589 | 367 | 3573 |
Case Study | Similarities with Current Work | Discrepancies with Current Work | Reference No |
---|---|---|---|
Simulation of an off-grid HRES (consisting of PV panels, WTs, and battery banks) with HOMER Optimisation criteria:
|
|
| [109] |
Optimal sizing of a HRES (comprised of PV panels, WTs, and battery banks) using the simulation results of HOMER Pro, HOMER Beta, and iHOGA Optimisation criteria:
|
|
| [110] |
Optimal sizing of a microgrid (comprised of PV panels, WTs, and battery banks) using the simulation results of HOMER and iHOGA Optimisation criteria:
|
|
| [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavadias, K.A.; Triantafyllou, P. Hybrid Renewable Energy Systems’ Optimisation. A Review and Extended Comparison of the Most-Used Software Tools. Energies 2021, 14, 8268. https://doi.org/10.3390/en14248268
Kavadias KA, Triantafyllou P. Hybrid Renewable Energy Systems’ Optimisation. A Review and Extended Comparison of the Most-Used Software Tools. Energies. 2021; 14(24):8268. https://doi.org/10.3390/en14248268
Chicago/Turabian StyleKavadias, Kosmas A., and Panagiotis Triantafyllou. 2021. "Hybrid Renewable Energy Systems’ Optimisation. A Review and Extended Comparison of the Most-Used Software Tools" Energies 14, no. 24: 8268. https://doi.org/10.3390/en14248268
APA StyleKavadias, K. A., & Triantafyllou, P. (2021). Hybrid Renewable Energy Systems’ Optimisation. A Review and Extended Comparison of the Most-Used Software Tools. Energies, 14(24), 8268. https://doi.org/10.3390/en14248268