Effect of Burner Wall Material on Microjet Hydrogen Diffusion Flames near Extinction: A Numerical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Domain and Grid
2.2. Governing Equations
2.3. Boundary Conditions
- i.
- Velocity inlet
- ii.
- Pressure inlet
- iii.
- Pressure outlet
- iv.
- Axisymmetric
- v.
- Burner wall
2.4. Solution Methodology
2.5. Grid Independence
3. Results
3.1. Global Flame Characteristics
3.1.1. Effect of Thermal Radiation on Maximum Flame Temperature
3.1.2. Effect of Burner Wall Material on Maximum Flame Temperature
3.1.3. Comparison of Theoretical and Numerical Flame Heights
3.1.4. Effect of Burner Wall Material on Flame Height
3.2. Effect of Burner Wall Material and Thermal Radiation on Flame Structure
3.3. Effect of Burner Wall Thickness on Flame Characteristics and Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandez-Pello, A.C. Micropower generation using combustion: Issues and approaches. Proc. Combust. Inst. 2002, 29, 883–899. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.; Maruta, K. Microscale combustion: Technology development and fundamental research. Prog. Energy Combust. Sci. 2011, 37, 669–715. [Google Scholar] [CrossRef]
- Chou, S.K.; Yang, W.M.; Chua, K.J.; Li, J.; Zhang, K.L. Development of micro power generators—A review. Appl. Energy 2011, 88, 1–16. [Google Scholar] [CrossRef]
- Walther, D.C.; Ahn, J. Advances and challenges in the development of power-generation systems at small scales. Prog. Energy Combust. Sci. 2011, 37, 583–610. [Google Scholar] [CrossRef]
- Reddy, K.S.; Pavan, K.M.S.; Yadav, S. Numerical study of micro combustor along with recirculation cap over stability of flame. In Proceedings of the 2021 IEEE 6th International Conference for Convergence in Technology (I2CT), Mumbai, India, 2–4 April 2021; pp. 1–3. [Google Scholar]
- Chakravarthy, C.G.G.; Krithik, M.A.; Siddhartha, G.; Dineshkumar, L. Numerical Study on Stabilization of Flame Inside Micro-Combustor; AIP Publishing LLC: Maharashtra, India, 2019; p. 020058. [Google Scholar]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Ban, H.; Venkatesh, S.; Saito, K. Convection-diffusion controlled laminar micro flames. Previews Heat Mass Transf. 1995, 2, 126. [Google Scholar] [CrossRef]
- Matta, L.M.; Neumeier, Y.; Lemon, B.; Zinn, B.T. Characteristics of microscale diffusion flames. Proc. Combust. Inst. 2002, 29, 933–939. [Google Scholar] [CrossRef]
- Chen, C.P.; Chao, Y.C.; Cheng, T.S.; Chen, G.B.; Wu, C.Y. Structure and stabilization mechanism of a microjet methane diffusion flame near extinction. Proc. Combust. Inst. 2007, 31, 3301–3308. [Google Scholar] [CrossRef]
- Cheng, T.S.; Chao, Y.C.; Chen, C.P.; Wu, C.Y. Further analysis of chemical kinetic structure of a standoff microjet methane diffusion flame near extinction. Combust. Flame 2008, 152, 461–467. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yamashita, H.; Saito, K. A numerical study on extinction behaviour of laminar micro-diffusion flames. Combust. Theory Model. 2006, 10, 927–938. [Google Scholar] [CrossRef]
- Kuwana, K.; Tagami, N.; Mizuno, S.; Ida, T. Extinction of laminar jet diffusion microflames. Proc. Combust. Inst. 2009, 32, 3115–3121. [Google Scholar] [CrossRef]
- Cheng, T.S.; Chao, Y.C.; Wu, C.Y.; Li, Y.H.; Nakamura, Y.; Lee, K.Y.; Yuan, T.; Leu, T.S. Experimental and numerical investigation of microscale hydrogen diffusion flames. Proc. Combust. Inst. 2005, 30, 2489–2497. [Google Scholar] [CrossRef]
- Cheng, T.-S.; Wu, C.Y.; Chen, C.P.; Li, Y.H.; Chao, Y.C.; Yuan, T.; Leu, T.S. Detailed measurement and assessment of laminar hydrogen jet diffusion flames. Combust. Flame 2006, 146, 268–282. [Google Scholar] [CrossRef]
- Darabiha, N. Transient behaviour of laminar counterflow hydrogen-air diffusion flames with complex chemistry. Combust. Sci. Technol. 1992, 86, 163–181. [Google Scholar] [CrossRef]
- Cheng, T.S.; Chen, C.P.; Chen, C.S.; Li, Y.H.; Wu, C.Y.; Chao, Y.C. Characteristics of microjet methane diffusion flames. Combust. Theory Model. 2006, 10, 861–881. [Google Scholar] [CrossRef]
- Hossain, A.; Nakamura, Y. Thermal and chemical structures formed in the micro burner of miniaturized hydrogen-air jet flames. Proc. Combust. Inst. 2015, 35, 3413–3420. [Google Scholar] [CrossRef]
- Fujiwara, K.; Nakamura, Y. Experimental study on the unique stability mechanism via miniaturization of jet diffusion flames (microflame) by utilizing preheated air system. Combust. Flame 2013, 160, 1373–1380. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Hossain, A.; Nakamura, Y. Flame base structures of micro-jet hydrogen/methane diffusion flames. Proc. Combust. Inst. 2017, 36, 4209–4216. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Yang, H.; Jiang, L.; Wang, X.; Zhao, D. Combustion characteristics of non-premixed methane micro-jet flame in coflow air and thermal interaction between flame and micro tube. Appl. Therm. Eng. 2017, 112, 296–303. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Yang, H.; Jiang, L.; Wang, X.; Zhao, D. Study on the combustion characteristics of non-premixed hydrogen micro-jet flame and the thermal interaction with solid micro tube. Int. J. Hydrog. Energy 2017, 42, 3853–3862. [Google Scholar] [CrossRef]
- Norton, D.G.; Vlachos, D.G. A CFD study of propane/air microflame stability. Combust. Flame 2004, 138, 97–107. [Google Scholar] [CrossRef]
- Gauthier, G.P.; Watson, G.M.G.; Bergthorson, J.M. Burning rates and temperatures of flames in excess-enthalpy burners: A numerical study of flame propagation in small heat-recirculating tubes. Combust. Flame 2014, 161, 2348–2360. [Google Scholar] [CrossRef]
- Gao, J.; Hossain, A.; Matsuoka, T.; Nakamura, Y. A numerical study on heat-recirculation assisted combustion for small scale jet diffusion flames at near-extinction condition. Combust. Flame 2017, 178, 182–194. [Google Scholar] [CrossRef]
- Maruta, K. Micro and mesoscale combustion. Proc. Combust. Inst. 2011, 33, 125–150. [Google Scholar] [CrossRef]
- Nakamura, Y.; Gao, J.; Matsuoka, T. Progress in small-scale combustion. J. Therm. Sci. Technol. 2017, 12, JTST0001. [Google Scholar] [CrossRef] [Green Version]
- Muraleedharan, A.; Jithin, E.V.; Aravind, B.; Kumar, S.; Velamati, R.K. Combustion characteristics of syngas laminar microjet diffusion flames. J. Taiwan Inst. Chem. Eng. 2020, 115, 47–59. [Google Scholar] [CrossRef]
- Resende, P.R.; Ayoobi, M.; Afonso, A.M. Numerical investigations of micro-scale diffusion combustion: A brief review. Appl. Sci. 2019, 9, 3356. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhao, M.; Chen, Y.K.; Fan, A.W.; Li, D. A numerical investigation in buoyancy effects on micro jet diffusion flame. J. Cent. South Univ. 2020, 27, 867–875. [Google Scholar] [CrossRef]
- Zhao, M.; Fan, A. Buoyancy effects on hydrogen diffusion flames confined in a small tube. Int. J. Hydrog. Energy 2020, 45, 19926–19935. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, L.; Fan, A. Comparison of combustion efficiency of micro hydrogen jet flames confined in cylindrical tubes of different diameters. Chem. Eng. Process. Process Intensif. 2020, 153, 108000. [Google Scholar] [CrossRef]
- Hong, J.; Zhao, M.; Liu, L.; Shi, Q.; Xiao, X.; Fan, A. Improvement of the Combustion Completeness of Hydrogen Jet Flames within a Mesoscale Tube under Zero Gravity. Energies 2021, 14, 4552. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Z.; Kazakov, A.; Dryer, F.L. An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 2004, 36, 566–575. [Google Scholar] [CrossRef]
- Raithby, G.D.; Chui, E.H. A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. ASME Trans. J. Heat Transf. 1990, 112, 415–423. [Google Scholar] [CrossRef]
- Fluent, A. 14.5. 0 Documentation, ANSYS® Academic Research, Release 14.5.0; ANSYS. Inc.: Canonsburg, PA, USA, 2011. [Google Scholar]
- Nair, A.; Kishore, V.R.; Kumar, S. Dynamics of Premixed Hydrogen-Air Flames in Microchannels with a Wall Temperature Gradient. Combust. Sci. Technol. 2015, 187, 1620–1637. [Google Scholar] [CrossRef]
- Nair, A.; Velamati, R.K.; Kumar, S. Effect of CO2/N2 dilution on laminar burning velocity of liquid petroleum gas-air mixtures at elevated temperatures. Energy 2016, 100, 145–153. [Google Scholar] [CrossRef]
- Kang, X.; Gollan, R.J.; Jacobs, P.A.; Veeraragavan, A. Suppression of instabilities in a premixed methane–air flame in a narrow channel via hydrogen/carbon monoxide addition. Combust. Flame 2016, 173, 266–275. [Google Scholar] [CrossRef]
- Singh, A.P.; RatnaKishore, V.; Minaev, S.; Kumar, S. Numerical investigations of unsteady flame propagation in stepped microtubes. RSC Adv. 2015, 5, 100879–100890. [Google Scholar] [CrossRef]
- Norton, D.G.; Vlachos, D.G. Combustion characteristics and flame stability at the microscale: A CFD study of premixed methane/air mixtures. Chem. Eng. Sci. 2003, 58, 4871–4882. [Google Scholar] [CrossRef]
- Roper, F.G. The prediction of laminar jet diffusion flame sizes: Part I. Theoretical model. Combust. Flame 1977, 29, 219–226. [Google Scholar] [CrossRef]
- Roper, F.G.; Smith, C.; Cunningham, A.C. The prediction of laminar jet diffusion flame sizes: Part II. Experimental verification. Combust. Flame 1977, 29, 227–234. [Google Scholar] [CrossRef]
- Turns, S.R. An Introduction to Combustion; McGraw-Hill New York: New York, NY, USA, 1996; Volume 287. [Google Scholar]
Number | Reaction | Maximum Reaction Rate (kg mol/m3s) | ||
---|---|---|---|---|
Burner Material | Quartz | Steel | Aluminum | |
R1 | H + O2 → O + OH | 3.029 | 3.217 | 3.152 |
R2 | O + H2 → H + OH | 2.401 | 2.596 | 2.553 |
R3 | H2 + OH → H2O + H | 7.089 | 7.464 | 7.542 |
R9 | H + O2 (+M) → HO2 (+M) | 3.719 | 3.084 | 2.341 |
R11 | HO2 + H → OH + OH | 2.401 | 1.364 | 1.364 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muraleedharan, A.; Edacheri Veetil, J.; Mohammad, A.; Kumar, S.; Velamati, R.K. Effect of Burner Wall Material on Microjet Hydrogen Diffusion Flames near Extinction: A Numerical Study. Energies 2021, 14, 8266. https://doi.org/10.3390/en14248266
Muraleedharan A, Edacheri Veetil J, Mohammad A, Kumar S, Velamati RK. Effect of Burner Wall Material on Microjet Hydrogen Diffusion Flames near Extinction: A Numerical Study. Energies. 2021; 14(24):8266. https://doi.org/10.3390/en14248266
Chicago/Turabian StyleMuraleedharan, Aravind, Jithin Edacheri Veetil, Akram Mohammad, Sudarshan Kumar, and Ratna Kishore Velamati. 2021. "Effect of Burner Wall Material on Microjet Hydrogen Diffusion Flames near Extinction: A Numerical Study" Energies 14, no. 24: 8266. https://doi.org/10.3390/en14248266
APA StyleMuraleedharan, A., Edacheri Veetil, J., Mohammad, A., Kumar, S., & Velamati, R. K. (2021). Effect of Burner Wall Material on Microjet Hydrogen Diffusion Flames near Extinction: A Numerical Study. Energies, 14(24), 8266. https://doi.org/10.3390/en14248266