Fabrication of High-Performance Flexible Supercapacitor Electrodes with Poly(3,4-ethylenedioxythiophene) (PEDOT) Grown on Carbon-Deposited Polyurethane Sponge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Poly(3,4-ethylenedioxythiophene) (PEDOT)/Graphite and PEDOT/Graphene Deposited Polyurethane (PU) Sponge
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuliani, J.E.; Tong, S.; Jia, C.Q.; Kirk, D.W. Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors. J. Power Sources 2018, 395, 271–279. [Google Scholar] [CrossRef]
- Chang, L.; Stacchiola, D.J.; Hu, Y.H. An ideal electrode material, 3D surface-microporous graphene for supercapacitors with ultrahigh areal capacitance. ACS Appl. Mater. Interfaces 2017, 9, 24655–24661. [Google Scholar] [CrossRef] [PubMed]
- Okhay, O.; Tkach, A. Graphene/Reduced Graphene Oxide-Carbon Nanotubes Composite Electrodes: From Capacitive to Battery-Type Behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef] [PubMed]
- Costentin, C.; Porter, T.R.; Savéant, J.M. How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS Appl. Mater. Interfaces 2017, 9, 8649–8658. [Google Scholar] [CrossRef]
- Yang, P.; Mai, W. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274–290. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef] [Green Version]
- Iro, Z.S.; Subramani, C.; Dash, S.S. A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628–10643. [Google Scholar] [CrossRef]
- Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Cem. A 2017, 5, 12653–12672. [Google Scholar] [CrossRef]
- Gao, Y. Graphene and polymer composites for supercapacitor applications: A review. Nanoscale Res. Lett. 2017, 12, 387. [Google Scholar] [CrossRef]
- Eftekhari, A.; Li, L.; Yang, Y. Polyaniline supercapacitors. J. Power Sources 2017, 347, 86–107. [Google Scholar] [CrossRef]
- Ma, H.; Kong, D.; Xu, Y.; Xie, X.; Tao, Y.; Xiao, Z.; Lv, W.; Jang, H.D.; Huang, J.; Yang, Q.H. Disassembly–reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 2017, 13, 1701026. [Google Scholar] [CrossRef]
- Zhao, P.; Yao, M.; Ren, H.; Wang, N.; Komarneni, S. Nanocomposites of hierarchical ultrathin MnO2 nanosheets/hollow carbon nanofibers for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 2019, 463, 931–938. [Google Scholar] [CrossRef]
- Singh, A.; Ojha, S.K.; Ojha, A.K. Facile synthesis of porous nanostructures of NiCo2O4 grown on rGO sheet for high performance supercapacitors. Synth. Met. 2020, 259, 116215. [Google Scholar] [CrossRef]
- Korkmaz, S.; Tezel, F.M.; Kariper, I.A. Synthesis and Characterization of GO/V2O5 Thin Film Supercapacitor. Synth. Met. 2018, 242, 37–48. [Google Scholar] [CrossRef]
- Tong, L.; Skorenko, K.H.; Faucett, A.C.; Boyer, S.M.; Liu, J.; Mativetsky, J.M.; Bernier, W.E.; Jones, W.E. Vapor-phase polymerization of poly (3, 4-ethylenedioxythiophene)(PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors. J. Power Sources 2015, 297, 195–201. [Google Scholar] [CrossRef]
- Yang, L.; Shi, M.; Jiang, J.; Liu, Y.; Yan, C.; Liu, H.; Guo, Z. Heterogeneous interface induced formation of balsam pear-like PPy for high performance supercapacitors. Mater. Lett. 2019, 244, 27–30. [Google Scholar] [CrossRef]
- Li, B.; Lopez-Beltran, H.; Siu, C.; Skorenko, K.H.; Zhou, H.; Bernier, W.E.; Whittingham, M.S.; Jones, W.E. Vaper Phase Polymerized PEDOT/Cellulose Paper Composite for Flexible Solid-State Supercapacitor. ACS Appl. Energy Mater. 2020, 3, 1559–1568. [Google Scholar] [CrossRef]
- Yuan, D.; Li, B.; Cheng, J.; Guan, Q.; Wang, Z.; Ni, W.; Li, C.; Liu, H.; Wang, B. Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT: PSS fibers from aqueous coagulation. J. Mater. Chem. A 2016, 4, 11616–11624. [Google Scholar] [CrossRef]
- Ramirez, F.C.R.; Ramakrishnan, P.; Flores-Payag, Z.P.; Shanmugam, S.; Binag, C.A. Polyaniline and carbon nanotube coated pineapple-polyester blended fabric composites as electrodes for supercapacitors. Synth. Met. 2017, 230, 65–72. [Google Scholar] [CrossRef]
- Liu, R.; Cho, S.I.; Lee, S.B. Poly (3, 4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Nanotechnology 2008, 19, 215710. [Google Scholar] [CrossRef] [PubMed]
- Moussa, M.; El-Kady, M.F.; Wang, H.; Michimore, A.; Zhou, Q.; Xu, J.; Majeswki, P.; Ma, J. High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge. Nanotechnology 2015, 26, 075702. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.; De, A. Electrochemical performances of poly (3, 4-ethylenedioxythiophene)–NiFe2O4 nanocomposite as electrode for supercapacitor. Electrochim. Acta 2010, 55, 4677–4684. [Google Scholar] [CrossRef]
- Han, J.; Dou, Y.; Zhao, J.; Wei, M.; Evans, D.G.; Duan, X. Flexible CoAl LDH@ PEDOT Core/Shell Nanoplatelet Array for High-Performance Energy Storage. Small 2013, 9, 98–106. [Google Scholar] [CrossRef]
- Singu, B.S.; Yoon, K.R. Highly exfoliated GO-PPy-Ag ternary nanocomposite for electrochemical supercapacitor. Electrochim. Acta 2018, 268, 304–315. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, Q.; Chen, W.; Yi, X.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Li, X.; Yu, H. Highly flexible and conductive cellulose-mediated PEDOT: PSS/MWCNT composite films for supercapacitor electrodes. ACS Appl. Mater. Interfaces 2017, 9, 13213–13222. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, Y.; Wang, L.; Sheng, P.; Peng, H. Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor. Carbon 2017, 125, 595–604. [Google Scholar] [CrossRef]
- Chen, W.; Rakhi, R.B.; Alshareef, H.N. High energy density supercapacitors using macroporous kitchen sponges. J. Mater. Chem. 2012, 22, 14394–14402. [Google Scholar] [CrossRef]
- Nardecchia, S.; Carriazo, D.; Ferrer, M.L.; Gutiérrez, M.C.; del Monte, F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chem. Soc. Rev. 2013, 42, 794–830. [Google Scholar] [CrossRef]
- Chaudhari, N.K.; Jin, H.; Kim, B.; Lee, K. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 2017, 9, 12231–12247. [Google Scholar] [CrossRef]
- Ren, J.; Ren, R.P.; Lv, Y.K. Stretchable all-solid-state supercapacitors based on highly conductive polypyrrole-coated graphene foam. Chem. Eng. J. 2018, 349, 111–118. [Google Scholar] [CrossRef]
- Liang, X.; Nie, K.; Ding, X.; Dang, L.; Sun, J.; Shi, F.; Xu, H.; Jiang, R.; He, X.; Liu, Z.; et al. Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel–cobalt sulfide nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 10087–10095. [Google Scholar] [CrossRef]
- Moon, I.K.; Yoon, S.; Oh, J. Three-Dimensional Hierarchically Mesoporous ZnCo2O4 Nanowires Grown on Graphene/Sponge Foam for High-Performance, Flexible, All-Solid-State Supercapacitors. Chem. A Eur. J. 2017, 23, 597–604. [Google Scholar] [CrossRef]
- Lee, H.; Jung, G.; Keum, K.; Kim, J.W.; Jeong, H.; Lee, Y.H.; Kim, D.S.; Ha, J.S. A Textile-Based Temperature-Tolerant Stretchable Supercapacitor for Wearable Electronics. Adv. Funct. Mater. 2021, 2021, 2106491. [Google Scholar] [CrossRef]
- Gholami Laelabadi, K.; Moradian, R.; Manouchehri, I. One-Step Fabrication of Flexible, Cost/Time Effective, and High Energy Storage Reduced Graphene Oxide@ PANI Supercapacitor. ACS Appl. Energy Mater. 2020, 3, 5301–5312. [Google Scholar] [CrossRef]
- Guo, Q.; Li, J.; Zhang, B.; Nie, G.; Wang, D. High-performance asymmetric electrochromic-supercapacitor device based on poly (indole-6-carboxylicacid)/TiO2 nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 6491–6501. [Google Scholar] [CrossRef]
- Shahidi, S.; Kalaoglu, F. In situ deposition of nickel nano particles on polyester fabric and its application as a flexible electrode in supercapacitor. J. Ind. Text. 2020, 2020, 1528083720944252. [Google Scholar]
- Li, S.; Tao, Y.; Maryum, P.; Wang, Q.; Zhu, J.; Min, F.; Cheng, H.; Zhao, S.; Wang, C. Bifunctional polyaniline electroconductive hydrogels with applications in supercapacitor and wearable strain sensors. J. Biomater. Sci. Polym. Ed. 2020, 31, 938–953. [Google Scholar] [CrossRef]
- Pullanchiyodan, A.; Manjakkal, L.; Dahiya, R. Metal Coated Fabric Based Asymmetric Supercapacitor for Wearable Applications. IEEE Sens. J. 2021, 2021, 1. [Google Scholar] [CrossRef]
- Yu, N.; Xiong, R.; Wang, Y.; Zhou, C.; Li, Y.; Pang, C.; Li, Z.; Zou, L.; Guo, K. Facile fabrication of low-cost and scalable graphite tape as novel current collectors for flexible supercapacitors. J. Alloys Compd. 2021, 861, 158476. [Google Scholar] [CrossRef]
- Chen, Y.; Bai, J.; Yang, D.; Sun, P.; Li, X. Excellent performance of flexible supercapacitor based on the ternary composites of reduced graphene oxide/molybdenum disulfide/poly (3, 4-ethylenedioxythiophene). Electrochim. Acta 2020, 330, 135205. [Google Scholar] [CrossRef]
- He, Q.; Ye, J.; Peng, Z.; Guo, Y.; Tan, L.; Chen, Y. Electrodeposition of poly (3, 4-ethylenedioxythiophene) coated manganese dioxide nanospheres for flexible asymmetric planar supercapacitor with superior energy density. J. Power Sources 2021, 506, 230176. [Google Scholar] [CrossRef]
- Alcaraz-Espinoza, J.J.; de Melo, C.P.; de Oliveira, H.P. Fabrication of highly flexible hierarchical polypyrrole/carbon nanotube on eggshell membranes for supercapacitors. ACS Omega 2017, 2, 2866–2877. [Google Scholar] [CrossRef] [PubMed]
- Arena, A.; Branca, C.; Ciofi, C.; D’Angelo, G.; Romano, V.; Scandurra, G. Polypyrrole and Graphene Nanoplatelets Inks as Electrodes for Flexible Solid-State Supercapacitor. Nanomaterials 2021, 11, 2589. [Google Scholar] [CrossRef]
- Cho, B.; Park, K.S.; Baek, J.; Oh, H.S.; Koo Lee, Y.E.; Sung, M.M. Single-crystal poly (3, 4-ethylenedioxythiophene) nanowires with ultrahigh conductivity. Nano Lett. 2014, 14, 3321–3327. [Google Scholar] [CrossRef]
- Li, B.; Skorenko, K.H.; Qiu, H.; Mativetsky, J.M.; Dwyer, D.B.; Bernier, W.E.; Jones, W.E. Effects of interfacial modification for vapor phase polymerized PEDOT on glass substrate. Synth. Met. 2020, 260, 116293. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, F.; Jiang, Q.; Jia, Y.; Liu, C.; Liu, G.; Xu, J.; Duan, X.; Zhu, C.; Nie, G.; et al. Conductive and flexible PEDOT-decorated paper as high performance electrode fabricated by vapor phase polymerization for supercapacitor. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125173. [Google Scholar] [CrossRef]
- Tong, L.; Liu, J.; Boyer, S.M.; Sonnenberg, L.A.; Fox, M.T.; Ji, D.; Feng, J.; Bernier, W.E.; Jones, W.E. Vapor-phase polymerized poly (3,4-ethylenedioxythiophene)(PEDOT)/TiO2 composite fibers as electrode materials for supercapacitors. Electrochim. Acta 2017, 224, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Winther-Jensen, B.; Chen, J.; West, K.; Wallace, G. Vapor phase polymerization of pyrrole and thiophene using iron (III) sulfonates as oxidizing agents. Macromolecules 2004, 37, 5930–5935. [Google Scholar] [CrossRef]
- Weakley, A.T.; Warwick, P.C.T.; Bitterwolf, T.E.; Aston, D.E. Multivariate Analysis of Micro-Raman Spectra of Thermoplastic Polyurethane Blends Using Principal Component Analysis and Principal Component Regression. Appl. Spectrosc. 2012, 66, 1269–1278. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Obeidat, A.M.; Rastogi, A.C. Electrochemical energy storage performance of asymmetric PEDOT and graphene electrode-based supercapacitors using ionic liquid gel electrolyte. J. Appl. Electrochem. 2018, 48, 747–764. [Google Scholar] [CrossRef]
- Bellunato, A.; Tash, H.A.; Cesa, Y.; Schneider, G.F. Chemistry at the Edge of Graphene. Chem. Phys. Chem. 2016, 17, 785–801. [Google Scholar] [CrossRef]
- Tahir, M.; He, L.; Haider, W.A.; Yang, W.; Hong, X.; Guo, Y.; Pan, X.; Tang, H.; Li, Y.; Mai, L. Co-electrodeposited porous PEDOT–CNT microelectrodes for integrated micro-supercapacitors with high energy density, high rate capability, and long cycling life. Nanoscale 2019, 11, 7761–7770. [Google Scholar] [CrossRef]
- Mohd Abdah, M.A.A.; Zubair, N.A.; Azman, N.H.N.; Sulaiman, Y. Fabrication of PEDOT coated PVA-GO nanofiber for supercapacitor. Mater. Chem. Phys. 2017, 192, 161–169. [Google Scholar] [CrossRef]
- Li, L.; Zhang, N.; Zhang, M.; Zhang, X.; Zhang, Z. Flexible Ti3C2Tx/PEDOT: PSS films with outstanding volumetric capacitance for asymmetric supercapacitors. Dalton Trans. 2019, 48, 1747–1756. [Google Scholar] [CrossRef]
Substrate | No VPP | 50 VPP PEDOT | 110 VPP PEDOT |
---|---|---|---|
GtPU sponge | 0.7 mF cm−2 | 81.2 mF cm−2 | 494.7 mF cm−2 |
GnPU sponge | 4.3 mF cm−2 | 106.6 mF cm−2 | 798.2 mF cm−2 |
Electrode Material | Electrolyte | Current Density | Voltage Window | Highest Specific Capacitance | Capacitance Retention | Ref. |
---|---|---|---|---|---|---|
110 PEDOT/GnPU | H2SO4 (aq) | 0.1 mA cm−2 | 0.5 V | 798.2 mF cm−2 | 101.0% after 10,000 cycles | this work |
MWCNT/RGO + EG-PEDOT:PSS | PC-PMMA-[BMIM][TFSI] | 0.025 mA cm−2 | 1.0 V | 30.4 mF cm−2 | 99.7% after 10,000 cycles | [34] |
LRGO@PANI-MSC | H2SO4 /PVA | 0.035 mA cm−2 | 2.0 V | 72 mF cm−2 | 93.5% after 1000 cycles | [35] |
Ni/Cu/Ag@polyamide | KCl/PVA | 0.75 mA cm−2 | 0.8 V | 41 mF cm−2 | ~30% after 5000 cycles | [39] |
MnO2@graphite tape | LiCl/PVA | 0.5 mA cm−2 | 0.8 V | 577.5 mF cm−2 | ~78% after 5000 cycles | [40] |
RGO/MoS2/PEDOT | H2SO4 (aq) | 0.5 mA cm−2 | 1.0 V | 241.81 mF cm−2 | 93.7% after 5000 cycles | [41] |
MnO2@PEDOT | Na2SO4/CMC | 0.1 mA cm−2 | 1.0 V | 116.9 mF cm−2 | 87.2% after 10,000 cycles | [42] |
PPy-f-MWCNT-ESM | H3PO4/PVA | 0.5 mA cm−2 | 0.5 V | 370 mF cm−2 | 60% after 4000 cycles | [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, L.; Sonnenberg, L.A.; Wu, W.; Boyer, S.M.; Fox, M.T.; Li, B.; Bernier, W.E.; Jones, W.E., Jr. Fabrication of High-Performance Flexible Supercapacitor Electrodes with Poly(3,4-ethylenedioxythiophene) (PEDOT) Grown on Carbon-Deposited Polyurethane Sponge. Energies 2021, 14, 7393. https://doi.org/10.3390/en14217393
Tong L, Sonnenberg LA, Wu W, Boyer SM, Fox MT, Li B, Bernier WE, Jones WE Jr. Fabrication of High-Performance Flexible Supercapacitor Electrodes with Poly(3,4-ethylenedioxythiophene) (PEDOT) Grown on Carbon-Deposited Polyurethane Sponge. Energies. 2021; 14(21):7393. https://doi.org/10.3390/en14217393
Chicago/Turabian StyleTong, Linyue, Laura A. Sonnenberg, Wei Wu, Steven M. Boyer, Maggie T. Fox, Boxiao Li, William E. Bernier, and Wayne E. Jones, Jr. 2021. "Fabrication of High-Performance Flexible Supercapacitor Electrodes with Poly(3,4-ethylenedioxythiophene) (PEDOT) Grown on Carbon-Deposited Polyurethane Sponge" Energies 14, no. 21: 7393. https://doi.org/10.3390/en14217393
APA StyleTong, L., Sonnenberg, L. A., Wu, W., Boyer, S. M., Fox, M. T., Li, B., Bernier, W. E., & Jones, W. E., Jr. (2021). Fabrication of High-Performance Flexible Supercapacitor Electrodes with Poly(3,4-ethylenedioxythiophene) (PEDOT) Grown on Carbon-Deposited Polyurethane Sponge. Energies, 14(21), 7393. https://doi.org/10.3390/en14217393