Lab-Scale Carbonation of Wood Ash for CO2-Sequestration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Wood Ash and Carbonation Methods
2.2. pH-Value Determination and Elemental Analysis
2.3. Carbonation Efficiency
3. Results
3.1. Results for Batch and Flow Carbonation Experiments
3.2. Content of Minor and Trace Elements in the Process Products
3.3. pH-Value
4. Discussion of Results
4.1. Effects of Solid to Liquid Ratio on Carbonation
4.2. Carbonation Efficiency of Wood Ash and Usage of Carbonated Ash and Process Water
4.3. Impacts on Practice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pachauri, R.K.; Mayer, L. Climate Change 2014 Synthesis Report; IPCC: Geneva, Switzerland, 2015.
- National Academies Press. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda; National Academies Press: Washington, DC, USA, 2019; ISBN 9780309484534. [Google Scholar]
- European Commission. The European Green Deal; European Commission: Brussels, Belgium, 2019.
- Fajardy, M.; Mac Dowell, N. Can BECCS deliver sustainable and resource efficient negative emissions? Energy Environ. Sci. 2017, 10, 1389–1426. [Google Scholar] [CrossRef] [Green Version]
- Herzog, H.J. Carbon Capture; MIT Press: Cambridge, UK, 2018; ISBN 9780262348867. [Google Scholar]
- Geden, O.; Schenuit, F.; Stiftung Wissenschaft und Politik. Unkonventioneller Klimaschutz; Stiftung Wissenschaft und Politik: Berlin, Germany, 2020. [Google Scholar] [CrossRef]
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Muratori, M.; Calvin, K.; Wise, M.; Kyle, P.; Edmonds, J. Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS). Environ. Res. Lett. 2016, 11, 095004. [Google Scholar] [CrossRef]
- Chang, E.-E.; Pan, S.-Y.; Chen, Y.-H.; Chu, H.-W.; Wang, C.-F.; Chiang, P.-C. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor. J. Hazard. Mater. 2011, 195, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Stark, J.; Wicht, B. Dauerhaftigkeit von Beton; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-35277-5. [Google Scholar]
- Eloneva, S.; Teir, S.; Salminen, J.; Fogelholm, C.-J.; Zevenhoven, R. Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy 2008, 33, 1461–1467. [Google Scholar] [CrossRef]
- Lombardi, L.; Costa, G.; Spagnuolo, R. Accelerated carbonation of wood combustion ash for CO2 removal from gaseous streams and storage in solid form. Environ. Sci. Pollut. Res. Int. 2018, 25, 35855–35865. [Google Scholar] [CrossRef] [PubMed]
- Montes-Hernandez, G.; Pérez-López, R.; Renard, F.; Nieto, J.M.; Charlet, L. Mineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash. J. Hazard. Mater. 2009, 161, 1347–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olajire, A.A. A review of mineral carbonation technology in sequestration of CO2. J. Pet. Sci. Eng. 2013, 109, 364–392. [Google Scholar] [CrossRef]
- Bertos, M.F.; Simons, S.J.R.; Hills, C.D.; Carey, P.J. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J. Hazard. Mater. 2004, 112, 193–205. [Google Scholar] [CrossRef]
- Lackner, K.S.; Wendt, C.H.; Butt, D.P.; Joyce, E.L.; Sharp, D.H. Carbon dioxide disposal in carbonate minerals. Energy 1995, 20, 1153–1170. [Google Scholar] [CrossRef]
- Mühlenhoff, J.; Kajimura, R.; Boenigk, N.; Witt, J.; Horschig, T. Holzenergie in Deutschland Status Quo und Potenziale No. 82, Berlin. 2017. Available online: https://www.unendlich-viel-energie.de/media/file/2121.82_Renews_Spezial_Holzenergie_Aug2017.pdf (accessed on 30 June 2020).
- Kaltschmitt, M.; Hartmann, H.; Hofbauer, H. Energie aus Biomasse; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-47437-2. [Google Scholar]
- Deutsches Institut für Normung (DIN). Solid Biofuels—Fuel Specifications and Classes—Part 1: General Requirements; (ISO 17225-1:2021); Beuth Verlag GmbH: Berlin, Germany, 2021. [Google Scholar]
- Marutzky, R.; Seeger, K. Energie aus Holz und Anderer Biomasse: Grundlagen, Technik, Emissionen, Wirtschaftlichkeit, Entsorgung, Recht; 1., unveränd. Nachdr; DRW-Verlag Weinbrenner: Leinfelden-Echterdingen, Germany, 2002; ISBN 3871813478. [Google Scholar]
- Adler, P.; Billig, E.; Brosowski, A.; Daniel-Gromke, J.; Falke, I.; Fischer, E. Leitfaden Biogasaufbereitung und -Einspeisung, 5th ed.; Vollständig Überarbeitete Auflage; Fachagentur für Nachwachsende Rohstoffe e. V. (FNR): Gülzow-Prüzen, Germany, 2014; ISBN 3000183469.
- Bundesministerium der Justiz und für Verbraucherschutz. German Fertilizer Ordinance (Düngemittelverordnung); DüMV: Berlin, Germany, 2012.
- Tejada, J.; Wiedenmann, J.; Gall, B.; Kaiser, B.; Greißl, O.; Unterberger, S.; Kappler, A.; Thorwarth, H. Trace element behavior in wood-fueled heat and power stations in terms of an urban mining perspective. Fuel 2020, 267, 116887. [Google Scholar] [CrossRef]
- Marbun, B. Kinetik der Hydratation von CaO und MgO. Ph.D. Thesis, Technischen Universität Clausthal, Clausthal, Germany, 2006. [Google Scholar]
- Deutsches Institut für Normung (DIN). Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 1: Total Moisture—Reference Method; (ISO 18134-1:2015); Beuth Verlag GmbH: Berlin, Germany, 2015. [Google Scholar]
- Deutsches Institut für Normung (DIN). Sludge, Treated Biowaste and Soil—Determination of pH, German version EN 15933:2012; Beuth Verlag GmbH: Berlin, Germany, 2012. [Google Scholar]
- Deutsches Institut für Normung (DIN). Solid Biofuels—Determination of Major Elements—Al, Ca, Fe, Mg, P, K, Si, Na and Ti; (ISO 16967:2015); Beuth Verlag GmbH: Berlin, Germany, 2015. [Google Scholar]
- Deutsches Institut für Normung (DIN). Solid Biofuels—Determination of Minor Elements; (ISO 16968:2015); Beuth Verlag GmbH: Berlin, Germany, 2015. [Google Scholar]
- Schumacher, B. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; U.S. Environmental Protection Agency: Washington, DC, USA, 2002.
- Skalar Analytical, B.V. Skalar Methods: Total Carbon/Total Nitrogen; Soil Catnr. P03-001; Skalar Analytical B.V.: Breda, The Netherlands, 2020. [Google Scholar]
- Skalar Analytical, B.V. Skalar Methods: Total Inorganic Carbon; General Method Catnr. P05-099; Skalar Analytical B.V.: Breda, The Netherlands, 2020. [Google Scholar]
- Steinour, H.H. Some effects of carbon dioxide on mortars and concrete-discussion. J. Am. Concr. Inst. 1959, 30, 905–907. [Google Scholar]
- González, A.; Moreno, N.; Navia, R. CO2 carbonation under aqueous conditions using petroleum coke combustion fly ash. Chemosphere 2014, 117, 139–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, L.; Yu, H.; Wang, X.; Grigore, M.; French, D.; Gözükara, Y.M.; Yu, J.; Zeng, M. CO2 sequestration by direct mineralisation using fly ash from Chinese Shenfu coal. Fuel Process. Technol. 2017, 156, 429–437. [Google Scholar] [CrossRef]
- Dananjayan, R.R.T.; Kandasamy, P.; Andimuthu, R. Direct mineral carbonation of coal fly ash for CO2 sequestration. J. Clean. Prod. 2016, 112, 4173–4182. [Google Scholar] [CrossRef]
- Ukwattage, N.L.; Ranjith, P.G.; Yellishetty, M.; Bui, H.H.; Xu, T. A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration. J. Clean. Prod. 2015, 103, 665–674. [Google Scholar] [CrossRef]
- Pasquali, M.; Zanoletti, A.; Benassi, L.; Federici, S.; Depero, L.E.; Bontempi, E. Stabilized biomass ash as a sustainable substitute for commercial P-fertilizers. Land Degrad. Dev. 2018, 29, 2199–2207. [Google Scholar] [CrossRef]
- Baumgarten, B.; Grammer, P.; Ehard, F.; Winkel, O.; Vogt, U.; Baumbach, G.; Scheffknecht, G.; Thorwarth, H. Evaluation of a metal mesh filter prototype with wet regeneration. Biomass Conv. Bioref. 2021. [Google Scholar] [CrossRef]
- He, Q.; Shi, M.; Liang, F.; Xu, L.; Ji, L.; Yan, S. Renewable absorbents for CO2 capture: From biomass to nature. Greenh. Gas. Sci. Technol. 2019, 9, 637–651. [Google Scholar] [CrossRef]
- Zahoransky, R. Energietechnik; Springer: Wiesbaden, Germany, 2019; ISBN 978-3-658-21846-1. [Google Scholar]
- Fachagentur Nachwachsende Rohstoffe e.V. (FNR). Handreichung Biogasgewinnung und -Nutzung; Gülzow-Prüzen, Germany, 2004; ISBN 3000143335.
Element | C1 (mg/kgDM) | C2 (mg/kgDM) | Limit Value (mg/kgDM) |
---|---|---|---|
Cu | 16.03 ± 0.010 | 78.61 ± 33.43 | 2000 |
Zn | 370.1 ± 0.002 | 465.8 ± 47.68 | - |
B | 106.4 ± 4.19 | 93.64 ± 14.52 | - |
Mg | 13,690 ± 1513 | 12,250 ± 635.4 | - |
Ni | 31.36 ± 2.04 | 32.07 ± 2.04 | 80 |
Pb | 3.04 ± 2.65 | 22.97 ± 7.63 | 150 |
Cr | 65.15 ± 0.001 | 63.32 ± 15.93 | - |
Ca | 118,000 ± 7599 | 111,600 ± 9911 | - |
Element | C1 (mg/kgDM) |
---|---|
Na | 2910 ± 195.7 |
Al | 29,980 ± 2014 |
K | 34,020 ± 1786 |
Mn | 913.1 ± 72.07 |
Li | 46.26 ± 5.681 |
Ba | 933.0 ± 213.0 |
Ga | 50.50 ± 4.764 |
Sr | 222.2 ± 9.301 |
Fe | 22,560 ± 2165 |
Element | C1 (mg/L) | C2 (mg/L) | Limit Value (mg/L) |
---|---|---|---|
Cr | 0.002 ± <0.001 | 0.095 ± 0.032 | 0.5 |
Ni | 0.033 ± <0.001 | 0.029 ± 0.01 | 0.5 |
Cu | 0.105 ± <0.001 | 0.014 ± 0.005 | 0.5 |
Zn | 0.317 ± 0.005 | 0.112 ± 0.042 | 1.0 |
Test Run | pH 1 | pH 2 |
---|---|---|
BR 1:20 | 12.55 ± 0.04 | 12.03 ± 0.27 |
BR 1:15 | 12.54 ± 0.08 | 12.29 ± 0.09 |
BR 1:10 | 12.67 ± 0.06 | 12.55 ± 0.12 |
FR 1:20 | 12.37 ± 0.11 | 6.28 ± 0.10 |
FR 1:15 | 12.28 ± 0.15 | 6.26 ± 0.10 |
FR 1:10 | 12.40 ± 0.09 | 6.33 ± 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koch, R.; Sailer, G.; Paczkowski, S.; Pelz, S.; Poetsch, J.; Müller, J. Lab-Scale Carbonation of Wood Ash for CO2-Sequestration. Energies 2021, 14, 7371. https://doi.org/10.3390/en14217371
Koch R, Sailer G, Paczkowski S, Pelz S, Poetsch J, Müller J. Lab-Scale Carbonation of Wood Ash for CO2-Sequestration. Energies. 2021; 14(21):7371. https://doi.org/10.3390/en14217371
Chicago/Turabian StyleKoch, Robin, Gregor Sailer, Sebastian Paczkowski, Stefan Pelz, Jens Poetsch, and Joachim Müller. 2021. "Lab-Scale Carbonation of Wood Ash for CO2-Sequestration" Energies 14, no. 21: 7371. https://doi.org/10.3390/en14217371
APA StyleKoch, R., Sailer, G., Paczkowski, S., Pelz, S., Poetsch, J., & Müller, J. (2021). Lab-Scale Carbonation of Wood Ash for CO2-Sequestration. Energies, 14(21), 7371. https://doi.org/10.3390/en14217371