An Inclination in Thermal Energy Using Nanoparticles with Casson Liquid Past an Expanding Porous Surface
Abstract
:1. Introduction
2. Mathematical Formulation
- ➢
- Two-dimensional flow for steady and incompressible flows;
- ➢
- Slip conditions are used;
- ➢
- Thermal radiation is addressed;
- ➢
- A constant magnetic field is considered;
- ➢
- An expanding surface is taken out;
- ➢
- Two kinds of nanoparticles ( and ) in the base fluid ( are inserted in a Newtonian liquid.
3. Exact Solution of Problem
4. Outcomes and Discussion
5. Conclusions
- The nanofluid velocity profile decreased with rising nanofluid values of the fraction rate of the nanoparticle, magnetic parameters, and slip parameter for –water and water;
- The amount of thermal energy was enhanced against the increment in the volume fraction and slip parameter;
- The impacts of volume fraction were most significant in enhancing the thickness associated with the thermal layers;
- The study of and was useful to boost the efficiency of thermal conductivity and thermal energy into particles;
- Thermal radiation brings about a decline in the production of heat energy;
- Reduction was captured in the velocity gradient and temperature gradient against a change in the thermal radiation number;
- The opposite trend was tabulated into motion with respect to the volume fraction number for both cases (–water and –water);
- Variation in fluid number produces frictional force into the motion of fluid particles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbols | Used for |
Velocities | |
Fluid viscosity | |
Magnetic field | |
Electrical conductivity | |
Characteristic length | |
Infinity | |
Dimensionless velocity | |
Volume fraction | |
Thermal conductivity | |
Magnetic number | |
Nusselt number | |
Inclination angle | |
Porosity | |
Space coordinates | |
Fluid density | |
Temperature | |
Specific heat capacitance | |
Wall temperature | |
Ambient fluid | |
Dimensionless temperature | |
Thermal radiation | |
Prandtl number | |
Flow slip number | |
Reynolds number | |
Porous medium number | |
Solid particle |
References
- Hakeem, A.A.; Renuka, P.; Ganesh, N.V.; Kalaivanan, R.; Ganga, B. Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer. J. Magn. Magn. Mater. 2016, 401, 354–361. [Google Scholar] [CrossRef]
- Makinde, O.D.; Khan, W.A.; Khan, Z.H. Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 2013, 62, 526–533. [Google Scholar] [CrossRef]
- Rahman, M.M.; Eltayeb, I.A. Radiative heat transfer in a hydromagnetic nanofluid past a non-linear stretching surface with convective boundary condition. Meccanica 2013, 48, 601–615. [Google Scholar] [CrossRef]
- Akbar, N.S.; Nadeem, S.; Haq, R.U.; Ye, S. MHD stagnation point flow of Carreau fluid toward a permeable shrinking sheet: Dual solutions. Ain Shams Eng. J. 2014, 5, 1233–1239. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Ganesh, N.V.; Hakeem, A.A.; Ganga, B. Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J. Mol. Liq. 2014, 198, 234–238. [Google Scholar] [CrossRef]
- Mastroberardino, A.; Siddique, J.I. Magnetohydrodynamic stagnation flow and heat transfer toward a stretching permeable cylinder. Adv. Mech. Eng. 2014, 6, 419568. [Google Scholar] [CrossRef]
- Akbar, N.S.; Ebaid, A.; Khan, Z.H. Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet. J. Magn. Magn. Mater. 2015, 382, 355–358. [Google Scholar] [CrossRef]
- Chu, Y.M.; Nazir, U.; Sohail, M.; Selim, M.M.; Lee, J.R. Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 2021, 5, 119. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet. Int. J. Mech. Sci. 2011, 53, 886–896. [Google Scholar] [CrossRef]
- Sohail, M.; Nazir, U.; Chu, Y.M.; Al-Kouz, W.; Thounthong, P. Bioconvection phenomenon for the boundary layer flow of magnetohydrodynamic Carreau liquid over a heated disk. Sci. Iran. 2021, 28, 1896–1907. [Google Scholar]
- Ellahi, R.; Hassan, M.; Zeeshan, A. Shape effects of nanosize particles in nanofluid on entropy generation. Int. J. Heat Mass Transf. 2015, 81, 449–456. [Google Scholar] [CrossRef]
- Akbarzadeh, M.; Rashidi, S.; Bovand, M.; Ellahi, R. A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. J. Mol. Liq. 2016, 220, 1–13. [Google Scholar] [CrossRef]
- Zeeshan, A.; Majeed, A.; Ellahi, R. Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. J. Mol. Liq. 2016, 215, 549–554. [Google Scholar] [CrossRef]
- Rahman, S.U.; Ellahi, R.; Nadeem, S.; Zia, Q.Z. Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis. J. Mol. Liq. 2016, 218, 484–493. [Google Scholar] [CrossRef]
- Nazir, U.; Abu-Hamdeh, N.H.; Nawaz, M.; Alharbi, S.O.; Khan, W. Numerical study of thermal and mass enhancement in the flow of Carreau-Yasuda fluid with hybrid nanoparticles. Case Stud. Therm. Eng. 2021, 27, 101256. [Google Scholar] [CrossRef]
- Levin, M.L.; Miller, M.A. Maxwell a treatise on electricity and magnetism. Uspekhi Fiz. Nauk. 1981, 135, 425–440. [Google Scholar] [CrossRef]
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Lab.: Lemont, IL, USA, 1995. [Google Scholar]
- Wang, X.Q.; Mujumdar, A.S. Heat transfer characteristics of nanofluids: A review. Int. J. Therm. Sci. 2007, 46, 1–19. [Google Scholar] [CrossRef]
- Das, S.K.; Choi, S.U.; Patel, H.E. Heat transfer in nanofluids—A review. Heat Transf. Eng. 2006, 27, 3–19. [Google Scholar] [CrossRef]
- Cheng, L.; Bandarra Filho, E.P.; Thome, J.R. Nanofluid two-phase flow and thermal physics: A new research frontier of nanotechnology and its challenges. J. Nanosci. Nanotechnol. 2008, 8, 3315–3332. [Google Scholar] [CrossRef]
- Eastman, J.A.; Choi, U.S.; Li, S.; Thompson, L.J.; Lee, S. Enhanced thermal conductivity through the development of nanofluids. MRS Online Proc. Libr. 1996, 457. [Google Scholar] [CrossRef]
- Haq, R.U.; Noor, N.F.; Khan, Z.H. Numerical simulation of water based magnetite nanoparticles between two parallel disks. Adv. Powder Technol. 2016, 27, 1568–1575. [Google Scholar] [CrossRef]
- Khan, Z.H.; Hussain, S.T.; Hammouch, Z. Flow and heat transfer analysis of water and ethylene glycol based Cu nanoparticles between two parallel disks with suction/injection effects. J. Mol. Liq. 2016, 221, 298–304. [Google Scholar]
- Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. J.-STAGE 1993, 7, 227–233. [Google Scholar]
- Buongiorno, J. Convective transport in nanofluids. ASME J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Ahmad, S.; Rohni, A.M.; Pop, I. Blasius and Sakiadis problems in nanofluids. Acta Mech. 2011, 218, 195–204. [Google Scholar] [CrossRef]
- Shafiq, A.; Lone, S.A.; Sindhu, T.N.; Al-Mdallal, Q.M.; Rasool, G. Statistical modeling for bioconvective tangent hyperbolic nanofluid towards stretching surface with zero mass flux condition. Sci. Rep. 2021, 11, 13869. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, A.; Rasool, G.; Khalique, C.M. Significance of thermal slip and convective boundary conditions in three dimensional rotating Darcy-Forchheimer nanofluid flow. Symmetry 2020, 12, 741. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T.; Chamkha, A.J.; Shafiq, A.; Tlili, I.; Shahzadi, G. Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy 2020, 22, 18. [Google Scholar] [CrossRef]
- Abo-Dahab, S.M.; Abdelhafez, M.A.; Mebarek-Oudina, F.; Bilal, S.M. MHD Casson nanofluid flow over nonlinearly heated porous medium in presence of extending surface effect with suction/injection. Indian J. Phys. 2021, 2, 1–15. [Google Scholar]
- Mebarek-Oudina, F.; Redouane, F.; Rajashekhar, C. Convection heat transfer of MgO-Ag/water magneto-hybrid nanoliquid flow into a special porous enclosure. Alger. J. Renew. Energy Sustain. Dev. 2020, 2, 84–95. [Google Scholar]
- Swain, K.; Mebarek-Oudina, F.; Abo-Dahab, S.M. Influence of MWCNT/ hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. J. Therm. Anal. Calorim. 2021, 1–10. [Google Scholar] [CrossRef]
- Sohail, M.; Shah, Z.; Tassaddiq, A.; Kumam, P.; Roy, P. Entropy generation in MHD Casson fluid flow with variable heat conductance and thermal conductivity over non-linear bi-directional stretching surface. Sci. Rep. 2020, 10, 12530. [Google Scholar] [CrossRef] [PubMed]
- Reza, J.; Mebarek-Oudina, F.; Makinde, O.D. MHD slip flow of Cu-Kerosene nanofluid in a channel with stretching walls using 3-stage Lobatto IIIA formula. Defect Diffus. Forum 2018, 387, 51–62. [Google Scholar] [CrossRef]
- Imran, N.; Javed, M.; Sohail, M.; Tlili, I. Simultaneous effects of heterogeneous-homogeneous reactions in peristaltic flow comprising thermal radiation: Rabinowitsch fluid model. J. Mater. Res. Technol. 2020, 9, 3520–3529. [Google Scholar] [CrossRef]
- Rasool, G.; Shafiq, A.; Khalique, C.M.; Zhang, T. Magnetohydrodynamic Darcy–Forchheimer nanofluid flow over a nonlinear stretching sheet. Phys. Scr. 2019, 94, 105221. [Google Scholar] [CrossRef]
- Pal, D.; Hiremath, P.S. Computational modeling of heat transfer over an unsteady stretching surface embedded in a porous medium. Meccanica 2010, 45, 415–424. [Google Scholar] [CrossRef]
Physical Properties | Water | ||
---|---|---|---|
997.1 | 8933 | 3970 | |
4179 | 385 | 765 | |
0.613 | 400 | 40 | |
6.135 | |||
[33] | Present | |
---|---|---|
−1.167721 | −1.167726 | |
−1.366245 | −1.366218 | |
−1.539056 | −1.539091 | |
−1.694089 | −1.694029 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazir, U.; Sohail, M.; Hafeez, M.B.; Krawczuk, M.; Askar, S.; Wasif, S. An Inclination in Thermal Energy Using Nanoparticles with Casson Liquid Past an Expanding Porous Surface. Energies 2021, 14, 7328. https://doi.org/10.3390/en14217328
Nazir U, Sohail M, Hafeez MB, Krawczuk M, Askar S, Wasif S. An Inclination in Thermal Energy Using Nanoparticles with Casson Liquid Past an Expanding Porous Surface. Energies. 2021; 14(21):7328. https://doi.org/10.3390/en14217328
Chicago/Turabian StyleNazir, Umar, Muhammad Sohail, Muhammad Bilal Hafeez, Marek Krawczuk, Sameh Askar, and Sammar Wasif. 2021. "An Inclination in Thermal Energy Using Nanoparticles with Casson Liquid Past an Expanding Porous Surface" Energies 14, no. 21: 7328. https://doi.org/10.3390/en14217328
APA StyleNazir, U., Sohail, M., Hafeez, M. B., Krawczuk, M., Askar, S., & Wasif, S. (2021). An Inclination in Thermal Energy Using Nanoparticles with Casson Liquid Past an Expanding Porous Surface. Energies, 14(21), 7328. https://doi.org/10.3390/en14217328