Energy and Acoustic Environmental Effective Approach for a Wind Farm Location
Abstract
:1. Introduction
2. Materials and Methods
- achievement of maximum energy efficiency for the entire WF;
- the maximum height of the wind turbine (tower + rotor) must not exceed 150 m above ground level;
- a single tower height of 100 m was set for all types of turbines;
- the noise in the nearest protected areas may not exceed the limit value;
- the permissible noise level for daytime is 50 dB and for nighttime, 40 dB;
- the possibility of reducing the acoustic power of a turbine at the expense of its productivity was taken into account;
- due to the appropriately selected WF shape, the impact of individual wind turbines on the neighboring ones (turbulence, delayed wake-up, etc.) was not taken into account;
- the turbines were positioned in a line inclined at an angle of 20° in the direction of N–S (Figure 1); and
- the distance between the turbines was about 500 m, which corresponded to a minimum of five rotor diameters.
3. Results
3.1. Energy Analysis
3.1.1. Wind Power
3.1.2. Wind Speed Distribution in Selected Locations
3.1.3. Wind Turbine Selection
3.2. Acoustic Analysis
4. Final Results and Discussion
5. Conclusions
- no available device is excluded during preliminary energy analyses;
- a noise impact analysis is performed for all selected devices;
- after noise analysis, WF productivity is re-evaluated; and
- a ranking list of analyzed devices is prepared as a result.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Af | area of air flow, m2 |
A | Weibull scale parameter, m/s |
wind energy for the i-th speed range, Wh | |
total wind energy, Wh | |
LAeq | A-weighted equivalent sound level, dB |
LA90 | A-weighted 90th percentile of broadband sound levels, dB |
wind power, W | |
unit of wind power obtained in the i-th speed range, W/m2 | |
P0 | the reference value of 2 × 10−5, Pa |
P | the RMS value of the sound pressure, Pa |
TY | 1 year expressed in hours, 8760 h |
T | time interval, s |
fi | frequency of wind speed falling within the i-th range, |
k | Weibull shape factor, |
ρ | air density, m3/kg |
v | wind speed, m/s |
vav | average wind speed range, m/s |
vi | i-th wind speed range, m/s |
References
- WWW.dtu.dk. Available online: https://windenergy.dtu.dk/english/research/publicationslist?dtulistcode=ISTLIST46&fr=1&mr=100&ptype=all&qt=DtuPublicationQuery (accessed on 27 October 2021).
- U.S. EIA. International Energy Outlook 2019 with Projections to 2050; Office of Energy Analysis U.S. Department of Energy: Washington, DC, USA, 2019. [Google Scholar]
- ECA. Wind and Solar Power for Electricity Generation: Significant Action Needed If EU Targets to be Met; Special Report No 08/2019; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Enevoldsen, P.; Permien, F.H.; Bakhtaoui, I.; von Krauland, A.K.; Jacobson, M.; Xydis, G.; Sovacool, B.; Valentine, S.; Luecht, D.; Oxley, G. How much wind power potential does europe have? Examining european wind power potential with an enhanced socio-technical atlas. Energy Policy 2019, 132, 1092–1100. [Google Scholar] [CrossRef]
- Letcher, T.M. Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines, 1st ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Ehrlich, R.; Geller, H.A. Renewable Energy: A First Course, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Zagubień, A.; Wolniewicz, K. The impact of supporting tower on wind turbine noise emission. Appl. Acoust. 2019, 5, 260–270. [Google Scholar] [CrossRef]
- Celik, A. Energy output estimation for small scale wind power generators using Weibull representative wind data. J. Wind Eng. Ind. Aerodyn. 2003, 91, 693–707. [Google Scholar] [CrossRef]
- Wais, P. Two and three-parameter Weibull distribution in available wind power analysis. Renew. Energy 2017, 103, 15–29. [Google Scholar] [CrossRef]
- Hansen, J.; Mahak, M.; Tzanakis, I. Numerical modelling and optimization of Vertical Axis Wind Turbine pairs: A scale up approach. Renew. Energy 2021, 171. [Google Scholar] [CrossRef]
- IEC 61400-12-1:2005: Wind Turbines: Part 21-1: Power Performance of Electricity Producing Wind Turbines; IEC: Geneva, Switzerland, 2005.
- Jakubowski, M.; Mech, Ł.; Wolniewicz, K. A methodology of wind turbines selection for the given wind conditions. J. Mech. Energy Eng. 2017, 1, 171–178. [Google Scholar]
- Wolniewicz, K.; Kuczyński, W.; Zagubień, A. Method for wind turbine selection basing on in-field measurements. J. Mech. Energy Eng. 2019, 3, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Burton, T.; Sharoe, D.; Jenkins, N.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Kurpas, D.; Mroczek, B.; Karakiewicz, B.; Kassolik, K.; Andrzejewski, W. Health impact of wind farms. Ann. Agric. Environ. Med. 2013, 20, 595–605. [Google Scholar] [PubMed]
- Liu, W.Y. A review on wind turbine noise mechanism and de-noising techniques. Renew. Energy 2017, 108, 311–320. [Google Scholar] [CrossRef]
- Regional WHO. Office for Europe: Burden of Disease from Environmental Noise. Quantification of Healthy Life Years Lost in Europe; World Health Organization: Copenhagen, Denmark, 2011. [Google Scholar]
- Lee, J.T.; Kim, H.G.; Kang, Y.H.; Kim, J.Y. Determining the optimized hub height of wind turbine using the wind resource map of South Korea. Energies 2019, 12, 2949. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, G.P. Wind turbine power and sound in relation to atmospheric stability. Wind Energy 2008, 11, 151–169. [Google Scholar] [CrossRef]
- Wharton, S.; Lundquist, J.K. Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind farm. Wind Energy 2012, 15, 525–546. [Google Scholar] [CrossRef]
- Zagubień, A.; Ingielewicz, R. The analysis of similarity of calculation results and local measurements of wind farm noise. Measurement 2017, 106, 211–220. [Google Scholar] [CrossRef]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Yang, K.; Kwak, G.; Cho, K.; Huh, J. Wind farm layout optimization for wake effect uniformity. Energy 2019, 183, 983–995. [Google Scholar] [CrossRef]
- Wu, X.; Hu, W.; Huang, Q.; Chen, C.; Chen, Z.; Blaabjerg, F. Optimized Placement of Onshore Wind Farms Considering Topography. Energies 2019, 12, 2944. [Google Scholar] [CrossRef] [Green Version]
- Rajper, S.; Amin, I. Optimization of wind turbine micrositing: A comparative study. Renew. Sustain. Energy Rev. 2012, 16, 5485–5492. [Google Scholar] [CrossRef]
- Wais, P. A review of Weibull functions in wind sector. Renew. Sustain. Energy Rev. 2017, 70, 1099–1107. [Google Scholar] [CrossRef]
- ISO 9613-2:1996. Acoustics—Attenuation of Sound during Propagation Outdoors Part 2: General Method of Calculation; International Organization for Standardization: Geneva, Switzerland, 1996. [Google Scholar]
- Evans, T.; Cooper, J. Comparison of predicted and measured wind farm noise levels and implications for assessments of new Wind Farm. Acoust. Aust. 2012, 40, 28–36. [Google Scholar]
- Prospathopoulos, J.M.; Voutsinas, S.G. Application of a ray theory model to the prediction of noise emissions from isolated wind turbines and wind parks. Wind Energy 2007, 10, 103–119. [Google Scholar] [CrossRef]
- Van den Berg, G.P. Effects of the wind profile at night on W/T sound. J. Sound Vib. 2004, 277, 955–970. [Google Scholar] [CrossRef]
- Tonin, R. Sources of wind turbine noise and sound propagation. Acoust. Aust. 2012, 40, 20–27. [Google Scholar]
- Vestas. Document no. 0062-4192 V01; VESTAS: Copenhagen, Denmark, 2018. [Google Scholar]
- Vestas. Document no. 0062-4191 V04; VESTAS: Copenhagen, Denmark, 2017. [Google Scholar]
- GE. Commercial Documentation Wind Turbine Generator Systems GE 2.5—100 m Rotor 50 Hz & 60 Hz; GE: Fairfield, Connecticut, USA, 2010. [Google Scholar]
- W2E. General Description W2E-100/2.5; W2E: Rostock, German, 2008. [Google Scholar]
- Enercon. Document no. SIAS-04-SPL E-82 E2 OM I 2,3MW; Enercon: Berlin, German, 2010. [Google Scholar]
- Gamesa. Document no. GD086484; Gamesa: Zamudio, Spain, 2010. [Google Scholar]
Vendor/ Model | Vestas/ V100 | Vestas/ V90 | General Electric/ GE2.5 | Wind to Energy/ W2E-100/2.55 | Enercon/ E82 | Gamesa/ G97 |
---|---|---|---|---|---|---|
Power, [MW] | 2.0 | 2.0 | 2.5 | 2.5 | 2.3 | 2.0 |
Impeller diameter, [m] | 100 | 90 | 88 | 100 | 82 | 97 |
Wind Speed (100 m), [m/s] | Number of Hours per Year, [h] | Net Energy, [MWh] | |||||
---|---|---|---|---|---|---|---|
V100 | V90 | GE2.5 | W2E-100/2.55 | E82 | G97 | ||
0.50 | 139 | - | - | - | - | - | - |
1.50 | 401 | - | - | - | - | - | - |
2.50 | 663 | - | - | - | - | - | - |
3.50 | 871 | 54 | 79 | 46 | 37 | 71 | 82 |
4.50 | 999 | 192 | 200 | 153 | 93 | 174 | 236 |
5.50 | 1055 | 391 | 382 | 321 | 242 | 339 | 462 |
6.50 | 1009 | 618 | 593 | 522 | 438 | 537 | 720 |
7.50 | 907 | 866 | 806 | 726 | 647 | 739 | 983 |
8.50 | 762 | 1065 | 957 | 881 | 828 | 899 | 1148 |
9.50 | 606 | 1112 | 992 | 979 | 947 | 957 | 1101 |
10.50 | 467 | 925 | 889 | 962 | 962 | 883 | 911 |
11.50 | 326 | 652 | 648 | 771 | 786 | 685 | 649 |
12.50 | 223 | 446 | 446 | 552 | 558 | 502 | 446 |
13.50 | 153 | 306 | 306 | 382 | 383 | 360 | 306 |
14.50 | 87 | 174 | 174 | 218 | 218 | 204 | 174 |
15.50 | 49 | 98 | 98 | 123 | 123 | 115 | 98 |
16.50 | 19 | 38 | 38 | 48 | 48 | 45 | 38 |
17.50 | 11 | 22 | 22 | 28 | 28 | 26 | 22 |
18.50 | 6 | 12 | 12 | 15 | 15 | 14 | 12 |
19.50 | 3 | 6 | 6 | 8 | 8 | 7 | 6 |
20.50 | 2 | 4 | 4 | 5 | 5 | 5 | 4 |
21.50 | 1 | 2 | 2 | 3 | 3 | 2 | 2 |
22.50 | 1 | 2 | 2 | 3 | 3 | 2 | 2 |
Totally, [MWh] | 6985 | 6657 | 6743 | 6367 | 6566 | 7402 |
Wind Speed (100 m), [m/s] | Number of Hours per Year, [h] | Net Energy, [MWh] | |||||
---|---|---|---|---|---|---|---|
V100 | V90 | GE2.5 | W2E-100/2.55 | E82 | G97 | ||
0.50 | 131 | - | - | - | - | - | - |
1.50 | 259 | - | - | - | - | - | - |
2.50 | 477 | - | - | - | - | - | - |
3.50 | 695 | 43 | 63 | 37 | 30 | 57 | 65 |
4.50 | 958 | 184 | 192 | 147 | 89 | 167 | 226 |
5.50 | 1208 | 448 | 437 | 367 | 277 | 388 | 529 |
6.50 | 1300 | 796 | 764 | 672 | 564 | 692 | 928 |
7.50 | 1275 | 1217 | 1133 | 1020 | 909 | 1039 | 1382 |
8.50 | 985 | 1377 | 1237 | 1138 | 1069 | 1162 | 1484 |
9.50 | 585 | 1073 | 958 | 945 | 914 | 924 | 1063 |
10.50 | 344 | 681 | 655 | 709 | 709 | 650 | 671 |
11.50 | 206 | 413 | 410 | 489 | 498 | 434 | 411 |
12.50 | 124 | 248 | 248 | 307 | 310 | 279 | 248 |
13.50 | 80 | 160 | 160 | 200 | 200 | 188 | 160 |
14.50 | 56 | 112 | 112 | 140 | 140 | 132 | 112 |
15.50 | 34 | 67 | 67 | 84 | 84 | 79 | 67 |
16.50 | 20 | 40 | 40 | 50 | 50 | 47 | 40 |
17.50 | 11 | 22 | 22 | 28 | 28 | 26 | 22 |
18.50 | 6 | 11 | 11 | 14 | 14 | 13 | 11 |
19.50 | 3 | 5 | 5 | 7 | 7 | 6 | 5 |
20.50 | 3 | 6 | 6 | 8 | 8 | 7 | 6 |
21.50 | 1 | 3 | 3 | 3 | 3 | 3 | 3 |
22.50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Totally, [MWh] | 6906 | 6524 | 6363 | 5901 | 6292 | 7433 |
Model WT | V90 | E82 | V100 | W2E-100/2.55 | GE2.5 | G97 |
---|---|---|---|---|---|---|
Type | T1 | T2 | T3 | |||
Sound power level, [dB] | 104.0 | 105.0 | 105.8 |
Model WT | V100 with STE | V90 | G97 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. WT | WT1 | WT2 | WT3 | WT4 | WT1 | WT2 | WT3 | WT4 | WT1 | WT2 | WT3 | WT4 |
Sound power level, [dB] | 103.5 | 102.4 | 104.0 | 103.0 | 105.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolniewicz, K.; Zagubień, A.; Wesołowski, M. Energy and Acoustic Environmental Effective Approach for a Wind Farm Location. Energies 2021, 14, 7290. https://doi.org/10.3390/en14217290
Wolniewicz K, Zagubień A, Wesołowski M. Energy and Acoustic Environmental Effective Approach for a Wind Farm Location. Energies. 2021; 14(21):7290. https://doi.org/10.3390/en14217290
Chicago/Turabian StyleWolniewicz, Katarzyna, Adam Zagubień, and Mirosław Wesołowski. 2021. "Energy and Acoustic Environmental Effective Approach for a Wind Farm Location" Energies 14, no. 21: 7290. https://doi.org/10.3390/en14217290
APA StyleWolniewicz, K., Zagubień, A., & Wesołowski, M. (2021). Energy and Acoustic Environmental Effective Approach for a Wind Farm Location. Energies, 14(21), 7290. https://doi.org/10.3390/en14217290